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Abstract
This study aims to minimize the influence of fake news on so-
cial networks by deploying debunkers to propagate true news.
This is framed as a reinforcement learning problem, where,
at each stage, one user is selected to propagate true news. A
challenging issue is episodic reward where the “net” effect of
selecting individual debunkers cannot be discerned from the
interleaving information propagation on social networks, and
only the collective effect from mitigation efforts can be ob-
served. Existing Self-Imitation Learning (SIL) methods have
shown promise in learning from episodic rewards, but are ill-
suited to the real-world application of fake news mitigation
because of their poor sample efficiency. To learn a more ef-
fective debunker selection policy for fake news mitigation,
this study proposes NAGASIL – Negative sampling and state
Augmented Generative Adversarial Self-Imitation Learning,
which consists of two improvements geared towards fake
news mitigation: learning from negative samples, and an aug-
mented state representation to capture the “real” environment
state by integrating the current observed state with the previ-
ous state-action pairs from the same campaign. Experiments
on two social networks show that NAGASIL yields supe-
rior performance to standard GASIL and state-of-the-art fake
news mitigation models.

1 Introduction
There have been significant efforts to combat the spread of
fake news on social networks. Beyond fake news detection,
another important strategy is mitigation, whereby debunkers
– users who propagate true news – are deployed to counter
the spread of fake news. Unfortunately, despite the efforts
of “official” debunkers, such as fact-checking services and
authoritative organisations (e.g., WHO), fake news still pro-
liferates widely on social media. It is therefore important to
unleash the power of crowd debunking from online users
for fake news mitigation (Vo and Lee 2018, 2020). Previ-
ous work on this problem has explored using reinforcement
learning to optimize fake news mitigation campaigns. Some
studies focus on optimizing the intensity with which given
debunkers spread true news (Farajtabar et al. 2017; Goindani
and Neville 2020a,b). Other studies optimize the selection of
crowd debunkers from online users over multiple stages with
a budget constraint (Xu, Deng, and Zhang 2022).
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A crucial issue in reinforcement learning-based multi-
stage fake news mitigation strategies but one that is largely
overlooked in the literature (Farajtabar et al. 2017; Goindani
and Neville 2020a,b; Xu, Deng, and Zhang 2022) is the lack
of direct, “net” rewards for agent actions. Since news prop-
agation on social networks is a long-lasting process with
intensity decay over time, the effects of debunkers on fake
news mitigation are interleaved across the network at differ-
ent stages. The “net” effect of individual debunkers cannot
be directly measured at intermediate stages; only the cumu-
lative effect of all debunkers can be observed when the mit-
igation campaign finishes. In other words, the reward func-
tion for the task is episodic.

In this paper, we propose a reinforcement learning ap-
proach to multi-stage fake news mitigation that explicitly
addresses the issue of episodic reward. In a multi-stage fake
news mitigation campaign, one user is selected at each stage
to post true news such that the number of users believing in
fake news is minimized at the conclusion of the campaign.
To address the issue of episodic rewards, we propose to
learn the debunker selection policy via self-imitation learn-
ing (Oh et al. 2018; Gangwani, Liu, and Peng 2018). Instead
of learning directly from immediate rewards, self-imitation
learning aims to mimic the agent’s own past behaviour from
highly rewarding episodes. Existing self-imitation learning
algorithms (Ho and Ermon 2016; Gangwani, Liu, and Peng
2018; Oh et al. 2018) have shown promise in learning from
episodic rewards (Gangwani, Liu, and Peng 2018), but have
two weaknesses that potentially limit their effectiveness for
fake news mitigation on social networks:

First, fake news mitigation campaigns are cost-intensive
(Farajtabar et al. 2017). Real-world campaigns often have
budget constraints and it is essential to learn mitigation poli-
cies from a small number of episodes. It is therefore de-
sirable to exploit all available information about episodes
for more efficient sampling and hence more efficient learn-
ing. Existing self-imitation learning methods imitate past
good experiences only, and state-action pairs that appear
frequently in past good experiences are typically treated
as favourable, but this may not be true if they also appear
frequently in past bad experiences. Second, existing meth-
ods assume that the full environment state can be observed.
However, in fake news mitigation, due to interleaved infor-
mation propagation and the complexity of social networks,
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it is hard to observe users’ reactions to news in real time.
In this paper, we argue that leveraging negative samples –

past experiences where the agent received a small episodic
reward – can yield more efficient sampling of good experi-
ences and hence boost policy learning efficiency. Negative
sampling informs the agent about undesirable behaviours
and can therefore improve the efficiency of sampling good
experiences. In addition, we devise an augmented state rep-
resentation that better captures the “true” environment state
by integrating the current observations with previous state-
action pairs in the same campaign.

