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Abstract
Lung cancer remains the leading cause of cancer-related
death worldwide, and early diagnosis of lung cancer is critical
for improving the survival rate of patients. Performing annual
low-dose computed tomography (LDCT) screening among
high-risk populations is the primary approach for early di-
agnosis. However, after each screening, whether to continue
monitoring (with follow-up screenings) or to order a biopsy
for diagnosis remains a challenging decision to make. Contin-
uing with follow-up screenings may lead to delayed diagnosis
but ordering a biopsy without sufficient evidence incurs un-
necessary risk and cost. In this paper, we tackle the problem
by an optimal stopping approach. Our proposed algorithm,
called EarlyStop-RL, utilizes the structure of the Snell enve-
lope for optimal stopping, and model-free deep reinforcement
learning for making diagnosis decisions. Through evaluat-
ing our algorithm on a commonly used clinical trial dataset
(the National Lung Screening Trial), we demonstrate that
EarlyStop-RL has the potential to greatly enhance risk as-
sessment and early diagnosis of lung cancer, surpassing the
performance of two widely adopted clinical models, namely
the Lung-RADS and the Brock model.

Introduction
Resulting in estimated 130,180 deaths in 2022, lung can-
cer has become the leading cause of cancer-related deaths
in the United States (Siegel et al. 2022). The prognosis of
lung cancer patients at different clinical stages is signifi-
cantly different. The 5-year survival rate of stage IA groups
(early stage) can exceed 90%, while the survival rate of pa-
tients with stage IV (the latest stage) is less than 10% (Ning
et al. 2021). Therefore, early diagnosis holds immense sig-
nificance for individuals with lung cancer.

The primary approach employed in clinical practices to
improve early diagnosis of lung cancer is conducting lung
cancer screenings among high-risk populations using low-
dose computed tomography (LDCT) (Team 2011b; Ardila,
Kiraly et al. 2019). After detecting a lung nodule from an
LDCT scan, the primary objective of radiologists is to iden-
tify the nodule’s risk and then establish a definitive diagnosis
or ascertain the necessity for subsequent follow-up LDCT
examinations. To date, most lung cancer screening stud-
ies and programs worldwide have offered sequential annual
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screening to participants for up to 4 years (Robbins et al.
2022) according to existing international clinical guidelines
(Larici et al. 2017). A significant limitation associated with
this management framework is the high incidence of false
positives (FP) and an excessive number of follow-up LDCTs
(Mehta, Mohammed, and Jantz 2017). The high rate of FP
will result in considerable clinical and financial costs asso-
ciated with over-diagnosis such as unnecessary downstream
invasive procedures, while an excessive number of follow-
up exams will lead to missed or delayed diagnosis.
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Figure 1: LDCT screening and diagnosis examples from the
NLST dataset.

Figure 1 presents examples of four lung nodules
on LDCT scans and their diagnosis results from
the National Lung Screening Trial (NLST) dataset
(https://cdas.cancer.gov/nlst/) (Team 2011a). In the first
year, each of the four cases exhibited considerable suspicion
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of lung cancer. In the subsequent years, distinct radio-
logical attributes became evident. However, by the third
screening cycle year, patients afflicted with cancer have
already progressed to an advanced pathological stage, and
their prospects for survival have substantially decreased.
Therefore, it is crucial to diagnose the cancer timely, i.e., in
the first or second year before it is too late.

Optimal stopping problem (Poor and Hadjiliadis 2009)
roots in the fields of stochastic processes and dynamic pro-
gramming and gradually becomes a centerpiece for many
real-world applications that deal with streaming data. We
refer the readers to (Xie et al. 2021) for a recent survey
on this topic. In the context of healthcare, this fundamen-
tal problem is perfectly akin to the challenges encountered
in the field of epidemiology. Various algorithms, such as
Cumulative Sum (CUSUM (Ritov 1990)) and Likelihood
Ratio Test (LRT (Willsky and Jones 1976)), have been ex-
tensively employed for many diseases such as COVID-19
(Braca et al. 2021) or for the early termination of Phase II
clinical trials (Nasrollahzadeh and Khademi 2020). The line
of research most related to our topic is the Optimal Stopping
in Radiation Therapy (OSRT), where several optimal stop-
ping methods have been explored to effectively manage the
radiotherapy process for patients with lung cancer (Ajdari
et al. 2019).

When facing complex underlying dynamic processes,
classical approaches like the Snell envelope approach or
Approximate Dynamic Programming (ADP) (Bertsekas and
Tsitsiklis 1995) may not be adequate to address optimal
stopping problems effectively. On the other hand, Reinforce-
ment Learning (RL), especially model-free reinforcement
learning, has been identified as a viable solution to over-
come these challenges, particularly through the utilization
of deep reinforcement learning algorithms (Ery and Michel
2021; Fathan and Delage 2021).

