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Abstract

In data-rich domains such as vision, language, and speech,
deep learning prevails to deliver high-performance task-
specific models and can even learn general task-agnostic
representations for efficient finetuning to downstream tasks.
However, deep learning in resource-limited domains still
faces multiple challenges including (i) limited data, (ii) con-
strained model development cost, and (iii) lack of adequate
pre-trained models for effective finetuning. This paper pro-
vides an overview of model reprogramming to bridge this
gap. Model reprogramming enables resource-efficient cross-
domain machine learning by repurposing and reusing a well-
developed pre-trained model from a source domain to solve
tasks in a target domain without model finetuning, where
the source and target domains can be vastly different. In
many applications, model reprogramming outperforms trans-
fer learning and training from scratch. This paper elucidates
the methodology of model reprogramming, summarizes ex-
isting use cases, provides a theoretical explanation of the suc-
cess of model reprogramming, and concludes with a discus-
sion on open-ended research questions and opportunities.

1 Introduction
Designing and developing a top-notch deep learning model
is a time-consuming and costly process. It is no secret that
employing a high-capacity neural network model consist-
ing of a tremendous number of trainable parameters, to-
gether with a proper selection of the network architecture
and hyperparameter optimization, can lead to state-of-the-
art machine learning performance when trained on a mas-
sive amount of data. Take the Generative Pre-trained Trans-
former 3 (GPT-3) (Brown et al. 2020) as an example, which
is one of the largest language models ever trained to date.
GPT-3 has 175 billion parameters and is trained on a dataset
consisting of 499 Billion tokens. The estimated training cost
is about 4.6 Million US dollars even with the lowest priced
GPU cloud on the market in 20201. Such a large-scale lan-
guage model is shown to be effective when applied to sev-
eral downstream language-related tasks in the same domain
(source). However, having invested so much to obtain a top-
notch model, one interesting question to ask is: Can we reuse
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1See https://lambdalabs.com/blog/demystifying-gpt-3

Figure 1: Visual illustration of data scale (bottom to top:
small to large) and number (#) of trainable parameters
(left to right: small to large) in different machine learning
paradigms. We note that the visualization does not reflect
the actual relative differences due to excessively varying or-
ders. A foundation model like GPT-3 has 175 billion train-
able parameters and 499 billion tokens as training data. The
trainable parameters in model reprogramming can be as few
as the size of the data input (e.g., the number of image pixels
can be in the order of thousands or fewer), and model repro-
gramming is particularly suited to small-scale data regime.
In model reprogramming, the visualization does not take
into account the pre-trained source model because it is kept
intact and unchanged. The dashed box in transfer learning
means variations in the number of model parameters used
for fine-tuning, ranging from only training the last dense
layer (linear head) to fine-tuning all parameters. The num-
ber of training epochs may also vary for each paradigm.

this valuable asset for machine learning in another domain
(target), especially in the resource-limited setting when at
least one of the following scenarios is concerned: (i) lack
of high-quality pre-trained models in the target domain for
finetuning, (ii) scarcity of the available data in the target do-
main, and (iii) constraints on the model development and
training cost (e.g. limited memory or training epochs).

To address these challenges, this paper provides an
overview of the model reprogramming framework towards
resource-efficient cross-domain machine learning. The gen-
eral rationale behind model reprogramming lies in repurpos-
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Symbol Meaning

S / T source/target domain
XS / XT the space of source/target data samples
YS / YT the space of source/target data labels
DS ⊆ XS × YS / DT ⊆ XT × YT source/target data distribution
(x, y) ∼ D data sample x and one-hot coded label y drawn from D
KS/KT number of source/target labels
fS : Rd 7→ [0, 1]K pre-trained K-way source classification model
η : RK 7→ [0, 1]K softmax function in neural network, and

