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Abstract

Currently, students acquire driving skills by practicing in ac-
tual traffic conditions and through direct interactions with an
instructor. While one-on-one interactions could be tailored to
a student’s learning style and skill level, making them effec-
tive for learning, one-on-one interactions are also inefficient,
potentially costly, and not standardized with limitations on
which traffic situation can be safely taught. For these exact
reasons Way AS has developed and commercially deployed
a virtual driving instructor that educates students in high-
fidelity simulators. In this paper, we present a module, the
Lesson generator, that extends the virtual driving instructor
to generate personalized lessons for individual students with
the goal to practice in a focused and deliberately fashion the
skills that need practice for the students to become proficient
drivers. A case study is presented, and the path to deployment
is discussed.

Introduction
Currently, students acquire driving skills by practicing in ac-
tual traffic conditions and through direct interactions with an
instructor. While one-on-one interactions could be tailored
to a student’s learning style and skill level, making them
effective for learning, one-on-one interactions are also in-
efficient, potentially costly, and not standardized with limi-
tations on which traffic situation can be safely taught. The
inefficiency stems from the dual dependency on the avail-
ability of an instructor and the accessibility to appropriate
traffic situations. Driving in a bustling city, with its myr-
iad of cars, pedestrians, and ongoing road works, cannot be
simulated without access to such an environment. In certain
areas, essential traffic elements like roundabouts or traffic
lights might be absent. Moreover, practicing specific traffic
situations in the real world could pose risks to the student,
instructor, and other road users. Consequently, students of-
ten learn to drive without firsthand experience in managing
hazardous situations, like animals on the road or pedestrians
suddenly crossing. Finally, many traffic situations cannot be
deliberately practiced and repeated over a short period of
time so that handling these situations become second nature.
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Figure 1: High-level architecture of the complete system.

For these exact reasons, intelligent tutoring systems sup-
porting drivers in a simulator environment have been pro-
posed to help students learning to drive. Examples include
CarCoach (Arroyo, Sullivan, and Selker 2006), the virtual
driving instructor (VDI) deployed in Green Dino simulators
(Weevers et al. 2003), which can be interpreted as serious
games for which Greitzer, Kuchar, and Huston (2007) pro-
pose five design guideline principles: 1) Stimulate semantic
knowledge by relating material to the learner’s experiences
and existing semantic knowledge structures, 2) manage the
the learner’s cognitive load by organize the material into
smaller chunks and make the material gradually more com-
plex, 3) Immerse the learner in problem-centered activities
by providing opportunities to work on meaningful and re-
alistic tasks immediately, 4) emphasize interactive experi-
ences by requiring the manipulation of objects to build last-
ing memories, and 5) engage the learner through keeping
learners within a narrow range of difficulty where the mate-
rial is challenging but not overwhelming.

Procedural content generation has been used to generated
learning environments in several different domains, includ-
ing level design for games (Calimeri et al. 2018) such as
track generation for racing games (Togelius, De Nardi, and
Lucas 2007) and level generation for Super Mario games
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(a) Tunnel. (b) T-Intersection with traffic lights. (c) Highway.

Figure 2: Examples of tiles generated for a student of high proficiency with some weaknesses.

(Shi and Chen 2016), but also personalized map genera-
tion (Raffe et al. 2014), road networks in games (Teng and
Bidarra 2017), traffic scenario generation for testing of au-
tonomous vehicles (Li et al. 2021), scenario generation for
emergency rescue training games (Hullett and Mateas 2009),
and serious game for conflict resolution (Grappiolo et al.
2011). There is also research focusing on personalized learn-
ing. Notable examples include (Chen, Lee, and Chen 2005)
that utilizes item response theory for course material rec-
ommendation, (Huang, Huang, and Chen 2007) that utilizes
case-based reasoning and genetic algorithms also for rec-
ommending course materials and (Hwang et al. 2010) that
proposes a heuristic algorithm for context-aware ubiquitous
learning applied to natural science butterfly-ecology. Most
relevant for this work is (Ropelato et al. 2018) who intro-
duce an adaptive tutoring system for a virtual reality driving
simulator. The intelligent tutor monitors skills such as stable
driving on both straight and curved roads, turning, complete
stops, constant speed and reaction, and selects the next activ-
ity based on performance on the past activity in a predefined
map, so that the student has to drive all the way to the part
of the map that will train the desired skill.

We present a module, the Lesson generator, that extends
the VDI developed by Way AS to generate personalized
lessons for individual students with the goal to practice in
a focused and deliberately fashion. The VDI provides im-
mediate feedback, time for problem-solving and evaluation,
and opportunities for repeated performance to refine behav-
ior in line with deliberate practice (Anders Ericsson 2008).
According to the classification of Togelius et al. (2011), the
Lesson generator generates necessary content offline that the
student has to interact with based on a parameter vector that
describes the student skill level in a constructive way based
on heuristic rules with some stochasticity.