Our Contributions
In this paper, we focus on the challenge of finding an effec-
tive strategy that can provide early diagnoses of lung cancer
while maintaining relatively low rates of false positives and
false negatives. By considering the biologically stochastic
and dynamic nature of lung cancer, we formulate the nat-
ural history of lung cancer as a discrete-time Partially Ob-
servable Markov Decision Process (POMDP) and view the
early diagnosis of lung cancer as an optimal stopping time
problem. To solve this problem, we utilize model-free deep
reinforcement learning (RL) machinery and the structure of
the Snell envelope. We choose RL due to the sequential na-
ture of the data and the unknown progression of lung cancer,
which aligns with RL’s inherent characteristics. The design
of the Snell envelope will yield a stopping rule that is in-
terpretable, leveraging the convexity of the stopping region.
This stopping rule can be readily assessed and implemented
in clinical settings.

Our work is strongly associated with the Bayesian regime
(Shiryaev 1963) and differs fundamentally from the stan-
dard optimal stopping problem. Unlike classical stochastic
problems that have a directly measurable quantity to indi-
cate the object’s condition, such as the number of individ-

uals affected by disease or a machine’s work efficiency, the
true state of a patient is multifaceted and intricate, which
makes it notably difficult to observe directly through sev-
eral factors and only partial information can be accessed at
each stage. Thus, we model the natural history of lung can-
cer as a POMDP which helps to relate the partial informa-
tion to the true (unknown) state of the patient. However, it
is well-known that solving general POMDPs is extremely
difficult. Inspired by the idea of imperfect state information
theory (ISI), instead of assuming a deterministic (and un-
known) state for the malignancy of a nodule at each stage,
the algorithm maintains a probabilistic belief about the state
(Wei et al. 2019; Zhang et al. 2022) and solves a Belief MDP
problem. Moreover, the nature of our problem is heightened
in complexity also due to a more general action space setting
where we have multiple stopping actions and may also have
multiple continuous actions. At the same time, it is impera-
tive for the policy to possess a level of interpretability that
aligns with the distinct stipulations pertinent to its clinical
application.

Following the aforementioned novel formulation of the
problem concerning the early diagnosis of lung cancer, we
develop an algorithm called EarlyStop-RL, which includes
a belief update phase and an optimal stopping phase:

Belief Update: After each medical exam, our EarlyStop-
RL algorithm will update its assessment of lung cancer
beliefs based on historic observations, using the Hidden
Markov Model filter method that adheres to a probabilistic
model we adapt from a clinical lung nodule dynamic model
(Sarapata and De Pillis 2014; Vaghi et al. 2020).

Optimal Stopping: Utilizing the up-to-date beliefs and
observations, the agent will either provide a definite diag-
nosis indicating whether the patient is positive/negative for
lung cancer or schedule another follow-up exam to col-
lect more evidence about the patient. As more evidence is
gathered, the rates of false negatives and false positives de-
crease, but we are at risk of potential late diagnosis. In or-
der to achieve a balance between these two types of risks,
we propose a cost model that takes into account the clini-
cal significance of both misdiagnosis and delayed diagnosis
costs. With this formulation, the goal of our optimal stop-
ping model is to discover an optimal stopping policy that
will minimize the overall cost. Therefore, the ideal policy
will give a diagnosis at the earliest possible time and at the
same time also maintain relatively low rates of false nega-
tives and false positives.

In summary, the main contributions of this paper include:

• Problem Formulation: based on the dynamic nature of
lung cancer history and the screening process, consider-
ing the fundamental trade-off between immediate diag-
nosis and more evidence, we formulate the natural his-
tory of lung cancer as a POMDP and view the early di-
agnosis of lung cancer as an optimal stopping problem.

• Deep Reinforcement Learning for Optimal Stopping:
based on the problem formulation, we make a connection
between the optimal stopping problem and the model-
free reinforcement learning framework, leveraging the
power of representation and learning from deep rein-
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forcement learning algorithms and utilizing the structure
of optimal stopping framework at the same time.

• Structural Results with Theory Analysis: following
the well-crafted framework and conducting theoretical
evaluations, we establish structural results related to the
convexity of value functions and the stopping region, re-
sulting in an interpretable stopping and diagnosis policy
that outperforms current clinic models, such as Lung-
RADS and Brock, by a considerable margin.

The codes and appendixes of this project are published at
https://github.com/Yifan-wang-maybe/EarlyStop-RL

Related Works
In order to assist radiologists in making a diagnosis deci-
sion during the lung cancer screening process, several clini-
cal guidelines and predictive models have been proposed to
estimate the probability of malignancy of nodules and guide
management. The Lung CT Screening Reporting and Data
System (Lung-RADS) (McKee et al. 2016; Ardila, Kiraly
et al. 2019) and the Brock model (McWilliams et al. 2013)
are two commonly used clinical models. Lung-RADS oper-
ates as a category-based model, while the Brock model func-
tions as a linear regression model with radiological risk fac-
tors, such as nodule diameter and attenuation, serving as in-
puts. These models are widely recognized and used as base-
lines for developing new models.

