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Abstract
Global surface water detection in very-high-resolution (VHR)
satellite imagery can directly serve major applications such
as refined flood mapping and water resource assessment. Al-
though achievements have been made in detecting surface
water in small-size satellite images corresponding to local
geographic scales, datasets and methods suitable for map-
ping and analyzing global surface water have yet to be ex-
plored. To encourage the development of this task and fa-
cilitate the implementation of relevant applications, we pro-
pose the GLH-water dataset that consists of 250 satellite im-
ages and 40.96 billion pixels labeled surface water annota-
tions that are distributed globally and contain water bodies
exhibiting a wide variety of types (e.g., rivers, lakes, and
ponds in forests, irrigated fields, bare areas, and urban ar-
eas). Each image is of the size 12,800 × 12,800 pixels at
0.3 meter spatial resolution. To build a benchmark for GLH-
water, we perform extensive experiments employing repre-
sentative surface water detection models, popular semantic
segmentation models, and ultra-high resolution segmentation
models. Furthermore, we also design a strong baseline with
the novel pyramid consistency loss (PCL) to initially ex-
plore this challenge, increasing IoU by 2.4% over the next
best baseline. Finally, we implement cross-dataset generaliza-
tion and pilot area application experiments, and the superior
performance illustrates the strong generalization and prac-
tical application value of GLH-water dataset. Project page:
https://jack-bo1220.github.io/project/GLH-water.html

Introduction
As one of the fundamental components of the Earth’s natu-
ral ecosystem, surface water plays a critical role in maintain-
ing biodiversity, ecological balance, and the development of
human societies (Vörösmarty et al. 2010). Due to its wide
spatial and temporal distribution, using satellite imagery to
detect and map the global surface water is a feasible and con-
venient method, leading to promising breakthroughs that are
applied in the flood mapping (Wieland et al. 2023), surface
water changes (Donchyts et al. 2016; Pekel et al. 2016), and
other assessments of water resources (Wang et al. 2020b).

Previous researches (Pekel et al. 2016) have shown that
approximately 90,000 square kilometers of permanent sur-
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Figure 1: Visualization of the GLH-water dataset. We show
the geographical coverage of the samples. Several examples
from different continents are selected and their image acqui-
sition times and scene descriptions are provided.

face water bodies have disappeared over the past 32 years,
and there have been significant changes in the geographical
distribution of surface water bodies. It is worth noting that
the use of satellite data with a spatial resolution of 30 meters
can result in the omission of small water bodies. Therefore,
more accurate mapping of surface water bodies at a global
or regional level is necessary to further explore the complex
distribution and changes of surface water bodies on Earth.
Similarly, the mapping of flood disaster also requires the in-
troduction of satellite images with higher spatial resolution
to provide detailed spatial details (Wieland et al. 2023). This
enables accurate identification of flood-affected areas using
advanced water extraction methods and supports effective
guidance for human rescue efforts.

Compared to synthetic aperture radar (SAR) im-
agery, very-high-resolution (VHR) optical satellite imagery
(Ground Sampling Distance, GSD<5m) has the advantage
of providing clearer texture and detail information about wa-
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ter. In contrast, medium- and low-resolution optical images
can only detect large surface water bodies, while small-scale
water bodies and their intricate details can only be captured
by VHR optical satellite imagery.

To our knowledge, no publicly suitable data has been pro-
posed to facilitate the training and evaluation of surface wa-
ter detection methods in global VHR optical imagery, which
seriously hinders the advancement of global VHR surface
water body mapping tasks. In addition, the size of VHR
satellite images of the whole scene is typically large. Ex-
tracting complete and continuous water bodies from large-
size images poses not only a greater challenge that remains
unexplored, but also is closer to practical applications such
as large-scale surface water mapping.

To promote research on this challenging task and to sup-
port applications like higher-resolution global surface wa-
ter mapping, we propose GLH-water, a large-scale dataset
for global surface water detection in large-size VHR opti-
cal satellite imagery. We collect 250 VHR optical satellite
images of 12,800 × 12,800 pixels containing various water
types from the whole world, and create 40.96 billion pix-
els annotations through manual labeling and expert inspec-
tion, as shown in Figure 1. GLH-water significantly differs
from other existing datasets analyzed in Appendix, with ad-
vantages focusing on the following aspects: (1) large-size
images; (2) a large number of samples; (3) extensive geo-
graphical coverage of the samples; (4) broad temporal span
of image acquisition; (5) inclusion of diverse types of sur-
face water. These variations and traits give GLH-water its
uniqueness and make GLH-water well-suited to meet the
needs of real-world applications.