∑K
k=1[η(·)]k = 1

z(·) ∈ RK logit (pre-softmax) representation, and f(x) = η(z(x))
ℓ(x, y) ≜ ∥f(x)− y∥2 risk function of (x, y) based on classifier f
ED[ℓ(x, y)] ≜ E(x,y)∼D[ℓ(x, y)] population risk based on classifier f
δ additive input transformation on target data
θ / ω parameters of input transformation / output mapping layers
M ∈ {0, 1}d binary mask indicating which input dimension is trainable
h : YS 7→ YT source-target label mapping function

Table 1: Mathematical notation

ing and reusing a well-developed pre-trained model from a
source domain to solve new tasks in a target domain without
model finetuning (i.e., model parameters are frozen). Specif-
ically, model reprogramming introduces an input transfor-
mation layer and an output mapping layer to the pre-trained
source model to empower cross-domain machine learning.
Model reprogramming is favorable to the resource-limited
setting because it (i) enables the reuse of pre-trained mod-
els from data-rich and well-studied domains (e.g., vision,
language, and speech); (ii) attains data efficiency by only
training the added input transformation and output mapping
layers; and (iii) reuses available models and spares model
development from scratch. The underlying working mecha-
nism of model reprogramming in terms of the how and the
why will be explained in detail throughout this paper.

As a visual illustration, Figure 1 compares the data scale
and the number of trainable parameters for different machine
learning paradigms, including model reprogramming, trans-
fer learning, task-specific learning (training from scratch),
and foundation model (pre-training and fine-tuning). Data
scale refers to the training data size. The number of train-
able parameters relates to the model development cost, and
models with more training parameters usually have higher
training complexity. We elucidate each paradigm as follows.

• Model reprogramming only requires training the in-
serted input transformation and output mapping layers
while keeping the source pre-trained model intact (see
Figure 2). Notably, the number of trainable parameters
does not include the source pre-trained model because its
parameters are unchanged during model reprogramming.
Therefore, it is particularly applicable to the small-data
regime and features relatively low training complexity.

• Transfer learning is a common practice for in-domain
knowledge transfer (e.g., pre-trained on an English-based
task and finetuned for other English-related natural lan-
guage processing tasks). The general principle is that
some features learned from a source domain can be useful

for machine learning in a target domain via model fine-
tuning. Transfer learning starts from a pre-trained source
model and then finetunes a subset of the model parameters
using the target-domain data. The number of trainable pa-
rameters can vary based on the size of the selected subset
for finetuning. If all model parameters are used for fine-
tuning, the number of trainable parameters is the same as
that of training from scratch, though the training epochs of
transfer learning may be fewer. If only the last dense layer
(i.e., a linear head) in the neural network is randomly ini-
tialized and made trainable, then the number of trainable
parameters can be comparable to that of model reprogram-
ming. The dashed box in Figure 1 indicates the variation in
the size of trainable parameters for transfer learning. One
notable limitation of transfer learning is that in some target
domains, there may lack of adequate pre-trained models
from similar domains for effective finetuning.

• Task-specific learning refers to training the parameters
of a machine learning model by minimizing a task-specific
loss (e.g., cross entropy classification loss on a given task).
The model parameters are often randomly initialized and
trained from scratch. In the small-scale data regime, train-
ing from scratch with large models usually yields unsatis-
factory performance even when data augmentation is used.

• Foundation model (Bommasani et al. 2021) features
task-agnostic pre-training (often on a large-scale dataset)
and efficient finetuning to downstream tasks. It is becom-
ing a new trend in machine learning research due to its
capability to learn general and discriminative represen-
tations of the considered data modality. The training of
foundation model often follows the methodology of self-
supervised learning, such as contrastive learning with self-
generated positive and negative pairs, or masked token
prediction. See (Jaiswal et al. 2021) for more details. The
current practice of training foundation models still re-
quires a massive amount of data for pre-training and a gi-
gantic model for learning general-purpose representations,
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such as the GPT-3 model (Brown et al. 2020).