Nowadays, the implementation of various Artificial Intel-
ligence (AI) models has yielded significant advancements in
the field of computer-aided diagnosis. Notably, deep convo-
lutional neural networks (DCNNs) (see (Mridha et al. 2022)
for a comprehensive review) i.e. a study from Google AI
(Ardila, Kiraly et al. 2019) demonstrated comparable per-
formance to real clinical practices for the diagnosis of lung
cancer. However, most of these methods focus on analyzing
image features on an individual CT exam under a supervised
approach, which can not accurately reflect the overall risk
of lung cancer. While some single-time characteristics such
as size or density generally correlate with the probability of
malignancy, a definitive assessment of a nodule’s biologi-
cal behavior is unknown clinically until the nodule demon-
strates more suspicious features such as growth or stability.
Therefore, using a temporal analysis based on the biological
progression of cancer over time to estimate lung cancer risk
is crucial. There exist some studies using value-iteration re-
inforcement learning algorithm (Wang et al. 2021) or deep
Q-learning algorithm (Liu et al. 2019) to explore serial ex-
ams during lung cancer screening. To our knowledge, no ex-
isting AI model considers the optimal balance between early
diagnosis and follow-up exams for risk management in lung
cancer screening, which is our major contribution.

Problem Formulation
This section introduces the formal problem statement and its
corresponding mathematical models. As stated in the intro-
duction section, we model the dynamic nature of lung cancer
history and the screening process as a partially observable
Markov decision process (POMDP). Formally, a POMDP is
represented as a 7-tuple (S,A, T , C,Ω,O, γ), where S , A,

and Ω are the state, action, and observation sets, respectively.
T is the stochastic state transition model and O is the proba-
bilistic observation model. C is a bounded cost function and
0 ≤ γ ≤ 1 is a discount factor.

Notations: We use 1{·} to denote the indicator function,
Pr to represent the probability measure, and EX to denote
expectation with respect to a random variable X . Subscript
t such as at typically represents the time index unless other-
wise specified.

State, Action, and State Transition Model
In our early diagnosis of the lung cancer problem, we con-
sider a state space consisting of three distinct states based on
the true cancer state of each patient which is not observable:
Negative for lung cancer (N), Positive for lung cancer (P),
and Evolving (Ev). Therefore, we define state space as:

S =
{
Negative(N),Evolving(Ev),Positive(P)

}
, (1)

and we use st to represent the state of a patient at time t.
We assume that patients begin in the evolving state (state

Ev). Once a patient’s state changes to the state positive or
negative (N or P) for lung cancer, the cancerous state persists
until additional treatment is administered or new nodules are
discovered. Therefore we define them as the absorbing state
a patient finally reaches:

SF ∈
{
Negative(N),Positive(P)

}
⊂ S (2)

We simplify the set of possible actions into two types, the
first type AC is requiring more follow-up exams, and an-
other type AD is terminal and confirms cancer-positive (P)
or cancer-negative (N) for patients. Since these actions are
diagnosis actions, not the treatments given to the patient,
they will only affect the observation distribution and not the
evolution of the lung nodules.

The discrete-time state transition model T is shown in
Figure 2 with λ1, λ2, and λ3 as transition probability:

V

Figure 2: The state transition model.

Observation Model
Whenever an action from the follow-up category AC is se-
lected, a corresponding observation will be observed. The
observation is continuous, which depends on the previous
time-points observation and the real state. Let zt ∈ Ω rep-
resent the observation (medical exam’s result) at time point
t, and define the probabilistic observation model O through
the definition of observation probabilities O:

O(zt+1|zt, at, st+1) = Pr(zt+1|zt, at, st+1). (3)
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Based on the formulation of the state space, to simplify,
we define:

αat
(zt+1|zt) = O(zt+1|zt, at, st+1 = Ev),

βat
(zt+1|zt) = O(zt+1|zt, at, st+1 = N),

γat(zt+1|zt) = O(zt+1|zt, at, st+1 = P).

(4)

In the early diagnosis of lung cancer problem we consider,
the observation refers to the nodule size since it remains the
most widely used predictor to assess the probability of nod-
ule malignancy and to determine nodule management ac-
cording to the international guidelines (Larici et al. 2017).
The comprehensive expression of the above transition prob-
ability relies on a clinical lung nodule dynamic model (Sara-
pata and De Pillis 2014; Vaghi et al. 2020), which will be
thoroughly explicated in the appendix.