Furthermore, to evaluate our dataset and explore this chal-
lenging task, we evaluate the performance of representative
surface water detection models, well-performing general se-
mantic segmentation models and ultra-high resolution seg-
mentation methods on GLH-water, and combine their met-
rics to create a benchmark. Motivated by multi-layer visual
field difference of the image pyramid and the topological
continuity of surface water in large-size satellite images, we
propose a strong baseline with the new pyramid consistency
loss (PCL) to offer a promising pipeline for this challenge.
Finally, we conduct extensive experiments to demonstrate
the strong generalization of GLH-water and its application
value. In summary, our contributions are as follows:

• We present the first large-scale dataset for global surface
water detection in large-size VHR optical satellite im-
agery. Through the generalization and pilot area applica-
tion experiments, it offers significant advantages in map-
ping global surface water using high-resolution optical
satellite images.

• We evaluate a variety of semantic segmentation models
on GLH-water, which can serve as a benchmark for the
development of future methods.

• We further propose a novel strong baseline with the PCL,
which yields significant improvements and suggests that
it will be a competitive pipeline for future development.

In the future, GLH-water and strong baseline we proposed
are expected to provide reliable training data and models for

manufacturing the global high-resolution surface water map.

Related Work
Relevant Datasets
Surface water detection datasets. The upper portion of Ta-
ble 1 displays existing datasets specifically designed for de-
tecting surface water bodies. The majority of currently avail-
able datasets (Hu et al. 2022; Isikdogan et al. 2019; Luo,
Tong, and Hu 2021; Seale et al. 2022) for surface water de-
tection based on optical satellite imagery exhibit only low
to medium spatial resolution, as seen with Landsat-8 and
Sentinel-2 images. The resolution limitations of the images
result in the blurring and indistinguishability of small rivers
and lakes. To track intricate surface water systems, research
endeavors direct their experimental focus towards commer-
cial satellites that offer high resolution of up to 1m or even
0.3m, such as GeoEye and WorldView (Moortgat et al. 2022;
Wieland et al. 2023). Regrettably, owing to the policy con-
straints of commercial satellites, these datasets are unavail-
able to the public community. In contrast, our GLH-water
is the first publicly available large-scale dataset for surface
water detection from global VHR optical satellite imagery.
Land use and land cover (LULC) datasets. As a funda-
mental application in the field of remote sensing, LULC
datasets are extensively created and utilized, and they com-
monly encompass the class of water. However, they inade-
quately fulfill the need of tasks such as refined global water
mapping. The reason is that none of them can simultane-
ously satisfy the trinity of global sampling, VHR, and large-
size imagery, as shown in the lower portion of Table 1. For
example, FBP (Tong, Xia, and Zhu 2023) originates from the
VHR and large-size images of GaoFen-2 satellite. However,
it is confined to a limited selection of cities in China, and
migration of the trained model to other regions presents a
challenge. The image size of DynamicEarthNet (Toker et al.
2022) is only 1,024×1,024 pixels, insufficient to effectively
portray the distribution of water bodies, a characteristic with
notable geospatial continuity. In contrast, GLH-water offers
advantages such as global sampling, VHR, large-size im-
agery. These attributes are essential for executing surface
water mapping tasks on a global scale.

