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Abstract

Fairness-awareness has emerged as an essential building
block for the responsible use of artificial intelligence in real
applications. In many cases, inequity in performance is due to
the change in distribution over different regions. While tech-
niques have been developed to improve the transferability of
fairness, a solution to the problem is not always feasible with
no samples from the new regions, which is a bottleneck for
pure data-driven attempts. Fortunately, physics-based mech-
anistic models have been studied for many problems with
major social impacts. We propose SimFair, a physics-guided
fairness-aware learning framework, which bridges the data
limitation by integrating physical-rule-based simulation and
inverse modeling into the training design. Using temperature
prediction as an example, we demonstrate the effectiveness
of the proposed SimFair in fairness preservation.

Introduction
As the use of artificial intelligence (AI) expands to more and
more traditional domains, the bias in predictions made by
AI has also raised broad concerns in recent years. To facil-
itate the responsible use of AI, fairness-aware learning has
emerged as an essential component in AI’s deployment in
societal applications. In this study, we focus on learning-
based mapping applications, where it is important to eval-
uate fairness over locations. Such maps are often used to in-
form critical decision-making in major social sectors, such
as food, energy, water, public safety, etc.

In these applications, especially at large scales, inequity
in performance is often caused by changes in distribution
over different regions (Xie et al. 2021; Goodchild and Li
2021). One of the major bottlenecks is the unavailability of
ground truth data in test regions. With no labels from the test
area (e.g., when applying models trained in one state to an-
other), it is very difficult to know how to obtain fairness over
new locations in the test area. This is more challenging than
transferring the overall prediction performance (e.g., mea-
sured by RMSE), which only needs to consider f : X → Y
for the whole dataset. In the fairness-driven scenario, we also
need to understand how the errors may vary over locations in
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a different region, which often does not follow the same pat-
tern as the training region (e.g., the number of locations may
vary; data distribution may vary). Finally, the training and
test areas often have completely different sets of locations,
making the groups used in the fairness evaluation nonsta-
tionary as well.

In this paper, we use the temperature prediction prob-
lem as a concrete example. Air and surface temperatures
are two key variables for estimating the Earth’s energy bud-
get, which connects to a diverse range of social applications,
such as solar power, agriculture, climate change, global
warming, ecosystem dynamics, and urban heat islands (Kim
and Entekhabi 1998; Peng et al. 2014; Wang et al. 2023;
Li et al. 2022b). For example, temperature-related variables
help estimate solar energy potential or predict the risks of
floods or droughts at different locations. The results may
affect resource allocation decisions such as subsidies, pro-
motions, or insurance. Practically, satellite remote sensing is
the only approach to measuring these variables at the spatial
and temporal resolution needed for most applications (Liang
2001). Due to the large volume of satellite data, machine
learning methods have become increasingly popular choices
in predicting temperature-related variables (Deo and Şahin
2017; Wang et al. 2021). However, fairness has yet to be
considered. Due to the social impact, it is important to en-
sure fairness among different places in the prediction map.

Given passive microwave and multi-spectral optical re-
mote sensing imagery, the goal of the paper is to predict tem-
perature while maintaining fairness among prediction per-
formance over locations. In particular, we aim to improve
the fairness of predictions in new test areas.

Recent studies have developed various approaches for
fairness improvement. On the data side, fairness-driven col-
lection methods and filtering strategies were proposed to
reduce bias caused by data issues such as imbalance (Jo
and Gebru 2020; Yang et al. 2020; Steed and Caliskan
2021). The methods are more suitable for domains where
ground-truth data are reasonably easy to obtain. However,
for most remote sensing problems, it is resource-intensive
and time-consuming to collect new ground-truth samples
(e.g., field surveys, sensor installation, and monitoring sta-
tions). Many formulations explored decorrelating the feature
learning process with sensitive attributes, which revealed in-
formation such as races and genders should not be discrim-
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inated in prediction (Zhang and Davidson 2021; Alasadi,
Al Hilli, and Singh 2019; Sweeney and Najafian 2020). For
example, adversarial learning is a popular design choice in
learning group-invariant features. The use of regularization
terms is another common approach to reduce bias risks,
where fairness loss is used to penalize biased predictions
(Yan and Howe 2019; Serna et al. 2020; Zafar et al. 2017).
These methods, however, are not suitable for fair learning
here between spatial regions as they require a fixed set of
groups such as different genders, whereas the groups rep-
resented by locations vary between different regions. There
have also been studies for the time-series or online setups
(Zhao et al. 2022; Bickel, Brückner, and Scheffer 2007; An
et al. 2022). They aim to maintain fairness as new samples
come in by sample reweighting, meta-learning, etc. Simi-
larly, these methods focus on fixed groups and are designed
for dynamic changes in time series. They may also require
additional ground-truth samples for finetuning. Location-
based fairness was also recently explored (Xie et al. 2022;
He et al. 2022, 2023), which reduced the statistical sensi-
tivity in fairness evaluation for regression and classification
tasks. However, it also requires training and test data from
the same region. Finally, all the above methods are purely
data-driven, and their transferability is limited when no la-
bels are available in a new region.