Stopping Time
Let T ≥ 1 denote a stopping time at which a diagnosis ac-
tion from AD is selected and the screening process ends.

Cost Function
Let δT ∈ AD denote the diagnosis action given at the stop-
ping time T , and at ∈ AC (t < T ) denote the action chosen
before stopping time T . The overall cost will be the summa-
tion of the following two types of costs:

Misdiagnosis Cost: with cd1, · · · , cd4 being the cost
value weight, the misdiagnosis cost at stopping time T is
given by:
CD(δT ) = cd11{δT=N,sT=P} + cd21{δT=N,sT=Ev}

+ cd31{δT=P,sT=N} + cd41{δT=P,sT=Ev}.
(5)

This cost will penalize the occurrence of false-positive and
false-negative outcomes in the diagnosis process.

Delay-diagnosis Cost (Inter-step Cost): let λ(z, k) be
the hazard function in clinical with z as the current observa-
tion, and k as an index (how many follow-ups have already
been processed). At time t, we have:

CI(zt, at, kt) = cat + cmλ(zt, kt)1{sF=P}, (6)
where cat

is a cost for the inter-step actions, cm is a weight-
ing parameter and λ(zt, kt)1{sF=P} is a penalty for late di-
agnosis of lung cancer.

Methodology
In the problem formulation section, we model the early di-
agnosis of lung cancer problem as a POMDP with the goal
to minimize the overall cost. In this section, we will begin by
introducing the belief update component and the theorem for
converting the POMDP into a fully observable belief MDP,
as we previously discussed in the introduction section. Fol-
lowing this, we will discuss our optimal stopping approach
for the early diagnosis of lung cancer.

Belief Update and Fully Observable Belief MDP
We establish the notions of the belief that the state is positive
πP
t , negative πN

t and evolving πEv
t at time t as follows:

πP
t := Pr(st = P | Ft),

πN
t := Pr(st = N | Ft),

πEv
t := Pr(st = Ev | Ft),

(7)

where Ft is the σ-algebra that contains all past observa-
tions until time t and actions until time t − 1: Ft =
{z1, k1, a1, z2, · · · , zt−1, kt−1, at−1, zt, kt}.

Due to limited space, we only illustrate the posterior up-
date formulation related to πP

t as an example. The update
rules for πN

t and πEv
t = 1 − πP

t − πN
t are similar and will

be detailed described in the appendix. At the beginning of
time step t + 1 and before receiving observation zt+1, the
posterior changes to π̂P

t+1 based on the transition matrix:

π̂P
t+1 := Pr(st+1 = P | Ft)

=
∑

s∈{P,N,Ev}

Pr(st+1 = P|st = s,Ft)Pr(st = s|Ft)

=
∑

s∈{P,N,Ev}

Pr(st+1 = P|st = s)Pr(st = s|Ft)

= πP
t + λ3π

Ev
t .

(8)
After adding the information of observation zt+1, the up-
dated belief is:

πP
t+1,at

= Pr(st+1 = P | Ft+1, at)

=
Pr(st+1 = P | Ft)Pr(zt+1 | st+1 = P,Ft, at)

Pr(zt+1 | Ft, at)

=
π̂P
t+1γat(zt+1 | zt)
Pr(zt+1 | Ft, at)

=
π̂P
t+1γat

(zt+1|zt)
π̂P
t+1γat(zt+1|zt) + π̂N

t+1βat(zt+1|zt) + π̂Ev
t+1αat(zt+1|zt)

:= BP
at
(πP

t , π
N
t , zt+1, zt).

(9)
Eq. (9) and the updated belief for πEv

t+1,at
and πN

t+1,at
will be

proved in the appendix based on the Hidden Markov Model
filter (Krishnamurthy 2016). With the help of the update
equations and replacing the unobserved patient real state s
with the belief of the state, we have the following theorem:

Theorem 1 The early diagnosis of lung cancer problem de-
fined based on POMDP is equivalent to solving the problem
on a fully observed MDP with state θt = (πN

t , π
P
t , zt, kt)

where πN
t , π

P
t is the belief to replace the unknown state st,

zt and kt are current observation and index related to real-
time step. The action space remains the same and the state
transition probability is based on the belief update formula-
tions. The new cost function is as follows:

Misdiagnosis Cost:

CD(θT , δT ) =
(
(cd1 − cd2)π

P
T + cd2(1− πN

T )
)
1{δT=N}

+
(
(cd3 − cd4)π

N
T + cd4(1− πP

T )
)
1{δT=P}.