It is worth noting that the origin of model reprogram-
ming can be traced back to the adversarial reprogram-
ming method proposed in (Elsayed, Goodfellow, and Sohl-
Dickstein 2019). The authors in (Elsayed, Goodfellow, and
Sohl-Dickstein 2019) demonstrate that ImageNet-1K image
classifiers can be reprogrammed for classifying CIFAR-10
and MNIST images, as well as counting squares in an image,
with mediocre accuracy. It is originally cast as an adversarial
machine learning technique due to the implication that an at-
tacker can leverage model reprogramming to repurpose the
function of a pre-trained model without notice of the model
provider, therefore causing ethical concerns or negative im-
pacts. Beyond the adversarial purpose, the subsequent works
such as (Tsai, Chen, and Ho 2020; Vinod, Chen, and Das
2023; Yang, Tsai, and Chen 2021) show that model repro-
gramming can be used as a resource-efficient cross-domain
machine learning tool in a variety of problem domains and
data modalities.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the general framework of model repro-
gramming and summarizes existing works and use cases.
Section 3 provides theoretical explanations on the success
of model reprogramming. Finally, Section 4 discusses some
important open-ended research questions and opportunities
for model reprogramming. For clarity, Table 1 presents the
main mathematical notations used in this paper.

2 Model Reprogramming Framework
In this section, we start by introducing a generic framework
and algorithmic procedure for model reprogramming (Sec-
tion 2.1). Then, we highlight some use cases of model repro-
gramming in current studies (Section 2.2).

2.1 Methodology of Model Reprogramming
Figure 1 shows a generic framework of model reprogram-
ming and some examples of cross-domain reprogramming in
the literature. In general, two new modules, an input trans-
formation layer and an output mapping layer, are added to
a frozen pre-trained source model to enable reprogramming.
We will elucidate how these two layers are realized and im-
plemented in the following paragraphs.

For ease of illustration, we focus on the setting of repro-
gramming a pre-trained classifier fS(·) from a source do-
main to solve a classification task in a target domain. The
notation of the model parameters associated with fS(·) is
omitted because these parameters are fixed and unchanged
during reprogramming. Without loss of generality, we as-
sume fS(·) takes a vectorized input of dimension dS , which
includes continuous data domains (e.g., image pixels, audio
signals, numeric tabular features, etc) and discrete tokenized
data domains (e.g., words, image patches, etc). The output of
fS(·) ∈ [0, 1]KS is a KS -dimensional vector of class predic-
tion scores over KS source classes.

We also note that the framework of model reprogramming
makes no constraints on the source and target domains (e.g.,
domain similarity, knowledge transfer, etc), as long as their
data formats are consistent. For instance, (Neekhara et al.

Figure 2: Illustration of the model reprogramming frame-
work (top) and some examples of cross-domain machine
learning via model reprogramming (bottom). Model re-
programming enables cross-domain machine learning by
adding two modules, an input transformation layer (blue
box) and an output mapping layer (green box), to a pre-
trained model selected from a source domain. When re-
programmed to solve target-domain tasks, the pre-trained
source model is frozen and its model parameters are un-
changed. Examples of cross-domain machine learning in-
clude reprogramming speech models for time-series (Yang,
Tsai, and Chen 2021), language models for molecules
(Vinod, Chen, and Das 2023), and general imaging models
for bio-medical measurements (Tsai, Chen, and Ho 2020).

2022) shows an example of cross-domain reprogramming
on an image classifier for sentence sentiment classification
by mapping word tokens to image patches. Given consistent
data formats, the only assumptions imposed by reprogram-
ming are that (i) the target data dimension is no greater than
the source data dimension (i.e., dT ≤ dS ); and (ii) the num-
ber of target class labels is no greater than that of source
class labels (i.e., KT ≤ KS ). These two assumptions are
based on the rationale that model reprogramming is appli-
cable to the setting of reprogramming a pre-trained model
from a more complex source domain to a simpler target do-
main with a lower input dimension and a smaller number of
class labels, but the reverse setting may not be applicable.