The contributions of this study are twofold: First, we pro-
pose, for the first time to our best knowledge, a multi-stage
fake news mitigation approach designed for the realistic set-
ting where rewards are episodic. Second, we propose NA-
GASIL – Negative sampling and state Augmented Genera-
tive Adversarial Self-Imitation Learning – which improves
self-imitation learning for fake news mitigation via negative
samples and augmented states. In addition to theoretically
proving the advantage of negative samples and augmented
states, we test NAGASIL on two social networks: one is
a large synthetic network based on commonly used social
network parameters, while the other is a widely used real-
world social network for rumour propagation. Experiments
demonstrate NAGASIL’s superior performance compared to
state-of-the-art fake news mitigation models1

2 Related Work
There have been many studies on fake news detection on
social networks. To reduce the cost and time burden of man-
ual fact-checking, automated fact-checking of fake news
and credibility analysis of social media posts have been
proposed, using information such as network features (Be-
namira et al. 2019), multi-modal features (Wang et al. 2018)
and combined features (Shu et al. 2017; Shu, Bernard, and
Liu 2019). Other studies detect fake news and their spreaders
on social networks based on linguistic and personality fea-
tures (Tian et al. 2020; Tian, Zhang, and Lau 2022; Shrestha,
Spezzano, and Joy 2020). For a more complete review of au-
tomatic fact-checking systems, please refer to a recent sur-
vey (Guo, Schlichtkrull, and Vlachos 2022).

Beyond fake news detection, research on strategies for
propagating true news, such as fact-checked content, to mit-
igate the spread of fake news is attracting more attention.
Various solutions have been investigated to select users as
debunkers to propagate true news. These studies can be cat-
egorised along two lines: One line of research focuses on
heuristics for one-off selection of debunkers for mitigation.
These studies heuristically select the top-k most influential
users as debunkers (Saxena et al. 2020; Saxena, Saxena, and
Gera 2020). They assume that users with high social influ-
ence will produce wide propagation of true news on social
networks. However, research has shown that overall influ-
ence on social networks may not translate to wide mitiga-
tion propagation and reach users exposed to fake news as
expected (Farajtabar et al. 2016).

1The source code for our experiments is available at
https://github.com/xxfwin/NAGASIL

Another line of research, which most strongly relates to
ours, leverages reinforcement learning to optimize the cu-
mulative effect across multiple stages of fake news mitiga-
tion (Farajtabar et al. 2017; Goindani and Neville 2020a,b;
Xu, Deng, and Zhang 2022). In some studies (Farajtabar
et al. 2017; Goindani and Neville 2020a,b), a set of de-
bunkers is given in advance, and each stage focuses on op-
timizing the intensity with which the debunkers post true
news. Because the debunkers are fixed, even if they post
with high intensity, the true news they propagate may not
reach all users exposed to fake news, given the unknown
origin and dynamic propagation of fake news on social net-
works (Xu, Deng, and Zhang 2022). Not assuming fixed de-
bunkers, Xu, Deng, and Zhang (2022) propose to select de-
bunkers in a cost-effective way for multi-stage fake news
mitigation. However, all of these studies assume that the mit-
igation effect of each stage can be immediately observed be-
fore the next stage, and overlook the issue of episodic reward
that we described in the introduction, which can lead to less
than optimal mitigation policies. In this paper, we address
the critical issue of episodic reward, and our solution can
be generally applied to other mitigation settings of selecting
debunkers (Xu, Deng, and Zhang 2022).

In addition to network-level mitigation, there are also
studies on individual-level fake news mitigation (Wang et al.
2022; He, Ahamad, and Kumar 2023). Wang et al. (2022)
propose a personalised true news recommender system to
counteract fake news by modelling both user interests and
news veracity for individuals. With the recent advance of
generative models (Ouyang et al. 2022), a recent study fo-
cuses on generating personalized counter-misinformation
posts (He, Ahamad, and Kumar 2023).

3 Preliminaries and Problem Statement
Information Propagation Models. Various information
propagation models have been applied in research on fake
news mitigation on social networks, including Hawkes pro-
cesses (Farajtabar et al. 2017; Lacombe 2018; Shu, Bernard,
and Liu 2019; Goindani and Neville 2020a,b; Murayama
et al. 2021), Linear Threshold / Independent Cascade mod-
els (Pham et al. 2019; Saxena, Saxena, and Gera 2020), In-
formation Aggregation Games (Aymanns et al. 2020), and
epidemic models (Zhao et al. 2013; Wen et al. 2014b,a; Tan
et al. 2019). Our proposed NAGASIL is independent of the
propagation model. Without loss of generality, the epidemic
model is employed as the environment for reinforcement
learning in this study.