(10)
Delay-diagnosis Cost:

CI(θt, at) = cat + cmλ(zt, kt)π
P
t . (11)

The proof of Theorem 1 is provided in the appendix.
Based on this theorem, our original early diagnosis of lung
cancer problem is converted to an MDP with the belief state
πN
t , π

P
t and the zt, kt since they appear in the cost function.
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Markov Optimal Stopping Formulation
In this section, based on the Theorem 1 above, our POMDP
model is converted to an MDP model with state θt =
(πN

t , π
P
t , zt, kt). Thus, the issue of diagnosing lung cancer

at an early stage can be reframed as a Markov optimal stop-
ping problem, as shown below:

Theorem 2 The early diagnosis of lung cancer problem can
be reformed as a Markov optimal stopping problem with re-
spect to the belief MDP defined in Theorem 1. Formally,

inf
T,δT∈AD,at∈AC

E

[
CD(θT , δT ) +

T−1∑
t=1

CI(θt, at)

]

= inf
T,at∈AC

E

[
inf

{
(cd1 − cd2)π

P
T + cd2

(
1− πN

T

)
,

(cd3 − cd4)π
N
T + cd4

(
1− πP

T

)}
+

T−1∑
t=1

CI(θt, at)

]

:= inf
T,at∈AC

E

[
g(πP

T , π
N
T ) +

T−1∑
t=1

CI(θt, at)

]
.

(12)

The proof of Theorem 2 is provided in the appendix. The
analytical solution of the Markov optimal stopping problem
can be obtained using the Snell envelope process Mn:

Mn = inf
T≥n,at∈AC

E

[
g
(
πP
T , π

N
T

)
+

T−1∑
t=1

(
CI(θt, at)

)]
,

(13)
which has the same formulation as what we get from The-
orem 2 except the condition of T ≥ n. Below are several
important propositions that aid in solving the Markov opti-
mal stopping problem:

Proposition 1 The associated Snell envelop pro-
cess Mn satisfies the backward recursion Mn =
inf

{
g
(
πP
T , π

N
T

)
, CI(θn, an) + E[Mn+1 | Fn]

}
.

Proposition 2 The optimal stopping time T ∗ =
inf

{
n : Mn ≥ g

(
πP
T , π

N
T

)}
is the optimal solution for

the Markov stopping problem in Theorem 2.

The above propositions are well-known results and a stan-
dard proof can be found in (Karatzas et al. 1991).

Reinforcement Learning for Optimal Stopping
Various modeling approaches have been proposed to esti-
mate the optimal value of the objective function in Theorem
2 (Ery and Michel 2021). In our study, based on proposi-
tion 1, we propose to define the optimal state-action function
Q∗ as:

Q∗(θt, at) =

{
g
(
πP
t , π

N
t

)
if at ∈ AD

CI(θt, at) + E[Mt+1 | Ft] if at ∈ AC

(14)
where Mt+1 is defined in Eq. (13) and

at = argmin
at

Q∗(θt, at). (15)

According to Proposition 2, we can recover the result in
the Markov optimal stopping problem through the acknowl-
edgment of the optimal state-action function (14). This mod-
eling approach is very similar to the Q-learning machinery.
Formulated in reinforcement learning notation, the state-
action function Q can be rewritten as:

Q(θt, at) =

{
g
(
πP
t , π

N
t

)
if at ∈ AD

BT (Q(θt, at)) if at ∈ AC
(16)

where BT is the Bellman operator:

BT (Q(θt, at)) = CI(θt, at) +
∑
zt+1

Pr
(
zt+1|πP

t , π
N
t , at, zt

)
V

′
,

(17)
where

V ′ = V

(
BP

at

(
πP
t ,π

N
t , zt+1, zt

)
,

BN
at

(
πP
t , π

N
t , zt+1, zt

)
, zt+1, kt+1

)
.

The value function V (θt) above is given by:

V (θt) = min
at

Q(θt, at). (18)

Define the belief space Π(X):

Π(X) =
{
π ∈ R3 : πP + πEv + πN = 1, 0 ≤ π{P,Ev,N} ≤ 1

}
(19)

as a 2-dimensional unit simplex. Define set RP as the set
of belief states for which the diagnosis action δT = P is
optimal. Similarly, define RN as the set of belief states that
δT = N is optimal and RC for belief states with continuous
action (more follow-up exams) as optimal. The following
is our key theorem which gives the structural result for the
optimal policy and enables us to obtain a comprehensible
stopping criterion.
Theorem 3 The value function V (θ) and the state-action
function Q(θ, a) are concave functions with respect to π ∈
Π(X) (recall that θ = (πN, πP, z, k)) and the stopping re-
gions RN and RP are convex and individually connected in
the belief space.