Input transformation layer. Given a target-domain data
sample xT ∈ RdT , the input transformation layer trans-
forms xT into another data sample x̃T ∈ RdS , which fits
the input dimension of the pre-trained source model fS .
The input transformation function is parameterized with a
set of trainable parameters θ, which is formally defined as
x̃T = Input-Transform(xT |θ). For continuous data, the
transformation function can be as simple as a universal train-
able additive input perturbation (i.e., a bias term) δ with a
binary mask M ∈ {0, 1}dS indicating which dimension is
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trainable. Putting in mathematical expressions, we have

x̃T = Zero-Padding(xT ) +M ⊙ δ︸ ︷︷ ︸
:=θ

, (1)

where the operation Zero-Padding(·) ∈ RdS means aug-
menting the input with extra dimensions of zero values, and
the notation ⊙ denotes the Hadamard (element-wise) vector
product. The number of ones in M indicates the location and
the effective number of trainable parameters. For instance, in
(Elsayed, Goodfellow, and Sohl-Dickstein 2019; Tsai, Chen,
and Ho 2020), a target sample xT is placed at the center of
its zero-padded version x̃T , where the location of xT is in-
dicated by the masked index set {i : Mi = 0} and hence
by (1) the masked set is not trainable. The remaining zero-
padded dimensions, indicated by {i : Mi = 1}, are made
trainable. We also note that if the data input range of fS is
bounded, for example within [−1, 1]dS , one can apply the
change-of-variable technique to satisfy the constraint, such
as making θ = tanh(M ⊙ W ), where W ∈ RdS denotes
unconstrained optimization variables and tanh denotes the
hyperbolic tangent function. The input transformation func-
tion also allows placing multiple replicates of a target sam-
ple in the transformed data sample, such as in (Yang, Tsai,
and Chen 2021).

For discrete data, the input transformation function can be
a set of inserted trainable tokens at the data input in (Ham-
bardzumyan, Khachatrian, and May 2021), or a trainable to-
ken embedding mapping function VT ≈ VSθ via dictionary
learning in (Vinod, Chen, and Das 2023), where the rows of
VS/VT are the embeddings of the source/target tokens.

Output mapping layer. There are two major approaches
to realizing the output mapping layer. The first approach
is source-target label mapping, by specifying a many-to-
one surjective mapping h : YS 7→ YT from source
class labels to target class labels. Take the example of re-
programming an ImageNet pre-trained source model for
autism spectrum disorder (ASD) classification based on
brain-region correlation graphs, the source label subset
{Tench,Goldfish,Hammerhead} can be assigned to the tar-
get label {ASD}, and another non-overlapping source label
subset can be assigned to the other target label {non-ASD}.
The prediction probability of a target class t ∈ YT on an
input-transformed data sample x̃T in (1) is the average pre-
diction probability of the source labels specified by h and
fS . Mathematically, let B ⊂ YS denote the subset of source
labels mapping to the target label t ∈ YT . Then, the class
prediction of t is the aggregated prediction based on fS over
the assigned source labels, which is defined as

Prob(t|fS(x̃T )) =
1

|B|
∑
s∈B

Prob(s|fS(x̃T )) (2)

where |B| denotes the number of labels in B. In (Tsai, Chen,
and Ho 2020), the authors show that frequency-based greedy
label mapping based on original responses before training
can improve reprogramming performance when compared
with random label mapping. (Chen et al. 2023b) further
shows that iterative greedy mapping gives better results.

Moreover, assigning more (but non-overlapping) source la-
bels to a target label can also improve the final performance.
Instead of using pre-specified label mapping, one can also
learn a label mapping function h by treating it as an optimal
label assignment problem.

The second approach is adding a trainable dense layer
(linear head) with a set of trainable parameters ω between
the source model’s output of dimension KS (or the model’s
penultimate output) and the target model’s output of dimen-
sion KT , such as in (Kloberdanz, Tian, and Le 2021; Ham-
bardzumyan, Khachatrian, and May 2021; Arif, Gittens, and
Chen 2023).