Relevant Methods
Surface water detection methods based on non-deep
learning algorithms. Normalized Difference Water Index
(NDWI) (McFeeters 1996), Modified Normalized Differ-
ence Water Index (MNDWI) (Xu 2006), and other threshold-
based water indices (Yao et al. 2015; Wu et al. 2018)
are commonly proposed and implemented in initial stud-
ies. However, their reliance on spectral information result
in a lack of consideration for the spatial information present
within the images. Additionally, shallow classifiers such as
Support Vector Machine (SVM) are employed and show sig-
nificant improvements (Wu et al. 2018).
Surface water detection methods based on deep learn-
ing algorithms. The VHR optical satellite imagery com-
prises of a range of water bodies, including but not limited
to, rivers, lakes, and ponds with diverse sizes and shapes (Li
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Dataset # Images # Channels Image size
(pixels) GSD (m) # Labeled pixels

(billion) Sources Geographic
coverage

Dedicated surface water detection dataset
DeepWaterMap >140000 6 - 30 - Landsat-8 Globe
ESKWB 95 6 545∼1432×625∼1527 10 0.11 Sentinel-2 Globe
SWED 1862 12 256×256 10 0.12 Sentinel-2 Globe
SWB 2841 3 57∼5292×57∼6767 10 - Sentinel-2 -
C2S-MS Floods 1800 2/13 512×512 10 0.23 Sentinel-1, 2 Globe
2020 GF challenge 1000 3 492∼2000×492∼2000 1 to 4 0.24 GaoFen-2 -
MSRWD 2419 3 512×512 - 0.63 ZY-3, et al. -

LULC dataset (including water bodies)
DeepGlobe 803 3 2448×2448 0.5 4.81 DigitalGlobe -
Agriculture-Vision 94986 4 512×512 0.1/0.15/0.2 24.9 UAV camera United States
LoveDA 5987 3 1024×1024 0.3 6.27 Google Earth China
FBP 150 4 7200×6800 4 7.34 GaoFen-2 China
DynamicEarthNet 54750 4 1024×1024 3 1.38 PlanetFusion Globe
OpenEarthMap 5000 3 1024×1024 0.25-0.5 5.24 - Globe

GLH-water (our) 250 3 12800×12800 0.3 40.96 Google Earth Globe

Table 1: Comparison among GLH-water and other relevant datasets. All datasets are compared on number of images and
channels, image size, spatial resolution (GSD), data sources, and geographic coverage.

et al. 2022a; Kang et al. 2023). Numerous studies (Duan and
Hu 2019; Yu et al. 2021; Kang et al. 2021) aim to enhance
the identification of intricate water bodies by optimizing the
deep learning network, thereby enabling more efficient uti-
lization of the multiscale characteristic. The meandering of
water body boundaries constitutes a critical hindrance to the
precise segmentation of water bodies. (Miao et al. 2018) de-
vise a loss function to derive accurate water body bound-
aries, considering the distribution of boundary weights.

Application: Global Surface Water Mapping
In the broader context of global water resource monitor-
ing and mapping, the Global Flood Database (Kettner et al.
2021) contains maps at 250m resolution of the extent dis-
tribution of 913 flood events that occurred between 2000
and 2018. The European Commission Joint Research Cen-
tre (ECJRC) use Landsat-5/7/8 satellite imagery to map
global 30m water body data products for the period 1984-
2020 (Pekel et al. 2016). Global land cover products which
incorporate the water body category are gradually emerg-
ing, albeit at a resolution of merely 10m (Jun, Ban, and Li
2014; Karra et al. 2021). In addition, continuous production
and application of regional mapping products with low to
medium resolution imagery for water bodies (Wang et al.
2022; Li and Niu 2022; Feng et al. 2016) and with high res-
olution imagery for LULC (Robinson et al. 2019; Li et al.
2022b) is ongoing. The inevitable trend in cartography is to
continuously enhance the spatial resolution of products, as
this demonstrates the benefits of more detailed information.
However, the production of global VHR water cover maps
remains a challenging task, due to the difficulty of acquiring
and organizing VHR satellite data, the absence of publicly
available large-scale surface water detection datasets with
manual annotation, and the lack of related models that are
suitable for large-size images. Our GLH-water and strong
baseline are expected to fill these gap.

The GLH-Water Dataset
To fill the lack of pertinent datasets and enhance the general-
izability of models in detecting global surface water, we first
present the GLH-water dataset that contains 250 VHR satel-
lite images with the size of 12,800 × 12,800 pixels. These
images are collected from various locations worldwide and
manual annotations are included, as illustrated in Figure 1.
In the remainder of this section, we provide details on the
imagery, annotations, and advantages of our dataset.