To address the limitations, we propose SimFair, a physics-
guided fairness-aware learning approach, which uses simu-
lations from mechanistic models to improve fairness in test
regions. To the best of our knowledge, this is the first work
that integrates physics-based simulation (mechanistic) mod-
els into fairness-aware learning. Our contributions include:

• We present an inverse-modeling based design to integrate
physics-based simulation models into the training process,
which are often incompatible with the learning objectives
in remote sensing problems.

• We propose a training strategy with dual-fairness consis-
tency to improve fairness over new test locations.

• We incorporate physical-rule-based constraints to further
improve the prediction performance.

• We integrate SimFair with different simulation models and
real-world datasets for temperature prediction.

Through experiments, we demonstrate that the inverse
modeling is robust, and SimFair can greatly improve fair-
ness over new locations in test regions.

Problem Definition
Definition 1 (Spatiotemporal (ST) domain) Given a geo-
graphic space S = {s1, s2, ...} and a time-period T =
{t1, t2, ...}, a ST-domain D is a contiguous subspace in
S × T . For example, D can represent a contiguous geo-
graphic area (e.g., a county) over a month.

Definition 2 (Location-based fairness measure) It evalu-
ates prediction quality parity, one of the standard definitions
of fairness (Du et al. 2020), over a set of locations in a geo-
graphic region. Denote F as a prediction model; Lp as the
measure of prediction errors (e.g., RMSE); X and Y as test

features and labels, respectively; and xi ∈ X and yi ∈ Y as
features and labels for location si ∈ S, respectively. Here
the location-based fairness Lf is defined as:

Lf =
1

|S|
∑
si∈S

∣∣∣∣Lp(F(xi), yi)− Lp(F(X),Y)
∣∣∣∣ (1)

Lf evaluates the deviation of prediction performance from
the global performance (i.e., a scalar obtained using entire
test data X and Y). A smaller Lf means the overall deviation
is smaller, and thus the model is fairer over the locations.

Formulation of location-based fair learning. Given
training samples X and Y from a ST-domain D, and test
features X′ from a new ST-domain D′, we aim to learn a
(location-based) fairness-aware model from D, which per-
forms well in D′ and, more importantly, offers fairer solu-
tion quality over locations in D′.

A key characteristic of the problem is that the groups (i.e.,
locations s ∈ S ∈ D) being considered are not prefixed and
can be highly dynamic. From one ST-domain to another, the
locations being considered can be completely different (e.g.,
from one state to another). This makes it difficult to connect
the learning objectives from the training domain D to the
target domain D′. Making the problem more challenging,
only the features X′ are available from the new domain, and
no label is available. In essence, we need to build a fairness-
aware model under distribution-shifts, different groups for
fairness evaluation, and unknown labels.

Method
We propose SimFair, a physical-simulation-guided learning
framework to improve the fairness-awareness of models for
new ST-domains. To be concrete, we use temperature pre-
diction as an example to illustrate the design. In this section,
we first provide brief overviews of two physics-based mod-
els we use, and then discuss the new SimFair framework.