Model training and evaluation. After introducing
the two aforementioned modules, input transforma-
tion and output mapping layers, to a pre-trained source
model fS (see Figure 2), the target-domain training set
{x(i)

T , y
(i)
T }ni=1 is used to evaluate the associated task loss

Loss(ŷT , yT |θ, ω) (e.g., the cross entropy loss), where
ŷT = Output-Mapping(fS(Input-Transform(xT |θ))|ω)
is the reprogrammed model prediction on the target-domain
data sample xT , and yT is the groundtruth target class label.
The reprogramming parameters θ and ω (ω can be omitted if
a source-target label mapping h is used instead) are trained
and updated based on Loss(ŷT , yT |θ, ω) and {x(i)

T , y
(i)
T }ni=1

in an end-to-end manner using an optimization algorithm
such as a gradient-based method. In the restricted model
access setting when the pre-trained source model fS is a
black-box function that only provides model outputs at
queried data inputs and back-propagation through fS is
infeasible, such as a machine learning based application
programming interface (API) or proprietary software,
black-box model reprogramming can be realized by using
gradient-free methods (e.g., zeroth-order optimization (Liu
et al. 2020)) for training (Tsai, Chen, and Ho 2020). Finally,
the optimized parameters θ∗ and ω∗ are used together with
the pre-trained source model fS for evaluation.

Algorithmic procedure. Below we describe the generic
algorithmic procedure for model reprogramming.

1. Initialization: Load pre-trained source model fS(·) and
target domain training set {x(i)

T , y
(i)
T }ni=1; randomly ini-

tialize θ and ω

2. Input transformation: Obtain transformed input data
x̃T = Input-Transform(xT |θ), where θ is the set of
trainable parameters for input transformation

3. Output mapping: Obtain the prediction on the target task
via ŷT = Output-Mapping(fS(x̃T )|ω), where ω is the
set of trainable parameters for output mapping2

4. Model training: Optimize θ and ω by evaluating a task-

specific loss Loss(ŷT , yT |θ, ω) on {x(i)
T , y

(i)
T }ni=1

5. Outcome: Reprogrammed model from fS(·) with opti-
mized trainable parameters θ∗ and ω∗ such that ŷT =
Output-Mapping(fS(Input-Transform(xT |θ∗))|ω∗)

2In output mapping, trainable parameters may not be necessary
if one uses a specified source-target label mapping function.
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Reference Source domain Source model Target domain Highlights

(Elsayed, Goodfellow, and Sohl-Dickstein 2019) General image ImageNet CIFAR-10/MNIST/counting first work; mediocre accuracy
(Neekhara et al. 2019) Text LSTM/CNN Character/Word level tasks context-based vocabulary mapping
(Tsai, Chen, and Ho 2020) General image ImageNet/API Bio-medical measurement/image black-box reprogramming; new SOTA
(Vinod, Chen, and Das 2023) Text BERT Biochemical sequence vocabulary embedding mapping
(Kloberdanz, Tian, and Le 2021) General image ImageNet Caltech 101/256 (reduced) trainable input & output layers
(Lee, Suh, and Ramchandran 2020; Dinh et al. 2022) Image/Spectrogram GAN Image/Spectrogram reprogram GAN to conditional GAN
(Randazzo et al. 2021) MNIST/lizard pattern Neural CA MNIST/Lizard pattern stable out-of-training configurations
(Hambardzumyan, Khachatrian, and May 2021) Text BERT & variants GLUE/SuperGLUE trainable tokens and data efficiency
(Yang, Tsai, and Chen 2021) Speech Attention-RNN Univariate time series new/same SOTA on 19/30 datasets
(Yen et al. 2023) Speech Attention-RNN Low-resource speech new SOTA; reprogramming+finetuning
(Chen, Fan, and Ye 2021) General image ImageNet Financial transaction overlay image and transaction feature
(Neekhara et al. 2022) General image ViT/ImageNet Sequence text sentences and DNA sequences
(Jing et al. 2023) Graph GNN Graph-based tasks 3D object recognition & action recognition
(Melnyk et al. 2023) Text BERT Protein sequence antibody sequence infilling with diversity