Images Collection and Preprocessing
Using the Google Earth platform, we collect a total of 250
satellite images across the globe, each with sizes of 12,800 ×
12,800 pixels at about 0.3m (19 level) spatial resolution, and
encompassing approximately 3,686 km2 in geographic cov-
erage. To guarantee the diversity of the dataset, we handpick
the geographic coordinates and acquisition time of the sam-
ple data to ensure an accurate representation of the various
attributes of the global water bodies.

Annotation Method and Inspection
The annotation labeling process includes three distinct
stages: fine labeling, fine checking and correction, and ran-
dom checking conducted by experts. After scrutiny and revi-
sion, no apparent errors are found in the GLH-water dataset.
Some annotated samples are shown in Figure 2. More details
about annotation and inspection are provided in appendix.

Advantage Analysis
To the best of our knowledge, the GLH-water dataset is
the first publicly available and largest dedicated dataset for
global-scale surface water detection from large-size VHR
satellite imagery. A comparison with other existing datasets
is shown in Table 1.

Specifically, our GLH-water dataset has five remarkable
and important advantages:
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Figure 2: Visualization of various types of surface water bodies in different scenarios on GLH-water dataset. It can comprehen-
sively reflect the diversity of the global surface water system.

• The size of samples is large. The size of each image is
up to 12,800 × 12,800 pixels, which is more in line with
the size of a whole scene image acquired by satellite. It
is also a challenge for existing methods.

• Inclusion of a large number of samples. After non-
overlapping cropping, a total of 156,250 tiles of 512 ×
512 pixels in size and 40.96 billion labeled pixels are
included, which is the largest dataset for global surface
water detection from large-size VHR satellite imagery.

• The geographical coverage of the samples is exten-
sive. Figure 1 illustrates the detailed geographic distri-
bution, showing that data points are present on all con-
tinents except Antarctica. The geographic distribution is
reasonable, and can represent the features of surface wa-
ter body worldwide. Therefore, models trained on our
dataset are expected to have stronger generalizability in
the geographical dimension.

• The temporal span of image acquisition is broad. The
range of acquisition time of data spans from 2011 to
2022, and each year contains a certain amount of data.
Models exhibit greater temporal generalization ability.

• Inclusion of a diverse type of surface water land-
scapes, as depicted in Figure 2. These include, but are
not limited to, lakes and rivers in the forest, grassland,
field, shrub, bare area, and urban area, pools, glacial
lakes, and water in the special scenario. The wide types

serves as a representation of various geographic land-
scapes, land cover conditions, water body shapes, and
color tone types, thus providing a comprehensive reflec-
tion of the diversity of the global surface water system.

In summary, the above five advantages drive GLH-water
dataset to be unique and advanced.

Dataset Splits
To ensure that the training and test data are roughly equally
distributed, we randomly select 80% of the original images
as the training set, 10% as the validation set, and 10% as the
test set. From the geographical distribution range shown in
Figure 1, we can find that the validation and test sets are ran-
domly distributed in various regions, which can well reflect
the actual performance of the model trained by this dataset.

Method
Baseline Models
Many models are developed to consider the characteristics
of water bodies in VHR satellite images in the field of re-
mote sensing, as outlined in related work. We choose three
representative models (i.e., MECNet (Zhang et al. 2021),
MSResNet (Dang and Li 2021), and MSCENet (Kang et al.
2021)) as baseline models. In the realm of computer vision,
numerous sophisticated semantic segmentation models are
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Figure 3: An overview of our strong baseline with the PCL.

perpetually created, which can be adapted for satellite im-
ages. We use five advanced models to construct the bench-
mark results, namely FCN (Long, Shelhamer, and Darrell
2015), PSPNet (Zhao et al. 2017), DeepLab v3+ (Chen et al.
2018), HRNet (Wang et al. 2020a), and STDC (Fan et al.
2021). In addition, given the VHR and the large size of im-
ages in GLH-water, we also evaluate several ultra-high res-
olution segmentation methods (i.e., FCtL (Li et al. 2021),
MagNet (Huynh et al. 2021), and ISDNet (Guo et al. 2022)).