System Architecture
An overview of the system architecture is given in Fig-
ure 1. For further details see (Sandberg et al. 2020; Rehm,
Reshodko, and Gundersen 2023).
High-fidelity simulator: The simulator is an actual car

placed in a room where the virtual world modeled in Unity
(Unity Technologies 2022) is projected onto the walls so that
looking in the mirrors will be realistic. This setup, including
actuators that make the car move, increases the realism and
the feeling of driving a real car.
Shared data: The video streaming database stores the video
of the driver, so that the viewing direction of the driver can
be analyzed. Data from the car are transferred using the
CAN bus protocol and stored in the time-series database.
The traffic system keeps track of all dynamic elements in the
simulation including their location in the map and relational
information such as the lanes cars are in.
Knowledge graph: The knowledge graph represents and or-
ganizes all relevant information of the continuously devel-
oping traffic situation. It is built on a property graph model
(Hogan et al. 2021) that allows both nodes and relationships
to be characterized by attributes.
Agent system: The agent system is a multi-agent system fol-
lowing the principles of subsumption architecture (Brooks
1991). Agents are responsible for building and maintaining
the knowledge graph through fuzzy logic, rule-based reason-
ing and deep learning. Each agent has a concrete task. One
agent could monitor whether mirrors or the blind zones are
checked by analyzing the video stream while another would
be checking whether this was done in the right sequence.
Student model: The student model is comprised of a static
representation of skills in a Bayesian Network structure
along with beliefs of a students skill level that is estimated
from observing actions made in the virtual environment.
Tutor: The tutor is an agent responsible for giving feedback
to the student on the driving. The feedback includes what
is done well but also what can be improved and how. More
feedback is given to less experienced students and less is
given to more capable ones. Also, the tutor varies its feed-
back, and feedback modes include audio, visual in an in-car-
dashboard, and visual cues in the virtual environment.
Lesson generator: The lesson generator is the main focus
of this paper. It is a component of the virtual instructor that
generates personalized lessons for individual students.

The VDI is designed to follow the design guideline prin-
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ciples proposed by Greitzer, Kuchar, and Huston (2007). It
stimulates semantic knowledge by relating material to the
experiences and observed mastery of the students, seeks
to manage the the learner’s cognitive load by making the
material gradually more complex, immerses the learner in
problem-centered activities and emphasizes interactive by
letting the student drive in a personalized traffic environ-
ment, and engages by keeping learning within a narrow
range of difficulty by adjusting the lesson to the student mas-
tery of the driving skills and current performance.

Problem Description
The problem we seek to solve in this paper is to automat-
ically tailor lessons for students driving in a high-fidelity
simulator to increase the students’ learning rate and reduce
the time required to learn skills well. The end goal is to de-
liberately generate lessons that practice the skills that indi-
vidual students need to improve on the most to achieve the
skill level required to pass the driving test. Lessons should
be generated based on the observed skill level of the stu-
dents and adjusted according to observed performance. In
this work, we do not intend to adjust the teaching style of the
virtual driving instructor nor adapt the lesson or the feedback
according to the student’s learning style, although this could
be the focus of future work on how to improve the tutor.

Hence, a lesson l ∈ L is comprised of a map m ∈M of a
virtual environment that contains static traffic elements, such
as roads, signs, and traffic lights, dynamic elements d ∈ D
such as cars and pedestrians, events e ∈ E that capture pre-
defined dynamic traffic scenarios, such as yielding and over-
take scenarios, and a path p ∈ P through the map that en-
sures that the student get to practice situations that the lesson
intended the student to practice.

A lesson generator produces a personalized lesson ls for
a student in accordance to the skill level of a student s ∈ S .
Some skills are trained by only driving through a static map,
such as lane positioning, while others require dynamic el-
ements, such as an overtake scenario where a vehicle that
moves slowly must be passed. Some static elements are
more complex than others, as for example an intersection
compared to a straight road segment. The complexity of a
situation does not only depend on the complexity of the
static elements, it also depends on how many dynamic el-
ements the situation contains. Hence, the complexity c ∈ R
of a lesson ls,c can be adjusted by increasing or decreasing
the number of dynamic elements in the lesson. It can also be
adjusted online during the lesson according to the observed
performance of the student.

Representing Personalized Driving Lessons
A personalized lesson contains a map with both static and
dynamic content in addition to a path through the map that
ensures that the student experiences the content:
Map: A map is a set of tiles and chunks and the location
of these that constitutes the virtual traffic environment that
the student is to drive through. It lays out all the static ob-
jects that represent the virtual environment. