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Abstract

This paper introduces the design, development, and deploy-
ment of a Virtual Driving Instructor (VDI) for enhanced
driver education. The VDI provides personalized, real-time
feedback to students in a driving simulator, addressing some
of the limitations of traditional driver instruction. Employ-
ing a hybrid AI system, the VDI combines rule-based agents,
learning-based agents, knowledge graphs, and Bayesian net-
works to assess and monitor student performance in a com-
prehensive manner. Implemented in multiple simulators at a
driving school in Norway, the system aims to leverage AI and
driving simulation to improve both the learning experience
and the efficiency of instruction. Initial feedback from stu-
dents has been largely positive, highlighting the effectiveness
of this integration while also pointing to areas for further im-
provement. This work marks a significant stride in infusing
technology into driver education, offering a scalable and effi-
cient approach to instruction.

Introduction
In an increasingly digital world, traditional educational
models, including driver education, are rapidly evolving
(Gabriel et al. 2022). Simulators have long been a part of
driver training, and with the recent advances in artificial in-
telligence (AI), there is a significant potential to enhance
and expand this approach. This paper discusses the design,
implementation, and deployment of a Virtual Driving In-
structor (VDI) that employs a multi-agent system, knowl-
edge graphs, and Bayesian networks to assess student per-
formance in a driving simulator, providing immediate, per-
sonalized feedback. To the best of our knowledge, there are
no other AI-based driving instructors that provide such com-
prehensive feedback.

In conventional driving training, the full attention of an in-
structor is required for each student, limiting the scalability
of the instruction process. However, with our VDI, we aim
to transform the landscape of driver education by enhancing
scalability and standardization while reducing cost.

Through handling routine instructions and offering imme-
diate feedback, the VDI facilitates an environment where
human instructors can monitor multiple students in paral-
lel. This not only increases the efficiency of the education
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process but also significantly optimizes the role of human
instructors, enhancing their capacity to manage and super-
vise more students concurrently. From our trials, we found
that a 1:3 teacher-student ratio was feasible, while a 1:5 ratio
could overwhelm the instructors. This suggests that further
refinements to the user interface and pedagogical practices
may enable more efficient multi-student instruction.

The use of VDI also introduces standardization to driver
education, ensuring all students learn from a consistent cur-
riculum regardless of their location. Traditional in-person
training is often influenced by local traffic conditions, lead-
ing to variability in the learning experience. Our system mit-
igates this problem by offering standardized simulated traffic
scenarios.

Moreover, employing a VDI could drastically cut down
the cost of driver education. Currently, the human instruc-
tor’s fee accounts for a significant part of a driving lesson’s
cost. By partially substituting human instruction with AI-
based instruction, we estimate the cost could be reduced sig-
nificantly, which could be particularly beneficial in countries
like Norway where driver education maintains a high stan-
dard but also comes with a substantial cost.

Lastly, the VDI provides a safe platform for training
drivers for scenarios that are difficult to replicate in real-
world training, such as certain accident situations. This can
significantly enhance the student’s preparedness for unex-
pected real-world situations.

In this paper, we delve into the architecture of the VDI,
encompassing its design, implementation, and deployment
within the context of a driving school environment. By
combining AI and driving simulation, we aim to enhance
the learning experience for students, improve the efficiency
of instructors, and ultimately, foster safer, more competent
drivers.

Related Work
Various approaches have been adopted in the development of
virtual driving training and analysis systems. A VDI that em-
ploys a flexible multi-agent architecture, akin to our work,
serves as an exemplary approach in the domain of intelligent
driving education systems (Weevers et al. 2003). The system
adeptly evaluates real-time student driving behaviors, mak-
ing necessary adjustments to the simulated environment.
The VDI, designed with modifiable architecture, accommo-
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dates numerous ’awareness’ types, each represented by dis-
tinct agents. This enables adaptive, context-aware feedback.
Their work underscores the efficacy of multi-agent systems
in driving education and the potential for high-context feed-
back.