A Strong Baseline With the PCL
We develop a competitive strong baseline with the new PCL
that is specifically designed to explore the detection per-
formance of surface water in large-size VHR satellite im-
ages. The pyramid consistency encompasses the inter-layer
consistency (i.e., visual field consistency between pyramidal
layers) and the intra-layer consistency (i.e., spatial consis-
tency within a pyramidal layer), as illustrated in Figure 3.
To construct the image pyramid, we downsample each orig-
inal large-size image XH×W at varying rates {σi, i = n},
resulting in a multi-layer representation. Considering com-
putational cost, we adopt downsampling rates of 1, 1/5, and
1/25, generating an image pyramid comprising three layers.

Inter-layer consistency. As mentioned in (Min et al.
2022), the human brain may be influenced by the vary-
ing sizes of the visual field being observed, potentially re-
sulting in divergent interpretations. The differences in at-
tention maps of tiles with distinct visual fields displayed
in Figure 4(a) show that the model is influenced by con-
text information associated with the visual field. Motivated
by this idea, we propose the inter-layer consistency loss
to calculate the discriminative variances of the model re-
sulting from dissimilarities in the visual range of patches.
Specifically, we define the small tiles in the original im-
age (i.e., tiles located in the first layer of the pyramid)
xh×w
1st as the fundamental units and establish inter-layer

tile groups {x1st, x2nd, x3rd}h×w by upwardly mapping the
corresponding tiles from various layers. It is pertinent to
note that while the size of each tile within the tile group
remains consistent and same, the visual field they con-
tained is gradually increasing as shown in Figure 3. The
tile groups are trained by the encoder and decoder to obtain
the corresponding sigmoid normalized confidence maps

Figure 4: The motivation of pyramid consistency. Attention
maps of tiles with different visual fields and overlapping tiles
are distinct in the same areas. Attention maps are obtained
by the GradCAM (Selvaraju et al. 2017), using the ResNet-
50 model trained on the GLH-water dataset.

{p1st, p2nd, p3rd}h×w. Minimizing the differences between
same regions in the confidence maps, which are caused by
differences in the visual field, alleviates the visual field bias
that arises due to limited contextual information.

Intra-layer consistency. Slicing the original image for
processing may lead to the loss of contextual information
and interdependence between adjacent tiles, which poten-
tially disrupts the topological continuity of water bodies in
remote sensing images with a large size. Figure 4(b) im-
plies that the models exhibit differentiated attention for ad-
jacent tiles with overlaps. We argue that enforcing consis-
tency of the overlapping region on tiles with different con-
textual information helps to resume the continuity of wa-
ter bodies. Based on this challenge and motivation, we fur-
ther develop the intra-layer consistency loss to effectively
model the continuous relationship between neighboring tiles
and compensate for the information gap induced by image
slicing. Specifically, we define four adjacent and overlap-
ping tiles as an intra-layer tile group {x1, x2, x3, x4}h×w,
and their spatial relationships are depicted in Figure 3. All
tile pairs {(xi, xj) , 1 ⩽ i < j ⩽ 4} are processed by the en-
coder and decoder to obtain sigmoid normalized confidence
map pairs (pi, pj). The overlapping part between them is
used to calculate the intra-layer consistency loss.

Loss function. Inspired by the focal loss (Lin et al. 2017),
we modify and present a novel consistency loss function to
effectively calculate both inter-layer consistency Linter and
intra-layer consistency Lintra abovementioned. Overall op-
timization objective function can be defined as follows:

Ltotal = Lseg + αinterLinter + αintraLintra, (1)
where Lseg denotes the regular semantic segmentation loss
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using binary cross entropy loss ℓbce. αinter, αintra are trade-
off weights. Linter,Lintra are formulated as

Linter =
1

w × h

w×h∑
(1− p1st)

r
(1− λ)y1stℓ2 (p1st, p̃2nd)

+λpr1st (1− y1st) ℓ2 (p1st, p̃2nd)

+
1

w × h

w×h∑
(1− p1st)

r
(1− λ)y1stℓ2 (p1st, p̃3rd)

+λpr1st (1− y1st) ℓ2 (p1st, p̃3rd) ,
(2)

Lintra =
1

w̃ × h̃

w̃×h̃∑ ∑
1⩽i<j⩽4

(1− p̃i)
r
(1− λ)ỹiℓ2 (p̃i, p̃j)