To meet the specific requirements of different applica-
tions, several variants of the epidemic model have been pro-
posed (Brauer 2008; Gumel et al. 2004). In this study, we
adopt SEIR (Susceptible-Exposed-Infected-Recovered). Let
Xi(t) be the epidemic state (or e-state for simplicity) of user
i at time t. Xi(t) is always in one of four e-states: Sus-
ceptible, Exposed, Recovered, or Infected. Xi(t) can tran-
sition from one e-state to another. If the user has not re-
ceived any news yet, Xi(t) is Susceptible; if they have re-
ceived fake/true news,Xi(t) is Exposed. Let P I

i (PR
i ) be the

probability of user i transitioning from some other e-state to
Infected (Recovered).
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P I
i =

{
Li(N

F
i −NM

i ) if NF
i > NM

i

0 else
(1)

PR
i =

{
Li(N

M
i −NF

i ) if NM
i > NF

i

0 else
(2)

where NF
i and NM

i are the number of fake and true news
items received by user i respectively, and Li(x) is defined
as:

Li(x) =
1

1 + e−δ(x−xi)
(3)

where xi is the logistic function’s midpoint, which is deter-
mined by the number of followers user i has on the social
network, δ is the logistic growth rate and δ = 1 by default.
If a user has received more true news than fake news (i.e.,
NM

i > NF
i ) and is not in e-state Recovered, they will have

a non-zero probability of transitioning to e-state Recovered;
otherwise, if they have received more fake news than true
news (i.e., NM

i < NF
i ) and are not in e-state Infected, they

will have a non-zero probability of transitioning to e-state
Infected. In both cases, the probability is lower if user i has
more followers. The rationale is that users with more fol-
lowers tend to be harder to convince by news received (Smit
et al. 2022).

Once a user transitions to e-state Infected (or Recovered),
they have an initial intensity (i.e., probability) for spreading
fake news (or true news). The intensity decays over time.
Specifically, the intensity of user i at time t is:

ιi(t) = ξie
−ω(t−tc). (4)

where ξi is the initial intensity, ω controls the intensity decay
rate (ω = 1 by default), and tc is the time when the e-state
of user i changed to Infected (or Recovered). The more time
elapsed, the less likely the user is to spread fake/true news.

Note that the users in the information propagation model
continuously spread fake/true news based on their intensi-
ties. This leads to two consequences: First, the probability
of each user transitioning to e-state Infected (or Recovered)
changes over time, since it is determined by the number
of fake/true news items received (Eq. 1 and 2). Second,
the intensity of users spreading fake/true news changes
continuously so it is difficult to observe intrinsic properties
that drive users to interact with the environment (e.g., initial
intensity).

Problem Statement. A social network is modelled as a
directed graph G(U,E) where U and E denote the social
network users and the directed links between users, respec-
tively. The information propagation on social networks is
modelled by SEIR. Initially, the environment state is s0,
where the e-state of each user in U is Susceptible, Exposed
or Infected, and the users in e-state Infected have different
intensities to spread fake news.B is a budget and each user i
has a cost ci. If user i is selected as a debunker, the budget is
reduced by ci. Given a social network G(U,E) with initial
state s0, the problem of selecting debunkers under budget
B for optimal mitigation can be mapped to a reinforcement
learning problem, where the goal is to design a debunker se-
lection policy such that, each w time steps (i.e., a stage), the

agent selects one user from U as a new debunker based on
the environment state at that time (s0 for the first stage), and
sets the user’s e-state to Recovered with the initial intensity
to spread true news on G, until the remaining budget is less
than the cost of any user in U . The optimization objective
is to minimize the number of users in e-state Infected in U
at time tf (>> w) after the multi-stage fake news mitigation
campaign concludes.

Since it is impractical to observe the full environment
state in a realistic setting, we mask certain state features.
The rationale is that we cannot observe the intrinsic proper-
ties that drive users to interact with the environment. The full
environment state sE and the observed environment state s
are defined as follows:

sE =
[
PI; rI ;dI ;PR; rR;dR; ι; e;

]
,

s =
[
rI ;dI ; rR;dR; e

]
.

(5)

where PI ∈ [0, 1]n (PR ∈ [0, 1]n) is a vector where each
element indicates the probability of a user changing e-state
to Infected (Recovered), rI ∈ Zn

2 (rR ∈ Zn
2 ) is a vector in-

dicating for each of the n = |U | users whether they are in
e-state Infected (Recovered) or not, dI ∈ Rn (dR ∈ Rn) is
a vector indicating the number of times each user had prop-
agated fake news (true news) since the beginning of fake
news mitigation, ι ∈ Rn is a vector indicating the intensity
of each user, and e ∈ Rn is a vector indicating the number
of followers of each user. The action, a, to be chosen at each
stage is which user i ∈ U is to be selected as the debunker.

To learn an optimal fake news mitigation policy under this
reinforcement learning framework, we face a key challenge
that the reward for selecting debunkers is not immediately
available. Due to the continual and interleaving nature of
information propagation on social networks, the net effect
of selecting a debunker to post true news on the network
is not directly and immediately observable; instead only the
network effect can be seen at the end of a campaign. Thus,
we define the episodic reward of an episode τ as:

V (τ) = −log( ||r
I
τ ||1
n

). (6)

where rIτ ∈ Zn
2 is a vector indicating whether each of the

n users is in e-state Infected after the fake news mitigation
finishes. There are two possible methods to decide whether
a user is Infected: First, if a user shares a piece of fake news,
the user is Infected. Second, a user is Infected based on the
probability provided by Eq 1. In this paper, we use the sec-
ond method. The episodic reward is measured at time tf af-
ter the multi-stage fake news mitigation ends.

4 Methodology
Under the reinforcement learning framework, multi-stage
fake news mitigation campaigns have episodic rewards. One
approach to addressing episodic rewards is self-imitation
learning (Oh et al. 2018; Guo et al. 2018). These methods
imitate the past good behaviours of the learner itself, using
the signal provided by the episodic reward, and can learn
strong policies.
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Figure 1: Generative Adversarial Self-Imitation Learning.

In this section, we first introduce the self-imitation learn-
ing framework and then describe our approach, NAGASIL,
namely Negative sampling and state Augmented Generative
Adversarial Self-Imitation Learning.

Self Imitation Learning
Originating from applications such as self-driving cars and
drone manipulation, the imitation learning framework learns
a policy to produce episodes similar to those of a human
demonstrator, rather than learning from feedback on agent
actions at intermediate steps (Bojarski et al. 2016; Ross
et al. 2013; Hester et al. 2017; Vecerı́k et al. 2017). The
same framework is used to derive Generative Adversarial
Imitation Learning (GAIL), which is motivated by mini-
mizing the divergence between the agent’s rollouts and ex-
pert demonstrations (Ho and Ermon 2016). GAIL has been
extended to GASIL (Generative Adversarial Self-Imitation
Learning) (Guo et al. 2018) by replacing expert data with
the past good experiences of the learner itself (i.e., episodes
with large episodic reward), which is a form of self-imitation
learning. Given a policy π, occupancy measure ρπ is the
distribution of state-action pairs that an agent encounters
when navigating the environment under this policy. GAIL
finds a policy π whose occupancy measure ρπ minimizes
the Jensen-Shannon divergence to the distribution of state-
action pairs in past good experiences, i.e., it minimizes
DJS(ρπ, ρπE

) where πE is the mixture policy represented
by past good experiences. The causal entropy H(π) ≜
Eπ[− log π(a|s)] is included as a policy regularizer to guard
against collapse to a deterministic policy. To improve ex-
ploration, an ensemble of self-imitating agents is explic-
itly encouraged to visit different, non-overlapping regions
of the state-action space, i.e., to simultaneously learn mul-
tiple diverse policies that explore different regions of the
task (Gangwani, Liu, and Peng 2018).

Fig. 1 illustrates GASIL. Episodes are generated follow-
ing policy πθ parameterised by θ. In fake news mitigation,
each episode is a sequence of (s, a) pairs where a is the
debunker selected at state s. The episodes with the high-
est reward are considered as past good experiences. Higher
reward means that the number of users in e-state Infected
after the fake news mitigation finishes, is smaller. Other ex-
periences will be discarded during the learning process. Dis-

criminator Dϕ(s, a) : S×A→ [0, 1] is parameterized by ϕ.
The policy is trained to select action a for state s in a sim-
ilar way to the mixture policy πE represented by past good
experiences. The discriminator is trained to evaluate the dis-
crepancy between the distribution of (s, a) generated follow-
ing policy πθ and the distribution of (s, a) in past good ex-
periences. The policy and discriminator are improved alter-
nately. To summarise, the aim is to find a policy πθ whose
occupancy measure ρπθ

minimizes the Jensen-Shannon di-
vergence to the distribution of state-action pairs in past good
experiences, i.e., to minimizeDJS(ρπ, ρπE

) (Ho and Ermon
2016; Guo et al. 2018; Gangwani, Liu, and Peng 2018).

NAGASIL
We next describe our algorithm, NAGASIL, for learning a
policy for multi-stage fake news mitigation on social net-
works in a sample-efficient manner.

Negative Samples. Fake news mitigation is cost-
intensive, meaning that we aim to learn a policy with a
limited number of episodes given some budget constraints.
To this end, the strategy of negative sampling is explored.
With past bad experiences only, we train a machine learning
model M to predict the probability of actions being selected
in state s. The output is a vector denoted as M(A|s) where
each element corresponds to one action. Let πθ(A|s) be the
vector indicating the probability of each action following
policy πθ. If M(A|s) indicates an action with a probabil-
ity higher than that of the same action in πθ(A|s), it implies
we should avoid that action. We define the negative samples
regularizer:

N (πθ) ≜ ∥πθ(A|s)−F(πθ(A|s)−M(A|s))∥22. (7)

where F(V ) returns 0 for each negative element and returns
the value in πθ(A|s) for each positive element. That is, the
regularizer punishes the negative elements but ignores the
positive elements. The effectiveness of negative samples is
analyzed in Proposition 1, where it is shown that the policy
learned from negative samples on top of good experiences is
guaranteed to be at least as good as the policy learned with
only good experiences.
Proposition 1.
Provided that low Q-value state-action pairs appear more
often in past bad experiences, E[πθ(a|s, s′)Q(s, s′, a)] ≥
E[πθ1(a|s, s′)Q(s, s′, a)] where πθ is learnt with the neg-
ative samples while πθ1 is learnt without the negative sam-
ples. Proof can be found in Appendix A.