Analytical tools, such as DriveLab (Heffelaar et al. 2014),
which incorporates a behavioral analysis tool, a 3D eye
tracker, and a mid-fidelity simulator, offer comprehensive
parameters, from distraction detection to cognitive workload
assessment. Nevertheless, it is designed for analysis rather
than instruction.

The translation of research projects into practical,
simulator-based training systems has been documented be-
fore. An example of this is a truck simulator’s deployment,
which underlines the value of a concurrent engineering ap-
proach that involves researchers, simulation experts, and
end-users (Romoser and Hirsch 2012). This process, which
evolved over a span of more than four years, comprised six
iterative implementation cycles, each cycle building upon
the last based on continuous feedback. This case study il-
luminates the critical roles and interactions among diverse
stakeholders throughout the design, testing, production, and
delivery stages.

Systems like CarCOACH (Arroyo, Sullivan, and Selker
2006) strive to enhance driving habits through real-time
feedback derived from vehicle sensor data. The study found
that the strategic scheduling of feedback, particularly neg-
ative feedback, can mitigate detrimental effects on perfor-
mance and alleviate frustration.

Another study (Hirsch and Bellavance 2017) highlights
the impact of driving simulator–based training (DSBT) on
real-world driving. They found that learners who underwent
DSBT recorded fewer infractions, and maintained similar
crash rates compared to those without DSBT exposure. This
indicates that DSBT can effectively improve road safety
without fostering overconfidence, adding weight to the po-
tential value of simulated training in driver education pro-
grams.

Meanwhile, BeAware (Baumgartner et al. 2014), a soft-
ware framework designed for managing complex environ-
ments such as road traffic, integrates perception, compre-
hension, and projection layers. These layers collaboratively
gather, interpret, and anticipate situational data, reducing
information overload and aiding operators in critical situ-
ations. Real-world traffic scenarios and data have demon-
strated BeAware’s effectiveness.

Driving Simulation and Virtual Instruction: A
Unified System

The core of our system revolves around a hybrid AI sys-
tem called the Virtual Driving Instructor (VDI) (Sandberg
et al. 2020; Rehm, Reshodko, and Gundersen 2023). This
application interfaces with high-fidelity driving simulators
(Allen et al. 2007) to assess student performance and pro-
vide real-time, personalized feedback. The system’s flexi-
bility allows the simulators to be stationed at various loca-
tions while maintaining central control at a teacher station.
This structure enhances the learning experience by allowing
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Figure 1: Overview of the system containing the driving stu-
dent and the instructor in red, all the simulator components
in blue, shared data in green, and the VDI components in
orange

multiple students to receive personalized instruction simul-
taneously.

Figure 1 presents a holistic overview of the entire system.
At its core is the student, who is seated in the car and nav-
igating through a virtual reality environment. This environ-
ment is generated by the simulation engine, which leverages
the Unity gaming engine (Unity Technologies 2022) and a
traffic manager. The traffic manager orchestrates the move-
ments of other virtual road participants, such as cars, trucks,
and pedestrians (Lopez et al. 2018).

A camera positioned within the car captures the student’s
face, producing a real-time video stream. This video stream,
along with live data from the car and the traffic manager, is
transferred to the VDI via a shared memory system.

The multi-agent system within the VDI processes this
data and logs the derived insights in a knowledge graph
(Hogan et al. 2021). For example, the gaze estimation agent
(Rehm et al. 2021) within the VDI uses the video stream to
monitor the student’s eye movements, determining in real-
time which of the predefined gaze zones (Vora, Rangesh,
and Trivedi 2018) the student is currently looking at. These
gaze zones include areas such as the mirrors, blind spots,
speedometer, and the view forward through the windshield.

This information from the knowledge graph aids the tutor-
ing agent that provides immediate, personalized feedback to
the student. Moreover, it offers decision support to the hu-
man instructor, enabling them to oversee multiple students
simultaneously.

Upon the conclusion of a driving session, all data from
the knowledge graph is fed into the student model (Romoser
2011). This model keeps track of the student’s progression
and assesses the competency level of various skills across all
sessions.