Physics-based Mechanistic Models
Physics-Model 1 (PM1): The Community Microwave
Emission Model (CMEM), as a subset of global operating
systems at the European Centre, estimates low-frequency
passive microwave brightness temperature (BT) (Kerr et al.
2010; Wigneron et al. 2017). In the simulation process (Fig.
1(b)), CMEM computes the Top-of-Atmosphere (TOA) BTs
TBtov,p,θ over vegetation layers for each polarisation direc-
tion p and incidence angle θ by summing the soil effec-
tive temperature Teff , vegetation temperature TBveg , and
atmospheric components TBad and TBau (identical for high-
altitude satellites). The overall physical process can be ex-
pressed as:

TBtov,p,θ = (1− rr,p,θ)Teff · exp(−τveg,p,θ)

+TBveg,p,θ(1 + rr,p,θ · exp(−τveg,p,θ))

+TBad,p,θ · rr,p,θ · exp(−2τveg,p,θ)

(2)

where r is soil surface reflectivity and τ is optical depth.
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Figure 1: An illustration of simulation-model-guided fairness-aware learning.

Physics-Model 2 (PM2): The MODerate resolution atmo-
spheric TRANsmission (MODTRAN) model has been used
worldwide to analyze, estimate, and predict the optical char-
acteristics of the atmosphere based on the radiation transport
physics (Berk et al. 2008, 2014). In remote sensing, TOA ra-
diance, observed by satellites, is the mixed BT that is emit-
ted, reflected, and transmitted by atmosphere and surface ob-
jects. MODTRAN simulation process is governed by:

Ri(θ) = (εiBi(Ts) + (1− εi)Ri↓)τi(θ) +Ri↑(θ) (3)

where Ri(θ) is the TOA radiance captured by a certain range
of wavelength (i.e., a satellite band) i at a viewing zenith
angle θ; Ri↓ and Ri↑ represent the downward and upward
atmospheric thermal radiance, respectively; ε is land surface
emissivity; τ is the atmospheric transmittance; and Bi(Ts)
denotes the Planck radiance at land surface temperature.

SimFair: Simulation-Enabled Fair Learning
The overall framework of SimFair is illustrated in Fig. 1. In-
tuitively, we aim to learn the relationships between the data-
and simulation-based predictions, and leverage these rela-
tionships to approximate fairness in a new test area. SimFair
has four components: (1) inverse learning of the simulation
models, which aligns the mechanistic model with a deep
learning model; (2) preliminary test fairness, which weakly
estimates fairness in the test region using simulations but by
itself is insufficient to improve fairness; (3) a dual-fairness
consistency, which tries to minimize the gap between data-
and simulation-based fairness; and (4) physical rules, which
are used as soft constraints to improve generalizability.

Inverse Modeling for Learning. In physics-based mod-
eling, the processes are not necessarily derived from a di-
rection that aligns with the one we use in prediction tasks.
For example, in temperature simulation for passive remote
sensing (PM1), the real physical process starts from the air
or surface temperature, where radiance travels through the
air – being absorbed, reflected/deflected, emitted, or trans-
mitted by vegetation, built-ups, atmospheric particles, etc.,
– and finally reaches the spectral sensor from the satellites
and recorded as signal values. This process can be described
as X = M(Y) where X represents satellite signals, Y is

the temperature, and M is the mechanistic model. How-
ever, in real-world applications, it often goes in the oppo-
site direction, where users predict the temperature (i.e., Y)
using satellite readings X. Having consistent directions is
important for the use of simulation models in guiding data-
driven approaches, because for each observation xi we need
to know the corresponding simulated value yi = M−1(xi)
(e.g., temperature) to extract useful information. Unfortu-
nately, it is often very difficult to directly find the inverse
of a mechanistic model due to the complexity of the physi-
cal process. For example, there are no known inversions of
the mechanistic models PM1 and PM2 used here.

To address this issue, we first use bijector-based invertible
networks (Kobyzev, Prince, and Brubaker 2020; Kingma
et al. 2016; Dinh, Sohl-Dickstein, and Bengio 2016) to ap-
proximate the inverses of physics-based models; the struc-
tures were often used in normalizing flows for the estimation
of complex statistical distributions and random sampling.
While the direction can also be reversed in vanilla neural
networks by swapping X and Y, we use the invertible design
for three major reasons:

• In physical processes X = M(Y), many physics con-
straints can only be used on the variables in X (the con-
straints are built into the loss later in a neural network).
There is no problem if we train an invertible network us-
ing direction X = F(Y) and then inverse it. However, if
we simply use a data swap Y = F(X), we can no longer
apply the constraints, as X are fixed inputs for training in-
stead of outputs.