Augmented State. As the information propagation on so-
cial networks is interleaved, it is impossible to observe all
the features needed for action selection. To address this is-
sue, we propose to augment the state s, derived from the
observable information, with all previous state-action pairs
from the same episode. The rationale is to include as much
historical information in the input as possible so that the
agent can infer missing features in the observable state based
on historical data. The augmented state s′ is defined as fol-
lows:

s′i+1 =
1

i

i∑
m=1

ψi−m [sm; am] . (8)
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Algorithm 1 Selecting Debunkers via NAGASIL

1: Initialize discriminator D with random parameters ϕ,
policy π with random parameters θ

2: Initialize past good experience memory ME , past bad
experience memory MB

3: for iterations do
4: Generate episode τπθ

following policy πθ
5: Update past good and bad experience memory ME

and MB using τπθ

6: Sample minibatch τE from ME

7: Sample minibatch τB from MB

8: Update machine learning model M with τB
9: Update D by ascending stochastic gradient ∇ϕL

with τE and τπθ

10: Update π by ascending stochastic gradient ∇θL
with τπθ

11: end for

Here ψ ∈ [0, 1] is the discount rate. Instead of finding policy
πθ(a|s), we aim to find policy πθ(a|s, s′).

Proposition 2 provides a theoretical justification of the
augmented state, showing that the policy trained with the
augmented state will be at least as strong as the policy
trained otherwise.

Proposition 2.
E[πθ1(a|s, s′)Q(s, s′, a)] ≥ E[πθ2(a|s)Q(s, a)] where πθ1
is trained with the augmented state while πθ2 is trained with-
out the augmented state. Both policies are learnt via Eq. 9
without negative samples. Q(s, a) is the action-value func-
tion. Proof can be found in the Appendix A.

We integrate the negative samples and augmented state
with GASIL, such that the objective of the discriminator and
generator is defined as:

argmin
θ

argmax
ϕ

L = Eπθ
[logDϕ(s, s

′, a)]

+EπE
[log(1−Dϕ(s, s

′, a))]− λH(πθ) + λ1N (πθ).
(9)

where H(π) = E[− log π(a|s)] is causal entropy (Ho
and Ermon 2016). The optimized θ and ϕ minimize
DJS(ρπ, ρπE

) which is:

DJS(ρπθ
, ρπE

) = max
ϕ

E(s,s′,a)∼ρπθ
[logDϕ(s, s

′, a)]

+E(s,s′,a)∼ρπE
[log(1−Dϕ(s, s

′, a))].

(10)

Selecting Debunkers via NAGASIL. Our algorithm for
fake news mitigation is presented in Alg. 1. Following policy
πθ, the generated episode τπθ

is evaluated; if the episodic re-
ward is one of the highest, τπθ

is inserted intoME ; if it is one
of the lowest, τπθ

is inserted into MB (line 4-5). The param-
eters ϕ of discriminatorD are updated (line 9) via stochastic
gradient ascent:

∇ϕL = Eτπθ
∼πθ

[∇ϕ logDϕ(s, s
′, a)]

+EτE∼πE
[∇ϕ log (1−Dϕ(s, s

′, a))] .
(11)

The parameters θ of policy π are updated (line 10) via
stochastic gradient ascent:

∇θL = Eτπθ
∼πθ

[∇θ logDϕ(s, s
′, a)]

−λ∇θH(πθ) + λ1∇θN (πθ).
(12)

The algorithm continuously updates the policy, which takes
the observed environment state as input, and outputs a se-
lected user as a debunker for fake news mitigation.

5 Experiments
We evaluated NAGASIL on both real-world rumour datasets
and social networks, as well as large synthetic networks,
and benchmarked it against baselines from both the fake
news mitigation and self-imitation learning literature. Ex-
periments were conducted on a cluster where each node has
64 cores, 2.0Ghz CPUs and 256G RAM. All deep neural net-
works are implemented using Tensorflow (Abadi et al. 2016)
(distributed with the Apache License 2.0), all social net-
works are implemented using NetworkX (Hagberg, Swart,
and S Chult 2008) (distributed with the 3-clause BSD Li-
cense) and the epidemic model SEIR is implemented based
on EoN (Miller and Ting 2020) (distributed with the MIT
License).