The proof of Theorem 3 is provided in the appendix.
Summary: Starting from framing the early diagnosis of

lung cancer problem as a POMDP in the problem formula-
tion section, we converted the POMDP into a fully observ-
able belief MDP following the principles outlined in The-
orem 1. Then, we further reframed it as a Markov optimal
stopping problem that can be addressed by employing the
Snell envelope, as outlined in Theorem 2 and Eq. (13). In
the next step, we made a connection between the Snell enve-
lope and the reinforcement learning framework. By solving
Eq. (16), in turn, we could derive the optimal stopping prob-
lem associated with the Snell envelope and facilitated the de-
termination of the optimal policy for managing lung cancer
screening. Finally in Theorem 3, we demonstrated that the
stopping regions are both convex and individually connected
within the belief space. This indicates the interpretability of
the optimal policy which will be elucidated and used in the
following EarlyStop-RL algorithm design.
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EarlyStop-RL
Based on the formulations elucidated in the preceding sec-
tions, we introduce our EarlyStop-RL algorithm, aimed at
facilitating the early diagnosis of lung cancer.

A simplified pseudo-code of our EarlyStop-RL can be
found in Algorithm 1. During the implementation, we uti-
lize a three-layer “linear-batch normalization-ReLu” neu-
ral network structure to represent the Q-function, which is
trained using the value iteration method based on the update
equation (16) under the model-free reinforcement learning
framework. Detailed information such as computing infras-
tructure and training process will be explained in the ap-
pendix. Once the optimal state-action function Q(θ, a) is ob-
tained, the determination of the stopping time and diagnosis
result becomes feasible by relying on the proposition 2.

Recall that our belief space Π(X) is a 2-dimensional unit
simplex (triangle) and the three vertices are distinctly as-
sociated with three different regions (RN, RC, and RP).
Given the individually connected and convex property of
the stopping regions RN and RP, it can be readily shown
that two threshold stitching curves exist, effectively parti-
tioning the belief space into three distinct regions: RN, RC,
and RP. (This is an extension of (Krishnamurthy 2016, The-
orem 12.3.4 2(a))). In general, any user-defined basis func-
tion approximation can be used to parameterize this stitching
cure (Krishnamurthy 2016). In light of the particular con-
textual inherent in our problem, including the linear nature
of stopping cost (Misdiagnosis cost) and the outcomes ob-
tained through simulation, we proceed to establish the linear
function approximation for the switching curves within the
belief space Π(X). In our experiments, we employ a support
vector machine with a linear kernel to establish the thresh-
old boundary to divide the belief space into three regions
(RN, RC, and RP). Please refer to the appendix where you
can find additional information. In this manner, despite the
potential occurrence of performance degradation and com-
putational complexity during the quantization and fitting
process, it obviates the necessity of recurrently executing
the neural network at each stage during the implementation
phase. This attribute renders it more conducive for employ-
ment in clinical settings.

Experiments and Results

National Lung Screening Trial

The performance assessment of EarlyStop-RL is conducted
through its implementation on the National Lung Screening
Trial (NLST) (https://cdas.cancer.gov/nlst/) (Team 2011a),
a multicenter trial involving 33 centers across the United
States. NLST has the largest available dataset to date in
terms of the number of patients and is the most represen-
tative dataset in terms of its diversity and the potential for
practice over a wide range of populations. More importantly,
it’s a crucial clinical trial widely recognized for its signifi-
cance in facilitating the reduction of lung cancer mortality.
The NLST dataset is publicly accessible, but obtaining per-
mission from the NLST research team is required.

Algorithm 1: EarlyStop-RL (offline training)
Input: A dataset including M patients’ lung cancer screen-
ing traces:

D̂ =
{
si1, z

i
1, a

i
1, s

i
2, z

i
2, a

i
2, · · ·

}M

i=1
.

1: Belief Update: Calculate belief traces for each patient
based on update equation (9):

πi,P
t+1 = BP

ai
t
(πi,P

t , πi,N
t , zt+1, zt),

πi,N
t+1 = BN

ai
t
(πi,P

t , πi,N
t , zt+1, zt),

and reformulate the dataset as:

D =
{
(πi,P

1 , πi,N
1 , zi1, k

i
1), a

i
1, · · · , δT

}M

i=1
.

2: Initialize state-action function Q(θ, a), parameters
cd1, · · · , cd4, ca, cm in the cost function, and conver-
gence tolerance ε.

3: for Epoch j = 1, 2, · · · do
4: Sample bathes {θt, at, θt+1} from the dataset D.
5: Update Q(θ, a)j based on Eq. (16):

6: Q(θt, at)
j =

{
g
(
πN
t , π

P
t

)
if at ∈ AD

BT (Q(θt, at)
j−1) if at ∈ AC

7: if ||Q(θt, at)
j −Q(θt, at)

j−1|| < ε then
8: Break
9: end if

10: end for
11: Fitting the threshold boundary between continue and

stop regions based on proposition 2:
Q(θt, at) = g

(
πN
t , π

P
t

)
and calculate the region RN, RP, RC.

Output: Parameters for the threshold of regions RN, RP,
RC, and Q(θt, at) if needed.