Driving Simulator
The driving simulators, as shown in Figure 2, offer an im-
mersive experience built around actual vehicles. This en-
hances the authenticity of the learning process with steering
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Figure 2: High-fidelity traffic simulator developed at Way
AS. A real car is mounted on the motion platform in the
center. Surrounding the car is a projection screen wall with
six different view channels projected at the driver’s front.

wheels, pedals, and all the instruments of a real car. On the
center console, a screen is mounted showing the in-car dash-
board. This dashboard provides the student with information
about the lesson and textual feedback during and after the
lesson. This realistic environment contributes significantly
to the overall realism of the driving simulations. The VDI is
designed with generic interfaces, allowing integration with
various driving simulators. At present, it is compatible with
the immersive driving simulators depicted.

In preparation for every lesson, students are presented
with a briefing video on the in-car dashboard. This informa-
tional guide explains the expectations and key aspects of the
upcoming lesson, providing crucial pointers on appropriate
behavior for the anticipated driving scenarios. This method
not only prepares students effectively for their sessions but
also reduces the workload on driving instructors.

Virtual Driving Instructor
The VDI is a hybrid AI system developed to instruct and
provide feedback to a driving student operating in a traffic
simulator. The VDI comprehensively assesses the student’s
performance across a range of driving situations. By con-
stantly evaluating and responding to the student’s actions,
decisions, and adherence to road rules, it offers immediate,
contextually relevant feedback. The VDI incorporates two
key modules: the Real-time Assessment and Feedback Mod-
ule (RTAFM) and the student model. The RTAFM operates
during the driving session and includes the agent system, the
knowledge graph, the tutor, and the decision support compo-
nent (see Figure 1). Meanwhile, the student model activates
post-session, focusing on evaluating the student’s skill level,
learning progression, and delivering a summarized feedback
debrief.

Real-time Assessment and Feedback Module
(RTAFM): Central to the RTAFM is the knowledge
graph, which serves as a shared representation of the
environment and the VDI’s internal states. The knowledge
graph is built on a property graph model (Hogan et al. 2021)

that allows both nodes and relationships to be characterized
by attributes. The graph is divided into static and dynamic
nodes. The static part includes details like the layout of the
road network and road signs. In contrast, dynamic nodes are
responsible for real-time updates, tracking and reflecting
changes as they occur within the simulation environment.
They record various live time-series data, including but not
limited to, the vehicle’s position and speed, as well as in-
formation from the traffic manager. Further, dynamic nodes
encapsulate the reasoning results of the agents operating
within the RTAFM, providing a continuous appraisal of the
student’s driving performance.

Upon the conclusion of each driving session, the knowl-
edge graph is stored in a database. This persistently stored
data becomes instrumental for longitudinal assessments and
insights.

Building on the foundation of the knowledge graph, the
RTAFM employs a multi-agent system following the prin-
ciples of subsumption architecture (Brooks 1991). Over 70
agents are organized in a layered structure. The agents op-
erating in the lower layers are responsible for managing ba-
sic reactive behaviors. For example, the road network agent
constantly monitors the current positions of traffic partici-
pants from the time-series data supplied by the traffic man-
ager. This allows it to continually assess and determine the
specific lane segment that each traffic participant occupies.
Higher layers manage more complex tasks through the inte-
gration and interpretation of outputs from lower layers. For
instance, the overtake explainer agent uses information gath-
ered from various other agents like the lane change agent
and determines what mistakes the student made during an
overtake maneuver and also what they did well.

The agent system operates within a game loop-style ex-
ecution process, with some computationally heavy agents
running in parallel on their own threads. These agents inter-
act with and modify the knowledge graph, enabling effective
communication, coordination, and collaboration.

The RTAFM primarily utilizes rule-based agents to mon-
itor and evaluate student behavior. However, the gaze esti-
mation agent is machine learning-based, leveraging a con-
volutional neural network in a computer vision task to track
the student’s attention, such as focusing on mirrors or blind
spots.