Data. We use PHEME (Zubiaga et al. 2016), a widely
used dataset for modeling rumour propagation on social net-
works. PHEME includes the source and the propagation
path of messages, i.e., who spreads the news first and how
the news propagates on social networks. From PHEME, the
probability distribution that users propagate received news
is extracted and used in our experiments. As the public
PHEME dataset does not include the underlying social net-
work, we utilize the Facebook social network (Leskovec and
Mcauley 2012) from SNAP (Leskovec and Krevl 2014) and
also generate several synthetic Twitter social networks ac-
cording to Twitter network settings from the literature (My-
ers et al. 2014).

Baselines and Evaluation Metrics. We compare our
proposed NAGASIL against baselines from both the fake
news mitigation and reinforcement learning literature. Each
method selects a debunker for every stage – w time steps
– until a given budget is used up. For each method, per-
formance is evaluated based on the episodic reward of the
episodes generated following the policy in the testing stage
(i.e., the last 100 episodes). The episodic reward is defined
by Eq. 6. Three baselines are state-of-the-art models from
the fake news mitigation literature:
• Deep Q-Network with Future State Predictor (DQN-

FSP) (Xu, Deng, and Zhang 2022) is a state-of-the-art
RL-based method for fake news mitigation. When train-
ing DQN-FSP with single debunker selection, a reward
will be provided following Eq. 6.

• Maximum Influence (MAX-INF) (Saxena, Saxena, and
Gera 2020) is a widely used heuristic approach in the
fake news mitigation literature. It selects the user with
the highest number of followers (i.e., the most influential
users) as the debunker for each stage.

• Maximum Defense (MAX-DEF) (Saxena, Saxena, and
Gera 2020) is another heuristic approach for fake news
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Figure 2: Performance for rumour mitigation on a real-world Facebook social network.

Figure 3: Performance for rumour mitigation on synthetic Twitter networks with various settings.

mitigation. It selects the most active user propagating
fake news as the debunker for each stage.

Two more baselines can be formed by applying existing self-
imitation learning models for fake news mitigation:

• Generative Adversarial Self-Imitation Learning
(GASIL) is a popular self-imitation learning method
proposed in (Guo et al. 2018) (source code distributed
with MIT License).

• Self-Imitating Diverse Policies (SIDP) is a self-imitation
learning method, improved to achieve better exploration
of the environment (Gangwani, Liu, and Peng 2018).

As a sanity check, we include as a baseline the basic policy
of randomly selecting one user as the debunker at each stage
(RND). Note that we have experimented with other general
RL-based methods, such as PPO and DQN, but they perform
consistently worse than RND and thus do not pass our san-
ity check. A possible reason for this is that these methods are
not designed for episodic reward settings. Results for these
methods, therefore, are not reported. The details of experi-
ment settings are presented in Appendix B.

Performance w.r.t. Mitigation Settings
Figure 2 and 3 report the average episodic reward of five
runs using different random seeds and their standard de-
viation for PHEME propagation on a real-world Facebook
social network and (synthetic) Twitter networks with dif-
ferent settings. From the Facebook data, we randomly pick
two ego networks, named Facebook #1 and #2. Figure 2(a)
and (c) show the performance with respect to the budget

B, where the budget increases from 10 to 30, on Facebook
networks. Given more budget, more mitigation effect is ex-
pected, since the fake news mitigation campaign will con-
tinue for more stages. The experiment results show that NA-
GASIL performs better on all budget settings except on ex-
tremely low budgets. This might be caused by the extremely
limited number of actions, where the problem effectively re-
duces to one-off selections. Figure 2(b) and (d) show the
performance with respect to stage lengthw on Facebook net-
works. The greater stage length allows the agent to observe
more mitigation effects from previous actions; however, the
greater stage length means it takes a longer time to select
the next debunker. To investigate the impact caused by stage
length, we increase the stage length from 0.5 to 1.5. We can
see that NAGASIL has outstanding performance in all set-
tings against all baselines. MAX-INF demonstrates much
better performance in Facebook #1 than in Facebook #2.
It suggests that the performance of MAX-INF is unstable,
i.e., it is heavily influenced by the underlying social network
structure.

Figure 3(a) shows the performance with respect to the
budgetB on a Twitter network of 1250 nodes (see Appendix
B). We also vary the budget B from 10 to 30. The exper-
iment results demonstrate that NAGASIL performs consis-
tently better under most budget settings. Figure 3(b) shows
the performance with respect to stage lengthw, varying from
0.5 to 1.5 on the Twitter network. We can see that NA-
GASIL has consistently outstanding performance in all set-
tings against all baselines.
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(a) Ablation study

(b) Larger networks test

Figure 4: NAGASIL - ablation study and performance on
larger networks.

Performance w.r.t. Network Settings
Figure 3(c) shows the performance with respect to Twitter
networks of different densities. In the network generation
model (Bollobás et al. 2003), the density was controlled by
β (by default, β = 0.8). In the experiments, β is increased
from 0.7 to 0.9 to simulate different levels of density. The
sum of α, β and γ must be 1. We keep γ = 3α to en-
sure that the social networks maintain the property that the
out-bound degree is lower than the in-bound degree (My-
ers et al. 2014). We can observe the significant advantage of
NAGASIL against all baselines at most density levels. Fig-
ure 3(d) shows the performance with respect to the size of
the Twitter networks where the number of users increases
from 250 to 1250. The density of Twitter networks is the
same by setting β = 0.8. Clearly, NAGASIL outperforms
all baselines consistently.

Ablation Study
To verify the effectiveness of negative samples and aug-
mented state, we compare the performance of NAGASIL
against three ablated versions: NGASIL, AGASIL, and
GASIL. NGASIL is a variant of NAGASIL where the aug-
mented state is removed (i.e., s′ is removed in Eq. 9 when
learning the policy). AGASIL is a variant of NAGASIL
where the negative samples are removed (i.e., λ1 is set to
0 in Eq. 9 when learning the policy). The default experi-
ment settings on Twitter networks (see Appendix B) are ap-
plied except the evaluation metric is calculated over all 1000
episodes to demonstrate the performance of different base-
lines during the whole training process.

The results of the ablation study are reported in Figure
4(a), where the mean and standard deviation of 5 runs are
plotted for each method. Firstly, note that NGASIL has sig-
nificantly better performance than GASIL, indicating that
negative samples can clearly boost performance for fake
news mitigation. Secondly, AGASIL has better performance
compared to GASIL. Even though s′ provides additional in-
formation, the augmented state increases the state space. A
larger state space necessitates more training data to fully re-
alise the benefits brought by additional information. Thirdly,
NAGASIL has a significant performance advantage com-
pared to NGASIL, AGASIL and GASIL. The performance
gain is attributed to the combination of negative samples and
the augmented state; that is, the negative samples provide
extra training data to help improve the effectiveness of the
augmented state.

Performance on Larger Twitter Networks

To simulate real-world deployment of fake news mitigation
campaigns, we further evaluate NAGASIL on a larger Twit-
ter network with 2500 users. The average performance of
3 runs of NAGASIL (default settings) and baselines is re-
ported as a box plot in Figure 4(b). The experiment results
clearly show that NAGASIL outperforms all baselines on the
larger Twitter network. Note that following real-world fake
news mitigation reported in the literature (Farajtabar et al.
2017), our setting simulates that mitigation policy is applied
to a group of users who have interactions with the news to be
mitigated, which often are in the order of thousands rather
than millions.

6 Social Impact and Limitations

Misinformation and fake news on social media can swing
public opinions, damage social cohesion, and foster mis-
perception, and are recognised threats to human soci-
eties (Weeks 2015; Roozenbeek et al. 2020). Our proposed
solution potentially offers direct benefit to social media com-
panies and fact-checking services in their efforts to counter-
act the spread of misinformation at scale via autonomous
crowd debunking.

Our NAGASIL framework provides a data-driven plat-
form for media researchers to conduct large-scale studies
and collect data to analyse and discover factors affecting the
interaction between misinformation and truthful information
propagation on social networks. For example, controlling
the settings of NAGASIL for different mitigation stages and
stage lengths can be used to simulate and design media re-
sponses for future misinformation campaigns.

As for limitations, similar to existing studies, e.g., (Fara-
jtabar et al. 2017; Xu, Deng, and Zhang 2022), our proposed
fake news mitigation policy assumes that the truth value
– true or fake – of social media news posts is established
and fed to the mitigation process. Therefore, the mitigation
model must be applied in conjunction with a fake news de-
tection model.
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7 Conclusion
This study identified and addressed the issue of episodic
reward, an essential but overlooked issue for learning fake
news mitigation policies via reinforcement learning. Specif-
ically, our solution proposed the negative samples to learn
the policy for debunker selection by imitating past good ex-
periences and avoiding past bad experiences. We further pro-
posed the augmented state to enrich the state of reinforce-
ment learning with features extracted from past state-action
pairs in the current episode. The superiority of the proposed
solution has been verified against various baselines in differ-
ent settings. In a broader context, this study improves fake
news mitigation, for the first time to our best knowledge,
by giving due consideration to the complexity of informa-
tion propagation on social networks. While NAGASIL is
compatible with different information propagation models, a
single propagation model cannot fully characterise the com-
plex information propagation on social networks. In future
work, we will further investigate NAGASIL with alternative
information propagation models to further evaluate its ro-
bustness.