+λp̃ri (1− ỹi) ℓ2 (p̃i, p̃j) ,
(3)

where y1st denotes corresponding binary annotations of tiles
in first layer. The value of 1 denotes water type in the pixel,
while the value of 0 indicates non-water type. p1st denotes
the confidence map of tiles in first layer, and p̃2nd, p̃3rd rep-
resent the confidence maps of the overlapping regions in
the inter-layer tile group of other layers (after upsampling).
ℓ2 (p1st, p̃2nd) = ∥p1st − p̃2nd∥22 calculates the square of
the euclidean distance. Similarly, p̃i, p̃j represent the confi-
dence map of the overlapping regions in the intra-layer tile
group. w̃ and h̃ represent the width and height of the over-
lapping region. r, λ are tunable parameters, which help the
model to focus on learning hard-to-distinguish samples.

Benchmark and Experiment
Setup
Implementation details. To ensure the fairness of the eval-
uation, the implemention setting of all methods is as similar
as possible. More details are in the appendix.
Evaluation metrics. We use the intersection-over-union
(IoU) metric to evaluate the quantitative performance of de-
tecing surface water, following previous related work. In ad-
dition, we also use Frames Per Second (FPS) to evaluate the
computational efficiency of different models.

Evaluation Results
As described in baseline models, we evaluate 12 of the pop-
ular methods shown in Table 2. The accuracy of generic se-
mantic segmentation models is overall higher than that of
models designed for surface water detection, which proves
that surface water detection in large-size VHR satellite im-
agery is challenging and still needs further development.
Furthermore, our PCL outperforms other methods by lever-
aging the multi-layer field of visual information present in
large-size images and the topological continuity of water
bodies. Nonetheless, it suffers from low efficiency and high
computational cost, which are common issues faced by other
ultra-high resolution segmentation methods (i.e., FCtL (Li
et al. 2021) and ISDNet (Guo et al. 2022)). Thus, striking a
balance between accuracy and efficiency should be consid-
ered a crucial research priority in this task. The qualitative

Method Backbone IoU(%) (↑) FPS (↑)

Segmentation methods proposed for surface water detection
MECNet - 44.67 3.44

MSResNet Res-34 69.76 4.03
MSCENet Res2-50 74.81 2.60

Generic segmentation methods in Computer Vision
FCN8s VGG-16 73.66 6.70
PSPNet Res-50 75.19 5.98

DeepLab v3+ Res-50 79.80 4.48
HRNet-48 - 78.60 3.03

STDC-1446 - 75.82 26.50

Ultra-high Resolution Segmentation methods
MagNet FPN-Res-50 62.77 13.33

FCtL FCN8s-VGG16 74.92 0.112
ISDNet DeepLab v3-Res-18 53.04 2.09

Our PCL PSPNet
-Res-50 82.26 1.34

Table 2: Benchmark results on GLH-water test set. FPS
is measured in training settings with batchsize=2. F1-score
and GPU memory metrics are released in appendix.

visualization results and additional metric results are pro-
vided in the appendix.

Table 3 demonstrates the consistent improvement of our
strong baseline compared to the fair baseline approach
across different segmentation model settings. This indicates
that our approach is an effective pipeline and is driving
progress in this task.

Method Seg model IoU (%)

Baseline
FCN8s-VGG16

73.66
FCtL 74.92

Our PCL 75.78 (+2.12)

Baseline PSPNet-Res50 75.19
Our PCL 82.26 (+7.07)
Baseline DeepLabV3+-Res50 79.80

Our PCL 81.33 (+1.53)

Table 3: Performance of baseline with different networks
or the existing method with the fair network and our pro-
posed model on GLH-water test set. The results show that
our model outperforms common models when using various
segmentation models.