Every driving situation encountered by the student is
logged within the knowledge graph by the respective agent,
including detailed performance metrics. If any driving mis-
takes occur, they are flagged as so-called alerts. For instance,
when a student exceeds the speed limit, the Speed Compli-
ance Agent registers an alert in the relevant driving situation
node.

Both the Tutoring Agent and the Decision Support Agent
actively monitor these driving situation nodes in the knowl-
edge graph. While they are depicted as separate components
in Figure 1 for clarity, they are integral parts of the agent
system.

The Decision Support Agent acts as an interface between
the system and human instructors, relaying real-time data
from the knowledge graph to the teacher panel. This pro-
vides human instructors with up-to-date insights into the stu-
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dent’s performance and areas of concern. As a result, in-
structors can offer specific, targeted feedback without the
need for continuous observation. This not only facilitates
a more efficient teaching process but also better equips in-
structors to address any questions or challenges the student
might present.

The Tutoring Agent adopts a multifaceted approach. En-
gaging with the student through a multimodal interface
(Philippe et al. 2020) which encompasses text, visuals,
and audio. The tutoring agent autonomously determines the
nature, timing, and modality of feedback. This decision-
making takes into account both the student’s cognitive load
and the importance of delivering timely, relevant feedback.

While the RTAFM focuses on real-time assessment and
feedback, understanding a student’s driving abilities in-
depth requires a more analytical approach, which is where
the student model comes into play.

Student Model: Leveraging the knowledge graphs stored
from each driving session, the student model provides a
comprehensive and evolving understanding of a student’s
driving abilities over time. This model is rooted in the princi-
ples of Bayesian networks (Pearl 1985) and uses the knowl-
edge graphs to update the student’s skill progression af-
ter each driving session. This student model harnesses a
Bayesian network to map out causal interconnections be-
tween different driving skills. These skills capture the in-
tricate causal relationships between distinct driving maneu-
vers, such as overtaking, lane change, and turn signaling.
Built in collaboration with professional driving instructors,
this skill network discerns both composite and atomic skills.
For instance, while the overtake skill is a composite skill,
encompassing other abilities like lane change and safe fol-
lowing distance, turn signaling is considered an atomic skill.

Currently, the student model comprises 165 distinct skills,
with each skill potentially having up to nine causal con-
nections with other skills. Bayesian networks, renowned for
their versatility across domains like artificial intelligence
and risk analysis, harness Bayes’ theorem to represent con-
ditional dependencies between variables. By adeptly han-
dling uncertainty and modeling intricate interrelations, they
predict outcomes—even with incomplete data—based on
observed evidence (Murphy 2012).

In our system, we work with two types of variables: di-
rectly measurable evidence graded from A-F, and latent skill
mastery variables with states—mastered, learning, or strug-
gling. We use Bayesian inference to predict skill mastery
based on performance evidence. The Conditional Probabil-
ity Distributions (CPDs) are derived from datasets generated
by knowledgeable driving instructors, rather than purely
heuristic approaches. To depict progress, we convert the pos-
terior beliefs of skill mastery into percentages.

In the absence of prior data, every student is initially per-
ceived as someone with average driving skills, sampled from
our student population. This means all skill mastery nodes
adopt the prior values based on the Parent-Children CPDs.
However, post the initial driving session, the system pos-
sesses some insights about the student via its posterior prob-
abilities. Leveraging this information, the student model as-
similates these posteriors as transferred knowledge, incor-

porating this knowledge into the subsequent inference step
after the next driving session.

Teacher Station and Teaching 1-to-N
The Teacher Station, acting as the central hub for the teach-
ers, changes traditional driving instruction by enabling an in-
structor to manage multiple students concurrently. This ca-
pability is made possible via a WebRTC-based web inter-
face, which allows the instructor to monitor each student’s
progress in real-time, irrespective of the physical location of
the simulators.