• The invertible structure naturally provides extra regular-
ization, as the learned weights need to work simultane-
ously for both directions, improving prediction quality
during the test (evaluated later in experiments).

• When xi and yi have different lengths, the invertible struc-
ture can be naturally extended with normalizing flow to
quantify the uncertainty from fewer to more variables.

In the application context, we denote X as satellite sig-
nals, Y as the prediction target (e.g., temperature), M as the
mechanistic model, FM(·;Θ) as an invertible neural net-
work, F−1

M (·;Θ) as its inverse, and L as a loss function (e.g.,
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RMSE). The inverse approximation is given by:

F−1
M (X;Θ∗ = argmin

Θ
L(M(Y),FM(Y,Θ))

)
(4)

The bijector-based invertible layers present a great fit for
the inverse approximation because (1) while complex, a
physics-based mechanistic model describes a single func-
tion, i.e., all simulated labels M(X) follow the same dis-
tribution P (M(X) |X). Thus, FM(·;Θ) can effectively ap-
proximate M(X) given the capability of deep neural net-
works to universally approximate continuous functions. (2)
Bijectors use mathematically exact inversion, enabling us
to create a highly accurate approximation of the inverse
of M(X). Specifically, we use the following formulation
(Dinh, Sohl-Dickstein, and Bengio 2016):{

v1 = u1 ⊙ exp
(
s2(u2)

)
+ t2(u2)

v2 = u2 ⊙ exp
(
s1(v1)

)
+ t1(v1)

⇐⇒
{

u2 =
(
v2 − t1(v1)

)
⊙ exp

(
− s1(v1)

)
u1 =

(
v1 − t2(u2)

)
⊙ exp

(
− s2(u2)

) (5)

where u and v are the input and output of an invertible layer,
respectively; u = [u1, u2] and v = [v1, v2]; s1(·), t1(·),
s2(·), and t2(·) are learnable functions. Note that both the
input and output have the same length, which is a property
of the bijector needed to make inversions.

Using a chain of bijectors as network layers, we construct
the invertible network FM to approximate the inverse of M.
As the parameters we are interested in are a subset of those
in the complete mechanistic models, we select the most re-
lated ones to define the original input and final output of the
chain of bijectors FM, which also allows us to make their
lengths equivalent. Through experiments, we found that this
led to approximations with higher precision for both di-
rections of FM (i.e., X̂ = FM(Y) and Ŷ = F−1

M (X)),
compared to the formulations where X and Y had different
lengths (a random vector z needs to be added to the shorter
one in this case, which is also a more flexible option).

Preliminary Fairness on Test Region. This is the first
component of SimFair. As shown in Fig. 1, we aim to ap-
proximate the fairness between data samples at different lo-
cations in the test region D′ using relationships between
simulation- and learning-based predictions. Here the results
from the inverse simulation model Ŷ

M
, obtained through

the invertible network F−1
M (X), provide us a preliminary

peek into the labels Y from the test region D′.
Here we need to emphasize that as there is no guarantee

about the distances between Ŷ
M

and real labels Y (or the
variance of the distances), fairness scores evaluated using
Eq. (1) with Ŷ

M
as the truth are not directly representative

of the true fairness. Thus, the goal of this part is only to
create a ”preliminary fairness” as a preparation step for the
dual-fairness consistency module in the next section, where
new designs will be used to bridge the gap.

With that clarified, the preliminary fairness loss on D′ is:

Lpre
f =

1

|D′|
∑

xi∈D′

∣∣∣∣Lp(Fp(xi), ŷM
i )− Lp(Fp(X), Ŷ

M
)

∣∣∣∣ (6)

Sim
Pred
True

Sim
Pred

True

Sim

Pred
True

Sim

Pred
True

(a) No consideration of the triplet relationships

(b) With consideration of the triplet relationships (dual-fairness consistency)

Figure 2: Illustrative example of dual-fairness consistency.

where xi represents the data point at location si, Ŷ
M

=
F−1

M (X), Lp is the prediction loss, and Fp is the prediction
model, which is used to predict the real values rather than
approximate the simulation model M.

Dual-Fairness Consistency. The dual-fairness consis-
tency module aims to reduce the gap between the prelimi-
nary fairness loss Lpre

f and the real fairness loss Lreal
f (not

evaluable in training) for the test region D′. It achieves this
by learning and governing the triplet relationships among
the following in the training data:

• Physical simulations Ŷ
M

(inversely approximated);

• Deep neural network predictions Ŷ; and
• True labels Y.