Table 2: Summary of model reprogramming use cases. LSTM means long short-term memory, CNN/RNN means convolution-
al/recurrent neural network, API means application programming interface, and SOTA means state of the art. BERT stands
for bidirectional encoder representations from transformers. GLUE stands for the general language understanding evaluation
benchmark. GAN stands for generative adversarial network. CA stands for cellular automata. ViT stands for vision transformer.
GNN stands for graph neural network. The table is actively updated at https://github.com/IBM/model-reprogramming.

2.2 Model Reprogramming Use Cases
Model reprogramming has shown success and improved
performance for resource-efficient cross-domain machine
learning on a wide range of data domains, pre-trained source
models, and machine learning tasks. Table 2 summarizes
some studies on model reprogramming. Without loss of gen-
erality, in what follows we highlight two representative use
cases for each data format (continuous or discrete) featuring
improved task performance and resource efficiency.

Continuous Data Domain
• Black-box adversarial reprogramming (BAR) (Tsai, Chen,

and Ho 2020): BAR extends the original adversarial re-
programming framework (Elsayed, Goodfellow, and Sohl-
Dickstein 2019) to enable reprogramming black-box mod-
els and demonstrates both data and cost efficiency in low-
resource bio-medical applications. For example, the au-
thors reprogram ImageNet pre-trained deep neural net-
work classifiers to classify autism spectrum disorder
(ASD) based on brain-region correlation graphs and report
new state-of-the-art accuracy on this challenging data-
limited task. Moreover, they also demonstrate that differ-
ent commercial prediction APIs can be reprogrammed at
an affordable cost to solve different tasks without know-
ing the details of the underlying machine learning model.
With the cost of about 20 US dollars, two Clarifai.com
APIs (Not Safe For Work and Moderation) and a traffic
sign classification model trained by the Microsoft Custom
Vision API were reprogrammed for several bio-medical
classification tasks with good accuracy.

• Voice2Series (V2S) (Yang, Tsai, and Chen 2021): V2S re-
programs a speech model (acoustic signal as input and
speech command prediction as output) for univariate time-
series classification. Time series data include but are not
limited to medical diagnosis (e.g., physiological signals
such as electrocardiogram (ECG)), finance/weather fore-
casting, and industrial measurements (e.g., sensors and In-
ternet of Things (IoT)). In general, time-series data are
small-scale because they are not as abundant and easily
accessible as speech data. Evaluated on UCR time series

classification datasets (Dau et al. 2019), V2S outperforms
or ties with the best baseline on 19 out of 30 datasets.

Discrete Data Domain
• Representation reprogramming via dictionary learning

(R2DL) (Vinod, Chen, and Das 2023): Let VS ∈ RNS×d

and VT ∈ RNT ×d denote the vocabulary matrix of
the source-domain and target-domain tokens, respectively,
where the rows of VS and VT represent their token em-
bedding vectors with the same dimension d while their
token numbers NS and NT can be different. R2DL trans-
forms the embedding in VS obtained from a pre-trained
language model to represent the embedding in VT by find-
ing the parameters θ ∈ Rd×d such that VT ≈ VSθ, where
a dictionary learning algorithm such as the K-SVD solver
(Aharon, Elad, and Bruckstein 2006) is used to obtain a
column-wise sparse solution θ. Then θ is further updated
with the output mapping layer and a task-specific loss.
In the reduced-data setting, the authors show improved
performance over training from scratch when reprogram-
ming pre-trained English language models (e.g., BERT
and LSTM) for biochemical sequence classification in-
cluding toxicity and antimicrobial peptide prediction. The
same idea has been extended to protein sequence genera-
tion tasks (Melnyk et al. 2023).

• Word-level adversarial reprogramming (WARP) (Ham-
bardzumyan, Khachatrian, and May 2021): WARP inserts
trainable prompt tokens to a pre-trained masked language
model and uses a trainable dense layer for the output map-
ping. On the GLUE benchmark, WARP attains a compara-
ble performance to modern language models while having
a much smaller number of trainable parameters. The au-
thors also demonstrate the data efficiency of WARP in the
few-shot setting.

3 Theoretical Characterization of Model
Reprogramming

This section summarizes the theoretical characterization and
interpretation of the working mechanism of model repro-
gramming based on current studies.
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3.1 Error Analysis in Representation Alignment
Using the notation in Table 1, let the source model fS
be a pre-trained K-way neural network classifier fS(·) =
η(zS(·)) with a softmax layer η(·) as the model output. Let
ℓ(x, y) ≜ ∥f(x) − y∥2 denote the root mean squared error
and let ED[ℓ(x, y)] ≜ E(x,y)∼D[ℓ(x, y)] denote its popula-
tion risk on (x, y) ∼ D. Under some mild assumptions such
as one-to-one label mapping, (Yang, Tsai, and Chen 2021)
proves that the risk of the target task (target risk) via model
reprogramming is upper bounded by the summation of two
terms, the risk of the source model on the source task (source
risk) and the representation alignment error measuring the
distributional difference between the latent representations
of the source and the reprogrammed target data based on the
same source model fS . The theorem is stated as follows.

Theorem 1: Let θ∗ be the learned input transformation
parameters from (1) and assume one-to-one label mapping.
The population risk for the target task via reprogramming a
K-way source neural network classifier fS(·) = η(zS(·)),
denoted by EDT [ℓT (x̃t(θ

∗), yt)], is upper bounded by

EDT [ℓT (x̃t(θ
∗), yt)]︸ ︷︷ ︸

target risk

≤ ϵS︸︷︷︸
source risk

+ 2
√
K · W1(µ(zS(x̃t(θ

∗)), µ(zS(xs)))xt∼DT , xs∼DS︸ ︷︷ ︸
representation alignment loss via reprogramming

,

where x̃t(θ
∗) is an input-transformed target data sample de-

fined in (1) and W1(µa, µb) denotes the Wasserstein-1 dis-
tance between two probability distributions µa and µb.

The theorem provides several insights into characterizing
the success of model reprogramming, suggesting that the tar-
get risk via reprogramming can be improved (lower is bet-
ter) when (i) a better source model (in terms of lower source
risk) is used, and (ii) the source and reprogrammed target
data representations based on fS are better aligned (in terms
of smaller Wasserstein distance). This analysis also explains
that cross-domain model reprogramming is feasible as long
as the target representations can be aligned with the source
representations after reprogramming. In other words, model
reprogramming can be interpreted as reusing a pre-trained
source model as an efficient feature extractor to learn rep-
resentation alignment. Some numerical evidence is given in
(Yang, Tsai, and Chen 2021) to show that the Wasserstein
distance indeed decreases during model reprogramming.

3.2 Other Interpretations
In addition to representation alignment, we summarize dif-
ferent interpretations and analyses of model reprogramming
based on existing works. Using first-order approximation,
(Zheng et al. 2023) shows that the optimal loss decrement
in reprogramming is equivalent to the ℓ1-norm of the av-
erage input gradient. Consequently, model reprogramming
is more successful when input gradients of target data are
more aligned, and when inputs have higher dimensionality.
(Hambardzumyan, Khachatrian, and May 2021) motivates
the data efficiency and fast adaptivity of model reprogram-
ming in language models from the perspective of learning
optimal trainable input prompts for efficient adaptation to

downstream tasks. Notably, when the source and target do-
mains are both in computer vision, model reprogramming
essentially reduces to visual prompting (Bahng et al. 2022).