In this integrated system, individual Teacher Panel views
are generated locally at each simulator, offering detailed in-
sights into the ongoing driving performance and specific
mistakes of a student. These panel views effectively consti-
tute real-time evaluative snapshots of each student’s driving
session.

Simultaneously, these Teacher Panel views are streamed
to the teacher station, providing an assembled and compre-
hensive overview of all concurrent driving sessions. Thus,
the teacher station serves as a central dashboard, presenting
a real-time stream from each student’s simulator, further en-
riched with a timeline of their performance.

The streaming solution forms the essential communica-
tion bridge linking the teacher station, the driving simula-
tors, and a web server. This web server manages the list of
available simulators that the teacher station can access and
serves up the teacher view frontend, thereby enabling a com-
prehensive view of each student’s driving session.

Teacher Panel
The Teacher Panel serves as a vital tool for instructors moni-
toring their students’ driving sessions. It was collaboratively
designed with input from teachers, UI experts, and AI re-
searchers. A screenshot of the Teacher Panel during a driv-
ing session is shown in Figure 3. This intuitive interface of-
fers comprehensive, real-time insights into student perfor-
mance, neatly structured in a top-down format:
• VDI Performance Assessments: At the top, the panel

displays a performance timeline, reflecting the student’s
actions and reactions in different driving situations. This
includes performance scores for particular scenarios such
as recent intersections, along with a concise list of any
mistakes made during the last two minutes of driving.

• Traffic Signs: Next, a chronological display of the traffic
signs passed by the student helps instructors understand
the student’s navigation and response to road rules.

• Mirror and Signal Checks: The panel also visual-
izes whether the student correctly checked all necessary
mirrors and signaled appropriately before making lane
changes and when turning at intersections. Additionally,
it indicates if the student conducted regular rearview mir-
ror checks, which they are advised to do at least every 10
seconds. Icons linked with specific timeline events repre-
sent this information for easy comprehension.

• Speed and Pedal Usage Graphs: The final section of
the panel features graphs showing the student’s speed
and pedal usage over time, providing a quick overview of
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Figure 3: Teacher Panel screenshot featuring a chronological display of past driving events alongside real-time driving activity.
The concurrent video feed captures the student’s facial reactions (blurred in this image for privacy).

their control and responsiveness to varying driving con-
ditions.

• Live Visual Feeds: In addition to the timeline and graph-
ical data, the panel displays a live feed of the student
driving in the simulator environment, accompanied by a
real-time feed from a camera capturing the student’s face.
This visual context further enhances the instructor’s un-
derstanding of the student’s real-time reactions and over-
all performance.

The idea is that teachers focus on the top part of the
teacher panel which gives an overview of the performance
and mistakes in all situations. If teachers see some issue,
they can delve deeper into the details given by the rest of the
teacher panel and react accordingly, e.g. by talking directly
to the student. All the information, apart from the live visual
feeds, is sent by the VDI’s decision support agent.

To illustrate, if a student drives too close to the car ahead,
the student will hear an audio message from the tutoring
agent stating, ”You are too close to the vehicle in front.” Si-
multaneously, the teacher will receive a concise alert from
the decision support agent, displayed as ”Distance” in a
prominent alert box at the top of the timeline on their panel.
Due to their training, teachers can instantly comprehend the
implications of this brief message.

Overall, the combination of the Teacher Station and the
individual Teacher Panels provide a detailed yet easily di-
gestible snapshot of each student’s performance in the simu-
lator, allowing instructors to swiftly assess and guide their
learning process. This structured setup ultimately ensures

that the instructors can efficiently manage multiple students
simultaneously, thus revolutionizing the traditional driving
instruction process.

Mobile Application

Our dedicated smartphone application serves a dual purpose:
allowing students to book new lessons and providing access
to a detailed summary of their skill progression after each
session. The feedback is derived from the student model of
the VDI.

The user interface of the application is designed for clarity
and ease of use. In the main skill progress view, the appli-
cation displays an overview of the student’s current skills in
areas such as technical skills, traffic skills, environmentally
friendly driving, and risk perception. Figure 4 depicts this
high-level skill presentation within the mobile application.