While we do not know the relationships between the sim-
ulation results Ŷ

M
and true labels Y in the test region D′,

we can find a solution Fp whose predictions Ŷ have a similar

relationship with simulated-based Ŷ
M

and true Y. Specifi-
cally, for the triplet relationship, our desired property is:

Definition 3 (Dual-fairness consistency) Denote e = Y −
Ŷ and eM = Ŷ

M − Ŷ, which represent the differences be-
tween the true labels and the predictions, and the simulated
labels and the predictions, respectively. Dual-fairness refers
to the fairness evaluation defined using true labels (Eq. (1))
and simulation labels (Eq. (6); here for training data in D),
respectively. To make the two fairness results more consis-
tent, we aim to align the direction of the predicted labels Ŷ
with respect to the true labels Y and simulation labels Ŷ

M
:{

ei ≥ 0, if (eM)i ≥ 0;
ei < 0, otherwise.

(7)

where i denotes the ith data point.

Fig. 2 shows the high-level idea with an illustrative ex-
ample. As we can see, the relationships, i.e., e and eM, are
often not aligned in Fig. 2 (a), which does not consider the
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consistency. As a result, improving fairness w.r.t. the simu-
lation results leads to a less fair result. In contrast, with the
consistency, the fairness improvement w.r.t. simulation data
is more likely to lead to improvements w.r.t. the true data.
Intuitively, when the directions represented by ei and (eM)i
are aligned, reducing the distance between a prediction Ŷi

and a simulation label Ŷ
M
i will accordingly reduce the dis-

tance between Ŷi and yi. Note that since both Y and Ŷ
M

are fixed inputs at this stage and they are not identical, it
is impossible to make e = eM. Instead, our focus here is to
promote a solution Fp if it maintains similar directional rela-
tionships between e and eM. This is important for reducing
the fairness loss, as we are trying to re-balance the predic-
tion losses among points at different locations while keep-
ing a similar global prediction loss (Eq. (1) or (6)). In other
words, the fairness loss moves a prediction closer to the true
label if the loss is worse than the global mean loss, and far-
ther otherwise. Based on the dual-fairness consistency, we
have the consistency loss as:

Lc = −eT eM

= −
∑

(xi,yi)∈D

(
yi −Fp(xi)

)
·
(
F−1

M (X)−Fp(xi)
) (8)

Lc allows gradients based on the preliminary test fairness
loss Lpre

f to be more reflective of the true fairness loss.

Improvements with Physics-guided Predictions. We in-
corporate physical constraints from the mechanistic mod-
els as part of the loss functions to reduce the overfitting of
the prediction model Fp (Jia et al. 2021; Chen et al. 2023),
which accordingly makes it generalize better to the test re-
gion D′. As physical models rely on different assumptions,
we use two different constraints for the two physical models
(i.e., PM-1 and PM-2). The physical rule used for PM-1 is
the Rayleigh-Jeans Law of radiation, which states the radi-
ance emitted by a gray body (e.g., trees, rocks) is less than a
black body with unity emissivity. The loss LPM1

phy is then:

1T [max
(
0,X−ε⊗Fp(X)

)
+min

(
0,X−η⊗Fp(X)

)
] (9)

where ε = min(1,FM(yi) ⊗ (F−1
M (xi)))

−1, η = max(0,
FM(yi)⊗ (F−1

M (xi)))
−1, and ⊗ is the Hadamard product.

For PM-2, the model output (temperature) is bounded by
a well-known principle, the surface energy balance equa-
tion. Specifically, in the solar-earth energy exchange system,
the overall energy is balanced by solar downward shortwave
RS↓ and longwave RL↓, surface upward shortwave RS↑ and
longwave RL↑, and net radiance RN . The balance of en-
ergy at the surface is also related and can be expressed as
the combination of upward surface sensible heat flux HS ,
upward surface latent heat flux HL, and downward ground
heat flux HG. This leads to the following loss LPM2

phy :

−εσFp(X)4+RS↓−RS↑+εRL↓−(HS+HL+HG) (10)

where ε is the surface emissivity, and σ is the Stefan-
Boltzmann contant. Finally, the overall loss is L = Lp +
Lpre
f +Lc+Lphy , where Lphy is selected based on the physi-

cal model used (e.g., PM-1), Lp we use in the paper is mean

West  East  Alaska Cold  Warm  Hot Train  Test1  Test2
Test3  Not used

Figure 3: Spatial distributions of training and testing data.

squared loss Lp = ||Fp(X) − Y||22/|D|, and all losses are
normalized based on the number of samples.