Cohort
With access permission, we collected low-dose CT (LDCT)
scans from 2500 patients who underwent annual screening
for up to 3 years. Among the 2500 patients, 1951 patients
with at least one 4 to 30 mm non-calcified nodule found on
their baseline year are included in this study. In NLST, pa-
tients with positive lung cancer diagnosis were all confirmed
through biopsy, and all patients negative for lung cancer
were confirmed based on three years of screening LDCTs
and/or up to seven years of subsequent non-CT follow-up.
Following a random partitioning procedure, the training/val-
idation set includes 1404 patients, among which 372 were
diagnosed with lung cancer, while the remaining 1032 were
cancer-free. The ratio of positive to negative in the test set
is comparable, comprising 150 patients with positive results
and 397 patients with negative results for lung cancer.

Baseline Algorithms
To make a comparison between EarlyStop-RL and widely
used clinical models, we first implemented two clinical mod-
els for the diagnosis of lung cancer as baseline algorithms:

• Lung CT Screening Reporting and Data System (Lung-
RADS) is a widely employed clinical model that serves
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as the foundation for developing related models and poli-
cies. (McKee et al. 2016; Ardila, Kiraly et al. 2019).

• The Brock model (McWilliams et al. 2013) holds a high
level of esteem and has been endorsed by respected orga-
nizations such as the British Thoracic Society. Further-
more, it has been tested in many external validation stud-
ies.

The above models can classify patients into low-risk,
medium-risk, or high-risk categories for lung cancer (Huang
et al. 2019; Ardila, Kiraly et al. 2019). These outputs cor-
respond to negative, requiring further follow-up, and posi-
tive for lung cancer in our EarlyStop-RL, respectively. Ad-
ditional explanations of these models can be found in the
appendix.

There exist several other AI models have been created to
comprehend the lung cancer screening (LCS) process and
diagnosis. In this study, we compare the reported results
from the Google AI model (Ardila, Kiraly et al. 2019), given
its status as one of the highly cited and influential studies in
recent years. Google AI model is an end-to-end convolu-
tional neural network, with the nodules’ region of interest
(ROI) as input and the risk of malignancy as the output. The
risk is then categorized into low-risk, medium-risk, or high-
risk categories based on the Lung-RADS. It is important to
note that while this approach also utilizes the NLST dataset,
there are variations in the number of patients and the criteria
for patient inclusion compared to our study. For example, it
includes much more patients with cancer-free diagnoses in
the testing set (the ratio of positive to negative is 0.01, and
ours is 0.38).

Evaluation Metrics
Initially, we evaluate our EarlyStop-RL algorithm and base-
line algorithms using standard evaluation metrics includ-
ing false-positive rate, false-negative rate, F1 score, and
Matthews Correction Coefficient (MCC), as shown in Table
??. Furthermore, we incorporate two clinically relevant met-
rics: the Net Reclassification Index and the early diagnosis
rate, as below:

Early Diagnosis Rate We define the percentage of pa-
tients who would have earlier correct diagnoses (fewer
follow-up LDCT examinations) than the NLST clinical trial
if the EarlyStop-RL algorithm is incorporated into the med-
ical management process as the early diagnosis rate. The
clinical significance of early diagnosis rates is multifaceted,
impacting individual patient outcomes, the overall health of
populations, and the efficiency of healthcare systems. In this
context, achieving a higher rate of early diagnosis signifies
an improved level of performance.

Net Reclassification Index We conducte the reclassifica-
tion analysis to assess the impact of our EarlyStop-RL in
improving early diagnosis of lung cancer. The Net Reclassi-
fication Index (NRI) (Leening et al. 2014) is a popular metric
in clinical practice that attempts to quantify how well a new
model reclassifies subjects, either appropriately or inappro-
priately, as compared to an old model and the ability to lead

to better-informed clinical decisions. The NRI is defined as
follows:

NBP = Pr(up|event)− Pr(down|event),
NBN = Pr(down|non-event) − Pr(up|non-event),
NRI = NBP +NBN.

(20)

In this context, the term “event” refers to the true pos-
itive cancer state of a patient, and “up” indicates that our
EarlyStop-RL has assigned the patient to a higher risk cate-
gory (such as changing from negative for lung cancer to re-
quiring follow-up or from requiring follow-up to positive for
lung cancer) than the compared model. Conversely, “non-
event” and “down” refer to negative cancer state and lower
risk categories, respectively. An ideal model would assign
a higher risk category for events and a lower risk category
for non-events. Therefore, a larger NRI indicates improved
performance. The statistical significance is determined using
the Z-statistic following McNamara’s test (McNemar 1947)
with a threshold of p < 0.05.