For a more detailed analysis, students can explore individ-
ual skill categories. By selecting a specific high-level skill,
they can access insights about their performance in related
sub-tasks. Figure 5 provides an example of this, illustrat-
ing an evaluation of technical skills. This category includes
specific skills such as ’normal braking’, which assesses the
student’s ability to brake smoothly.

Overall, the mobile application bridges the gap between
the driving simulator sessions and the students. It not only
offers direct insights into their performance but also helps
them identify areas that require further practice and im-
provement.
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Figure 4: Snapshot of the top page from the Way smart-
phone application’s student model summary. It showcases
the four primary aggregate driving skills: Technical Skills,
Traffic Skills, Environmentally Friendly Driving, and Risk
Perception. Skill improvement since the last session is high-
lighted in green within the circular rings

Deployment
The deployment of our VDI along with the driving simula-
tors represents a significant step forward in driver education.

The driving simulators, equipped with the VDI, have been
installed in 5 simulators at 3 different locations of a commer-
cial driving school called Way AS in Norway. The VDI to-
gether with the live streaming solution has been deployed
since June 2021 in all of the simulators. The decentral-
ized nature of the simulators, combined with the centralized
teacher station, allows for an innovative approach to driver
training, making it possible for a single instructor to monitor
and guide multiple students simultaneously.

The system facilitates parallel training for up to five stu-
dents under the guidance of a single instructor, which dra-
matically decreases the cost of driving education, given the
significant portion of expenses dedicated to instruction.

Since its inception, the system has proven both scal-
able and effective, serving a substantial number of students.
Specifically, in 2022, 623 students underwent simulator-
based training for the Category B driving license, the stan-
dard car license in the European Economic Area (EEA).
The VDI’s real-time feedback and the detailed performance
timeline at the teacher station have both played pivotal roles
in enhancing the students’ learning experience and improv-
ing the efficiency of the teaching process.

User Feedback on the Virtual Driving
Instructor

Student Experience Survey Results
Between February and April 2023, we carried out a survey to
gather insights into the students’ experience with the simula-
tor and the VDI. Students took the survey immediately after

Figure 5: Excerpt showing the progression of four technical
skills. Percentages in circular rings represent mastery level.
The numbers below depict the delta in skill improvement
from the last session, also highlighted in green within the
circular rings. Note: This represents a subset; the full model
comprises many more technical skills.

each simulator session. The questionnaire had eight ques-
tions in total. We collected a total of 316 responses from 87
unique students. Students took multiple driving sessions and
contributed repeated feedback after each lesson.

As illustrated in Figure 6, the simulator provided a posi-
tive experience for a vast majority of students. Specifically,
74% of simulator sessions were rated as good or very good.
Regarding the VDI’s feedback, over half of the students
found it comprehensible, as shown in Figure 7. Less than
5% of students struggled to understand the feedback given.
When assessing the level of agreement with the VDI’s feed-
back (Figure 8), 55% of students partially agreed with the
given suggestions, while 32% fully agreed. Conversely, only
10% disagreed with the feedback received.

In-Depth Student Interviews
To delve deeper into the perceived effectiveness of the de-
ployed system, we supplemented our research with targeted
interviews involving a subset of students who had utilized
the simulators. Importantly, all interviewees had attended at
least six simulator lessons prior to the interview, ensuring
they had sufficient experience with the system.

We asked each participant the same 15 questions. It was
divided into questions regarding the experience in the simu-
lator with the VDI and experience with the app. The goal of
these discussions was to obtain first-hand feedback regard-
ing their experiences with the VDI and the simulator envi-
ronment. These interviewees were randomly selected from
the pool of 87 students who participated in the survey.

Out of ten students approached, we conducted full inter-
views with six. One of the ten was part of a pilot interview
which helped us refine our interview guide. The remaining
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Figure 6: How would you rate your last simulator session
experience on a scale of 1-5?

165 resp.    52.2%

125 resp.    39.6%

14 resp.    4.4%

12 resp.    3.8%

Yes

Par�ally

No

Do not know

Figure 7: Did you find the feedback you received from the
VDI during the simulator session to be understandable?

three students were either unavailable or declined to partici-
pate.

Please note that all interviews were conducted in Norwe-
gian for the comfort and convenience of the students. Any
specific responses referred to in this document are trans-
lations into English for the sake of clarity and accessibil-
ity. The same interview guide was consistently used across
all interviews to ensure a standardized and comparable ap-
proach.

The initial query focused on whether the feedback pro-
vided by the VDI was perceived as confusing or frustrat-
ing by the participants. Out of the six interviewees, five
found the feedback mostly helpful. For instance, the third
student estimated that the advice was accurate 80-90% of
the time as per his perception. The second student reported
that the feedback was instructive and didn’t cause any frus-
tration. However, she experienced motion sickness, limiting
her driving sessions to 30 minutes each.

Despite the generally positive responses, some disagree-
ment arose. On occasion, students anticipated negative feed-
back for their mistakes and were taken aback when none

102 resp.    32.3%

173 resp.    54.7%

30 resp.    9.5%

11 resp.    3.5%

Yes

Par�ally

No

Do not know

Figure 8: Did you agree with the feedback you received from
the VDI during the simulator session?

was provided. The system is designed to avoid continuous
criticism to prevent overwhelming the students, even if the
errors are logged. This highlights a valuable insight for our
team: we need to find a way to convey this approach to the
students to maintain their trust in the system. One possible
solution could involve an explicit explanation that mistakes
are still recorded, even if no immediate feedback is given.
Alternatively, we might consider providing a subtle visual
cue when an error is logged, avoiding the disruption caused
by extended auditory feedback.

Two primary categories of disagreement were noted. The
first involved feedback on the use of turn signals at in-
tersections and roundabouts, and the second centered on
mirror-checking procedures. The current limitations of the
eye-tracking system were a primary concern, given its in-
consistency and therefore unreliability in detecting mirror-
checking.

On the topic of turn signaling, it’s clear that our briefings
and explanations require improvement. For example, student
three stated, ”I signaled right even though I was taking the
roundabout. I was told it was wrong, but I’d like to know
why.” This feedback highlights a need for more detailed in-
struction about signaling rules in roundabouts. According to
Norwegian rules, drivers should signal left before entering
the roundabout if they intend to exit left or continue around
to the opposite side. This particular point appears to have
caused some confusion, indicating that our briefing videos
need to more explicitly explain these regulations.

Moreover, there’s an additional complexity concerning
the automatic cancellation of turn signals, a feature present
in most cars, which depends on the change in the steering
wheel angle. Occasionally, this function may terminate the
signal prematurely, without the students noticing. This can
cause confusion and misunderstandings, which suggests a
two-fold action plan for us: first, ensure that the VDI recog-
nizes when the car has automatically shut off the turn signal;
second, adjust the VDI’s feedback accordingly. By address-
ing these issues, we hope to enhance our system’s clarity and
instructional effectiveness.

Another point of contention was raised by student five,
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who disagreed with the VDI’s feedback on his timing of
turn signaling. We require students to initiate turn signaling
at least five seconds before reaching an intersection. This
is notably earlier than most drivers would typically signal,
yet it aligns with Norwegian driving education. Therefore, a
more detailed briefing is required to clarify this rule.

The only lesson currently providing such detailed briefing
during the session is the ”night driving” module, which stu-
dent three singled out for praise. He reported enjoying the
clear instructions provided during the intermittent stops.

When asked about their preferred type of feedback, the
majority of participants voiced a clear preference for audio
feedback over text feedback displayed on the in-car dash-
board. This preference is logical given that students’ atten-
tion is primarily directed towards the road, limiting their
ability to read dashboard text. Students 4 and 5 mentioned
that they didn’t notice the dashboard feedback at all. While
most students appreciated the audio feedback, Student 3 cri-
tiqued the voice for its lack of human-like qualities, describ-
ing it as ”flat”. It’s worth noting that the voice used for feed-
back is an AI-generated voice.