Deep Networks
We implemented SimFair using two types of networks: (1) a
fully-connected neural network, FNN, which uses observed
signals from satellite snapshots to make predictions; and (2)
a long-short-term-memory (LSTM) model that uses a time-
series-based input. Our invertible network uses a chain of
7 bijector layers. We use root-mean-squared-errors (RMSE)
as the loss function and the Adam optimizer with an initial
learning rate of 10−2. More details are in the Appendix.

Experiments
In-Situ and Remote Sensing Datasets
We use three real datasets for evaluation: AT1, AT2 and LST
(detailed in the following paragraphs). As AT1 contains the
largest number of high-quality stations (122), we use it to
evaluate the models’ ability to promote fairness in test re-
gions, that contain different locations from the training re-
gion. Additionally, we include two smaller datasets AT2 and
LST, which are used to evaluate if fairness learned among
the 7 locations during a period can be transferred to a new
period (i.e., the same set of locations over different periods).

AT1: USCRN-CMEM air temperature data. We col-
lected the ground truth from the entire USCRN stations
(200+) in 2014. All station measurements were carefully
examined, and only the dates with high-quality measure-
ments were used. Satellite observations were collected from
the AMSR2 satellite with two observations per day. CMEM
(PM1) model inputs were collected from ERA5 hourly
dataset, including soil temperature, volumetric soil water
layer, etc. Other surface and atmospheric datasets were sim-
ulated using ecoClimate. We used three types of space parti-
tionings to create train-test splits (Fig. 3) with different geo-
graphic regions, temperature zones, and random local states.

AT2: SURFRAD-CMEM air temperature data. Differ-
ent from AT1, the ground truth in AT2 was collected from
a well-known and high-quality network, SURFRAD, which
measured surface conditions and energy at minute scales. As
discussed, we separated the data using two temporal splits:
(1) first 8 months as training and last 4 months as test; and
(2) first 4 months as training and last 8 months as test.

LST: SURFRAD-MODTRAN land surface temperature
data. We collected the surface temperature and four ra-
diance measurements in SURFRAD stations from 2013
to 2020. Satellite observations were collected from Land-
sat images. MODTRAN (PM2) inputs were collected from
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Train-Test: West-East Train-Test: East-West Train-Test: East-Alaska
Model RMSE Corr. Fairness RMSE Corr. Fairness RMSE Corr. Fairness

FN
N

BaseNet 6.75 0.83 4.49 (±0.81) 27.56 0.34 13.65 (±2.48) 52.03 0.19 44.42 (±3.37)
Sim 6.45 0.86 4.69 (±0.82) 20.33 0.44 11.93 (±2.19) 43.74 0.29 38.84 (±5.69)
SimPhy 7.19 0.84 5.56 (±0.4) 17.78 0.48 10.79 (±1.98) 45.52 0.29 38.84 (±3.4)
RegFair 7.22 0.8 4.97 (±0.69) 25.35 0.37 12.36 (±2.42) 38.5 0.06 29.73 (±6.78)
Self-Reg 6.35 0.84 4.27 (±0.7) 31.97 0.31 16.48 (±2.42) 38.01 0.06 28.95 (±4.15)
SimFair 3.07 0.97 2.04 (±0.19) 3.11 0.96 1.94 (±0.03) 6.23 0.84 4.25 (±0.78)
SimFair-P 2.88 0.97 1.89 (±0.06) 3.13 0.96 1.96 (±0.05) 6.29 0.81 4.45 (±0.51)