Results and Discussion
Early Diagnosis Rate Within our test cohort compris-
ing 547 patients, 450 individuals have already undergone
follow-up examinations as part of the clinical trial, with
an early diagnosis rate of only 17.73%, which means more
than 80% of patients in clinical will take the risk of delay-
diagnosis. This outcome underscores the significance of de-
veloping and employing more robust models to enhance the
early detection of lung cancer.

Table 1 shows the outcomes of early diagnosis rates
for each model, along with their respective false-positive
and false-negative rates, F1 score, and MCC. Notably,
our EarlyStop-RL algorithm achieves a significantly higher
early diagnosis rate (60.88%) compared to clinical models
(Lung-RADS and Brock model), while simultaneously pos-
ing a lower risk of false positives and false negatives. De-
spite the Brock model achieving a comparable false-positive
and false-negative rate, it tends to classify more nodules as
indeterminate, recommending additional follow-ups and re-
sulting in a low early diagnosis rate. Maybe this tendency
is attributed to the Brock model’s lack of consideration for
the delay-diagnosis risk during its development. As for the
Google AI model, incorporating a testing set with 100 times
more negative cases than positive ones yields an imbalanced
dataset. This is reflected in a low false-positive rate but a
higher false-negative rate, along with very low MCC and
F1 scores when compared with our EarlyStop-RL, as the
last two metrics also account for robust and balanced per-
formance across positive and negative subjects.

Net Reclassification Index Table 2 shows the Net Benefit
for lung cancer patients (NBP) and for cancer-free patients
(NBN) separately and also the overall NRI. A higher Net
Benefit could translate to a net benefit of fewer unnecessary
follow-up procedures and fewer missed cancers in clinical
practice. The overall NRI is 0.24 when compared to Lung-
RADS, with a Z-statistic of 4.20 and a p-value of 0.00. Simi-
larly, when compared to the Brock model, the overall NRI is
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False-positive rate ↓ False-negative rate ↓ Early diagnosis rate ↑ F1 score ↑ MCC ↑

Lung-RADS 29.47% 12.00% 35.47% 0.66 0.52

Brock Model 13.10% 4.67% 33.64% 0.83 0.77

Google AI Model 9.00% 4.40% 72.5% 0.22 0.33

EarlyStop-RL 12.85% 1.33% 60.88% 0.85 0.80

Table 1: Comparison of our EarlyStop-RL with clinical methods regarding rates of false positives, false negatives, F1 Score,
Matthews Correction Coefficient (MCC), and early diagnosis rate. ↑ represents a higher value signifies an improved perfor-
mance and ↓ is the opposite.

EarlyStop-RL
NBP

/
NBN

UP
/

patient Down
/

patient

Lung cancer
150 patients

Lung-RADS 31 15 0.11

Brock Model 29 15 0.10

Cancer-free
397 patients

Lung-RADS 78 129 0.13

Brock Model 81 78 0.00

Overall NRI compare with Lung-RADs: 0.24, p = 0.00; with Brock Model: 0.10, p = 0.03

Table 2: Reclassification of our EarlyStop-RL when compared with the clinical Lung-RADS and Brock model for the early
diagnosis of lung nodule.

0.10, with a Z-statistic of 1.88 and a p-value of 0.03. These
results present a statistically significant performance gap be-
tween our EarlyStop-RL algorithm and other models, which
demonstrates the superiority of our EarlyStop-RL.

Conclusion
In this paper, we proposed an algorithm called EarlyStop-
RL, which effectively improved early diagnosis of lung can-
cer. By formulating the natural history of lung cancer as a
POMDP and converting it into a belief MDP with the im-
perfect state information setting, we established the early
diagnosis of lung cancer as an optimal stopping problem
under the belief MDP. Using a deep reinforcement learn-
ing approach, we solved the optimal stopping problem and
leveraged the property of Snell envelop to derive an inter-
pretable stopping rule utilizing the convexity of the stop-
ping region. Our numerical results on a real-world lung can-
cer clinical trial NLST demonstrated the superior perfor-
mance of EarlyStop-RL compared to widely employed clin-
ical models, individuals could use our mathematically val-
idated model to inform personalized decision-making as a
second opinion about LCS, and health systems could run
the model at the population level to streamline the diagnos-
tic process.

There are a few limitations of our method, which will
be our future work. In order to smoothly integrate our
Earlystop-RL into the current lung cancer screening process
without significant disruptions to the standard clinical work-
flow, we utilized the clinical observation model based solely

on clinical risk factors provided by radiologists, such as the
nodule diameter, as input. In future research, we plan to ex-
plore representation learning or deep-learning techniques to
extract more representative features and use the more power-
fully dynamic Bayesian networks as the observation model
while maintaining the model’s interpretability. Additionally,
conducting prospective studies, external validations, and as-
sessing generalizability/robustness is crucial for AI methods
in healthcare. These aspects will be the focus of our future
work.
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