4 Open-ended Research Questions, Ongoing
Efforts, and Opportunities

In this section, we discuss several open-ended research ques-
tions and opportunities for model reprogramming.

Model Reprogramming beyond Supervision. Most of
the existing works on model reprogramming focus on the
supervised setting, where all data samples in target domains
are associated with data labels for training. With the ad-
vance of semi-supervised (a mixture of labeled and un-
labeled data samples), unsupervised (unlabeled data sam-
ples only), and self-supervised (self-generated pseudo la-
bels) machine learning methods, it is essential to understand
how unlabeled data and supervision-free training (possibly
with data augmentation) improve model reprogramming.

Reprogramming Foundation Models. The emergence of
foundation models (Bommasani et al. 2021), including large
language models and generative AI applications, has led
to a critical paradigm shift in the trend of machine learn-
ing research from designing task-specific and modality-
dependent deep learning models to developing task-agnostic
and modality-independent general-purpose models. Founda-
tion models feature supervision-free pre-training and effi-
cient finetuning to different downstream tasks. However, not
every domain and every researcher has the luxury of access-
ing foundation models due to resource limitations. Demon-
strating model reprogramming can serve as an affordable so-
lution to repurposing and reusing a foundation model with
resource efficiency can further accelerate AI-assisted scien-
tific discovery and democratize machine learning research,
as explored in (Xu et al. 2023).

Reprogramming for Improved Model Properties. En-
suring and instilling trustworthiness in machine learning
based technology is the new norm for building a healthy
and sustainable ecosystem between technology, end users,
and our society. Studying how model reprogramming can
be used as an efficient calibration tool to improve differ-
ent trustworthiness properties while having minimal impact
on the original utility is an important research direction.
The model properties include fairness (Zhang et al. 2022),
robustness (Chen et al. 2023a), explainability, privacy (Li
et al. 2023), uncertainly quantification (Tang, Chen, and Ho
2022), and energy efficiency (Sun et al. 2023), to name few.

Joint Model Reprogramming and Fine-tuning. Theo-
retically, joint model reprogramming and fine-tuning on the
right subset of the pre-trained model’s parameters should
perform no worse than standalone model reprogramming
or transfer learning. However, in the resource-limited set-
ting such joint training on a large-scale pre-trained model
is challenging because identifying which model parameters
to finetune is highly non-trivial. Studying how and when
joint model reprogramming and fine-tuning can outperform
standalone model reprogramming and transfer learning can
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lead to more resource-efficient machine learning. Notably,
when applied to the task of low-resource speech commands
recognition (Yen et al. 2023) and music genre classification
(Hung et al. 2023), such joint training with careful fine-
tuning is shown to deliver improved performance. More-
over, although originally not cast as a model reprogramming
method, the proposal of universal compute engine (Lu et al.
2021) that reuses a pre-trained transformer for attaining non-
trivial performance on a diverse set of tasks, by joint fine-
tuning the input embedding, the layer-norm parameters, and
training the output mapping layer, suggests great potential
for resource-efficient machine learning.

Implications on Machine Learning Systems with Hetero-
geneous Computing. The advantage of “no model fine-
tuning” and resource efficiency in model reprogramming
can be favorable to machine learning systems featuring het-
erogeneous computation and memory constraints, such as
edge computing, cloud computing, and federated learning.
For energy and memory efficiency, the source model (which
is usually large) can be intact and stored on the server side,
while the input transformation and output mapping layers
can be implemented at the edge device for reprogramming.
During training, the communication cost between the server
and an edge device is expected to be greatly reduced because
such a paradigm does not require fine-tuning the model pa-
rameters at the server. It also spares the need for the edge
device to download and store a local copy of the model
from the server. (Arif, Gittens, and Chen 2023) improves the
privacy-utility tradeoff in differentially private training with
model reprogramming over standard transfer learning meth-
ods in both centralized and federated learning scenarios.
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