L
ST

M

BaseNet 4.22 0.93 2.66 (±0.14) 4.02 0.97 2.45 (±0.16) 11.93 0.8 5.14 (±0.31)
Sim 3.89 0.95 2.43 (±0.15) 3.3 0.97 2.21 (±0.40) 13.32 0.85 5.25 (±0.49)
SimPhy 4.46 0.95 2.69 (±0.17) 3.23 0.97 2.04 (±0.17) 12.27 0.88 4.82 (±0.28)
RegFair 4.17 0.94 2.66 (±0.22) 4.03 0.96 2.59 (±0.58) 12.16 0.81 5.03(±0.4)
Self-Reg 4.10 0.94 2.57 (±0.26) 3.85 0.96 2.41 (±0.16) 11.24 0.84 4.68(±0.41)
SimFair 3.46 0.96 2.21 (±0.11) 3.22 0.98 1.91 (±0.11) 11.05 0.86 4.55(±0.27)
SimFair-P 3.35 0.96 2.12(±0.11) 3.24 0.97 1.99 (±0.17) 10.52 0.89 4.15(±0.23)

Table 1: AT1: Fairness results on temperature prediction (split by geographic regions in Fig. 3(a)).

NCEP Reanalysis and ASTER Global Emissivity products.
We split train-test by: (1) first 5 years as training and last 3
as test; and (2) first 3 years as train and last 5 as test.

Results and Analysis
For the three datasets (AT1, AT2, LST), we evaluate the fol-
lowing methods with the same fairness definition in Eq. (1):

• BaseNet: This is the baseline neural network, i.e., FNN or
LSTM, without additional fairness consideration.

• Sim: BaseNet that uses the physics-based simulation data
in pre-training (Jia et al. 2021; Li et al. 2022a). This pro-
vides a more generalizable initialization of the model.

• SimPhy: This approach uses both simulation-based pre-
training as well as physical constraints in loss design to
regularize the training and improve generalizability to test
samples from different regions (Willard et al. 2020).

• RegFair: This is the regularization-based fairness-aware
learning (Serna et al. 2020; Yan and Howe 2019), which
includes additional fairness-related loss to learn a fairer
model on the training dataset.

• Self-Reg: A self-training based fair learning framework,
which uses predicted labels on the test data to create a
pseudo-fairness-loss to adapt to the test area. The pre-
dicted labels are dynamically updated during training.

• SimFair: Proposed approach (no physical constraints).
• SimFair-P: Complete version with physical constraints.

Quality of inverse approximation. Fig. 4 shows the re-
sults of inverse approximations for the physical model,
where the inversion is necessary since the direction of simu-
lation is often opposite to that of a prediction task. Here we
use the CMEM model as an example, which simulates the
process from the temperature to many different bands ob-
served by the satellite (i.e., Y to X). Fig. 4 (a) directly swaps
the inputs and outputs of the physical model when train-
ing the network, whereas (b) uses the invertible network for
the approximation. We can see that the regularization effects
from the inversion can effectively reduce the RMSE and im-
prove the approximation quality. For the original physical
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Figure 4: Example approximation results on CMEM.

model direction, Fig. 4 (c) includes examples of four ap-
proximated satellite bands using the invertible network to
demonstrate that it works well in both directions.

Fairness results on AT1. The prediction performance and
fairness results are shown in Tables 1 to 3, where each table
corresponds to a different type of non-overlapping partition-
ing for training and testing. We show the results of both FNN
and LSTM in Table 1 and keep FNN results in Table 2 and
Table 3 as their trends are very similar. All results are ag-
gregated over 5 runs. We use three metrics: RMSE, correla-
tion coefficient (Corr.), and fairness (Eq. (1)). Geographic-
region partitions: As shown in Table 1, the overall trend
is that the two variants of SimFair consistently obtained the
best fairness results for all three train-test splits. Compar-
ing different splits, SimFair methods have more consistent
fairness results, whereas the other methods tend to perform
better for the East-West split but worse for the other two
splits. It is interesting to note that the prediction perfor-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22425



Train-Test: Hot-Cold Train-Test: Cold-Hot Train-Test: Hot-Warm
Model RMSE Corr. Fairness RMSE Corr. Fairness RMSE Corr. Fairness
BaseNet 19.7 0.56 12.36(±1.78) 35.95 0.25 21.87(±2.92) 17.5 0.61 12.1(±0.88)
Sim 20.26 0.5 13.71(±1.86) 35.69 0.18 22.19(±1.43) 15.86 0.58 11.54(±1.19)
SimPhy 17.84 0.59 11.28(±1.63) 35.37 0.2 22.32(±3.16) 16.35 0.59 11.83(±1.)
RegFair 19.42 0.57 11.9(±0.29) 35.48 0.23 21.69(±0.8) 16.95 0.63 11.86(±1.32)
Self-Reg 19.32 0.58 12.(±0.55) 36.11 0.24 21.81(±0.61) 16.27 0.65 11.03(±0.54)
SimFair 11.97 0.88 4.8(±1.24) 9.25 0.78 3.61(±0.56) 5.77 0.9 3.62(±0.44)
SimFair-P 12.37 0.91 4.43(±0.78) 9.42 0.78 3.46(±0.22) 5.62 0.89 3.56(±0.21)