A Proof of Propositions
Proposition 1.
E[πθ1(a|s, s′)Q(s, s′, a)] ≥ E[πθ2(a|s)Q(s, a)] where πθ1
is trained with the augmented state while πθ2 is trained with-
out the augmented state. Both policies are learnt via Eq. 9
without negative samples. Q(s, a) is the action-value func-
tion.

proof: ρE(s, a) can be calculated by summing the
joint probability distribution over all values of s′, that is,
ρE(s, a) =

∑
s′ ρE(s, s

′, a). By definition, ρE(s, a) =
P (s)πE(a|s) and ρE(s, s

′, a) = P (s)
∑

s′ πE(a|s, s′)
where P (s) is probability of s in past good experiences.
Since πE(a|s) =

∑
s′ πE(a|s, s′), we have πE(a|s) ≥

πE(a|s, s′) which indicates a is equally or more preferable
if considering s than that if considering (s, s′). As a re-
sult, ρE(s, a) ≥ ρE(s, s

′, a) where ρE(s, a) includes the
probability of (s, s′, a) inside, and outside, past good ex-
periences. According to (Ho and Ermon 2016), ρπθ1

=

ρE(s, s
′, a) and ρπθ2

= ρE(s, a) by learning policy via
Eq. 9 without N (πθ). The episodes generated following
policy πθ1 are equally or more likely to have high re-
wards compared with those generated following πθ2 . That
is, E[πθ1(a|s, s′)Q(s, s′, a)] ≥ E[πθ2(a|s)Q(s, a)].

Proposition 2.
Provided that low Q-value state-action pairs appear more
often in past bad experiences, E[πθ(a|s, s′)Q(s, s′, a)] ≥
E[πθ1(a|s, s′)Q(s, s′, a)] where πθ is learnt with the neg-
ative samples while πθ1 is learnt without the negative sam-
ples.

proof: πθ(a|s, s′) and πθ1(a|s, s′) are updated in
the same way when ρÊ(s, s

′, a) changes. Let ρÊ be
the occupancy measure of past bad experiences. If
ρÊ(s, s

′, a) = 0, πθ(a|s, s′) is same as πθ1(a|s, s′). If
ρÊ(s, s

′, a) > 0, when it becomes relatively greater

(or less) than ρE(s, s
′, a), the Q-value of correspond-

ing state-action pair Q(s, s′, a) will be less (or greater).
Accordingly, πθ(a|s, s′) will be reduced (or increased);
but, πθ1(a|s, s′) will not change since it is unaware rel-
ative change between ρÊ(s, s

′, a) and ρE(s, s
′, a). Thus,

E[πθ(a|s, s′)Q(s, s′, a)] ≥ E[πθ1(a|s, s′)Q(s, s′, a)].
The assumption that low Q-value state-action pairs ap-

pear more often in bad experiences is likely to hold much
of the time since past bad experiences only include worst-
performing episodes.

B Experiment Settings

In this study, unless stated otherwise, all methods run for
1000 episodes, where the last 100 episodes are in the testing
stage. By default, the experiments on real-world networks
will randomly pick two ego networks, named Facebook #1
and #2, (with radius = 2, anonymized networks released with
code) from the Facebook dataset (Leskovec and Mcauley
2012). The experiments on synthetic Twitter social networks
will have a directed scale-free network with 1250 users gen-
erated using the method in (Bollobás et al. 2003) (no self-
loop and multiple edges). The parameters of network gener-
ation model are α = 0.05, β = 0.8 and γ = 0.15. Each user
i has a cost (ei/maxj∈U (ej)) ∗ 9 + 1 which is in [1, 10].
Users with a higher number of followers will have higher
costs. 20 users are randomly picked up as fake news spread-
ers who are in e-state Infected with intensity ξi ∼ U [0.5, 1.5]
to spread fake news at time 0 and the intensity decays along
with time following Eq. 4; other users are in e-state Suscep-
tible. At time 5, fake news mitigation starts. For every time
period w = 1 (i.e., a stage), one user from U is selected as
a new debunker until budget B = 20 is used up. If user i is
selected as a debunker, their e-state is changed to Recovered
with intensity ξi ∼ U [0.5, 1.5] to spread true news immedi-
ately. After the last stage, the news spreading continues for a
time period of 5 and then the episodic reward is gauged. For
self-imitation learning baselines, the number of past good
experiences is set to 20, for NAGASIL, we additionally set
the number of past bad experiences to 10% of total past ex-
periences.

When a user i receives fake news (true news), the prob-
ability of changing from another e-state to Infected (Re-
covered) is updated according to Eq. 1 (Eq. 2) where
the logistic function’s midpoint xi in Eq. 3 is defined as
(ei/maxj∈U (ej)) ∗ 2 + 1, i.e., a value in [1, 3]. If user i
has more followers, xi is higher and the user is less likely to
change e-state. Once user i is successfully changed to e-state
Infected (Recovered), the intensity of the user to spread fake
news (true news) is initialized to be ξi ∼ U [0.5, 1.5] and
decays along with time following Eq. 4.
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