Ablation Study on the Strong Baseline
Effectiveness of components in PCL. Exps. II and III in Ta-
ble 4 show that both key components of PCL (i.e., Linter and
Lintra) outperform the baseline by a large margin (+5.89%
and +5.50%), and their combination can further improve the
performance of the model (Exp. VII).
Effectiveness of loss function of PCL. We conduct an abla-
tion study using the vanilla L2 loss function to measure the
pyramid consistency (Exp. IV), and find that the loss func-
tion we designed (Eqs. (2) and (3)) has superior capacity
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Figure 5: Generalization and application experiment results on GLH-water dataset. (a) IoU (%) of cross-dataset evaluation. (b)
Visualization results of cross-dataset evaluation. The displayed results are all predicted by the model trained on GLH-water. (c)
IoU (%) of pilot area evalution with the HRNet-48 models trained on different datasets. (d) Visualization results of the model
trained by our GLH-water on the pilot area. Red lines represent ground truth, and cyan masks are predictions.

ID Configuration IoU (%) ∆ (%)

I Baseline (Lseg) 75.19 -
II Lseg + Linter 81.08 +5.89
III Lseg + Lintra 80.69 +5.50
IV Vanilla ℓ2 71.46 −3.73
V w/o the 2rd layer of image pyramid 80.13 +4.94
VI w/o the 3nd layer of image pyramid 81.37 +6.18

VII Our PCL 82.26 +7.07

Table 4: Ablation study on key components of strong base-
line (seg model: PSPNet-Res-50). Vanilla ℓ2 means using
vanilla L2 loss to measure the pyramid loss rather than loss
function (Eqs.(2) and (3)) we designed.

to facilitate learning on hard-to-distinguish samples, thereby
resulting in performance improvement.
Impact of the number of image pyramid layers. We ob-
serve that if we only apply two layers of the image pyramid
to participate in training, our PCL will bring a performance
improvement of over 4.9% (Exps. V and VI). When building
three layers of the image pyramid, we can see that there is a
7.07% improvement (Exp. VII), indicating that more layers
being considered may be more beneficial.

Cross-Dataset Generalization Evaluation
Considering the similar resolution, data source, and large
image size, we choose the LoveDA (Wang et al. 2021) and
DeepGlobe dataset (Demir et al. 2018) to implement the
cross-dataset generalization evaluation. Following the data
split of (Wang et al. 2021; Guo et al. 2022), we use DeepLab
v3+-Res-50 as the segmentation model to train the models
and evaluate the cross-dataset performance.

As shown in Figure 5(a), there is little difference be-
tween the results of the model trained on GLH-water and the
model trained on LoveDA on the LoveDA test set (68.15%
vs. 69.27%). However, the performance of the model trained
on LoveDA is significantly diminished when transferred di-
rectly to the GLH-water test set (50.13% vs. 79.80%). A
similar situation occurrs between DeepGlobe and GLH-

water. Results in Figure 5(a) and (b) confirm the strong gen-
eralization of our GLH-water.

Pilot Area Application Evaluation
Providing data support for VHR global surface water map-
ping is one of the motivations for constructing the GLH-
water. We select the Yangpu District of Shanghai, China,
which is independent of the dataset and annotated by ex-
perts, as a pilot area (60.61 km2) to further discuss the sur-
face water mapping application of GLH-water.

Based on the results presented in Figure 5(c) and (d), it
is evident that the model trained on GLH-water exhibits su-
perior performance (75.99%) in the surface water mapping
task in the pilot area, surpassing the models trained on other
datasets. These findings suggest that GLH-water holds sig-
nificant potential for global-scale VHR surface water map-
ping, owing to its strong generalization.

Conclusions and Future Work
We present a global large-scale dataset for surface water
detection in large-size VHR satellite imagery, which is the
first publicly available dataset for this task. Unlike existing
datasets, we collect 250 large-size satellite images contain-
ing various surface water scenes across the whole earth and
carefully annotate 40.96 billion pixel labels. Considering the
advantages of GLH-water over other datasets, cross-dataset
generalization, and pilot area application evaluation results,
we believe that this dataset is more suitable for practical ap-
plications. Additionally, we build a benchmark to evaluate
advanced segmentation models in the fields of remote sens-
ing and computer vision. We also propose a strong baseline
with PCL, which is a promising research pipeline to advance
this task and related applications.

In future research, GLH-water is expected to serve not
only as an evaluation tool for algorithm advancements but
also as a supportive resource for global high-resolution sur-
face water mapping and related environmental sustainability
topics, such as global water resource conservation and man-
agement.
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