Table 2: AT1: Fairness results on temperature prediction (split by temperature zones in Fig. 3(b)).

Train-Test: Train-Test1 Train-Test: Train-Test2 Train-Test: Train-Test3
Model RMSE Corr. Fairness RMSE Corr. Fairness RMSE Corr. Fairness
BaseNet 24.02 0.13 14.22(±0.98) 28.58 0.51 19.48(±3.16) 27.87 0.56 15.68(±0.83)
Sim 22.72 0.25 14.24(±1.63) 29.71 0.41 19.97(±2.98) 22.18 0.54 11.59(±2.59)
SimPhy 22.86 0.25 14.02(±2.59) 28.21 0.43 19.35(±2.94) 21.64 0.60 10.88(±0.98)
RegFair 23.71 0.14 14.22(±0.62) 30.66 0.47 20.87(±2.83) 26.77 0.57 15.30(±2.26)
Self-Reg 25.58 0.13 15.57(±1.65) 28.70 0.49 19.26(±2.41) 26.55 0.56 14.79(±1.52)
SimFair 8.42 0.82 5.37(±0.52) 6.55 0.90 3.52(±0.30) 10.01 0.92 5.06(±0.38)
SimFair-P 7.52 0.86 4.86(±0.31) 5.94 0.90 3.26(±0.28) 9.64 0.91 4.90(±0.49)

Table 3: AT1: Fairness results on temperature prediction (split by random state groups in Fig. 3(c)).
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Figure 5: Distributions of absolute errors in AT2 & LST

mance (RMSE) of SimFair also tends to be much better than
the other baseline approaches. This is potentially due to the
complimentary regularization effects brought by the deeper
integration between the deep network and the simulation
model using the dual-fairness consistency. Temperature-
zone and state-based partitions: Comparison results in Ta-
ble 2 are similar to the previous partitioning, where SimFair
continues to show the best performances in both fairness and
prediction quality. It is worth noting that the performance is
better in cold-to-hot than hot-to-cold scenarios. The reason
may be that temperature in colder regions is more stable and
contains a narrower distribution, whereas it becomes more
dynamic in hotter regions. Table 3 demonstrates that Sim-
Fair is able to obtain fairer results in more local regions with
a smaller amount of training data.

Fairness results on AT2 and LST. We include additional
results to see how well the methods can attach location-
based fairness to the same set of locations over different
periods. Specifically, Fig. 5 shows the absolute error distri-
butions for the AT2 and LST datasets under various time
splits for training and testing: (a) 8 and 4 months; (b) 4 and
8 months; (c) 5 and 3 years; and (d) 3 and 5 years. For AT2,
SimFair methods can reduce the variation of the prediction
performance, and the 8/4-month split is easier for the meth-
ods. Compared to the spatial tasks of AT1 in Table 1, the
task here is overall easier based on the performance, as at
least the groups (i.e., locations) used in fairness evaluation
remain the same. For LST, while BaseNet already performs
well, SimFair methods are still able to further improve fair-
ness scores. AT2/LST: Effects of physics models. For the
results of the two physics-based models, CMEM for AT2
and MODTRAN for LST, SimFair methods perform well
with both, showing that the general framework can poten-
tially fit different types of simulations. Comparing CMEM
and MODTRAN, the level of improvement is similar.

Conclusions

We proposed a SimFair framework to integrate physical
simulation models into fairness-aware learning with inverse
physical approximations, a dual-fairness consistency mod-
ule, and physical constraints to promote fairer solutions. Our
results on various simulation models and real datasets show
SimFair can effectively improve fairness while keeping a
similar (and sometimes better due to potential regularization
effects) global performance as the baseline methods. Our fu-
ture work will expand this to broader application domains
and more knowledge- or rule-based simulation models.
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