Upon inquiry about whether the feedback facilitated er-
ror recognition and correction, the unanimous response was
affirmative. For instance, Student 1 highlighted how the sys-
tem alerted her to speeding and improper steering during
turns. However, Student 4 shared mixed experiences, stat-
ing that while the feedback generally helped, there were in-
stances where she disagreed with the system’s remarks.

When queried if they wished for more detailed feedback,
opinions were split: half of the participants found the current
level sufficient. Specifically, Student 2 desired more instruc-
tions for roundabout navigation, while Student 3 suggested
less repetitive and more varied feedback.

The final question, which addressed the desire for more
positive reinforcement, elicited diverse responses. Two par-
ticipants believed the balance between positive and negative
feedback was appropriate. Student 5 expressed a desire for
more frequent positive feedback to validate correct actions,
whereas Student 4 felt positive feedback was unnecessary,
assuming the absence of feedback implied correct actions.
Student 3 found the positive feedback less genuine, particu-
larly when it immediately followed criticism.

We additionally solicited feedback regarding the user ex-
perience of the mobile application, specifically focusing on
the experimental feature of displaying skill progression. No-
tably, Students 4 and 5 voiced concerns over the accuracy of
the presented data, leading to some mistrust in the numbers.
Conversely, Students 3 and 6 expressed satisfaction with the
numerical representation, finding that it aligned well with
their perceived performance.

In terms of understanding their progression in driving
skills, the majority of students confirmed the app’s utility
to varying degrees. Particularly, the application proved ben-
eficial in highlighting areas for improvement. Despite occa-
sional discrepancies in data, several students appreciated the
app’s intuitiveness and clarity in the presentation of feed-
back. For instance, Student 3 articulated that the app effec-
tively depicted his current skill level, suggesting improve-
ments, and underscored its intuitive usage.

The deployment so far has revealed both the impact and
problems of the VDI system in a real-world setting. These
insights will guide our system’s future enhancements.

Conclusion and Future Work
The introduction of our VDI system marks a significant ad-
vancement in the realm of driver education. By interfacing
with high-fidelity driving simulators, the VDI provides a
unique learning experience for students, offering immediate,
personalized feedback and enhancing overall learning out-
comes. Furthermore, the innovative setup allows for an effi-
cient teaching process, as instructors can monitor and guide
multiple students simultaneously, regardless of the students’
physical location.

The deployment of the system has been successful, with a
significant number of students actively using the setup. Pre-
liminary feedback from students has been generally posi-
tive, highlighting the effectiveness of the system in improv-
ing their driving skills and the efficiency of their learning
process.

Despite these promising results, we acknowledge that this
is just the beginning. Further refinements to the system can
be implemented based on ongoing feedback from students
and instructors. We also recognize the need for a more com-
prehensive evaluation of the system’s impact on students’
on-road driving performance, which could be a direction for
future research. Additionally, there is a requirement for more
extensive and personalized briefing about rules and correct
behavior in traffic, especially during lessons.

Our long-term strategy involves implementing a feature
that will allow students to revisit specific segments of their
driving sessions that are particularly instructive. This will
not only highlight their common errors but also underscore
the aspects they have executed proficiently.

Leveraging the recent advances in chatbot technology
(Brown et al. 2020), a compelling avenue for future enhance-
ment is the integration of an interactive chatbot tailored for
drivers’ education. Equipped with speech recognition and
synthesis, it would enable two-way communication between
the VDI and students. This allows students to actively en-
gage, seek clarifications, and request guidance, simulating
a traditional instructor-student dynamic in a digital environ-
ment.

In conclusion, our work contributes to the evolving field
of AI in education, demonstrating how advanced technolo-
gies can significantly enhance traditional educational mod-
els. We look forward to seeing the VDI system further evolve
and impact the future of driver education.
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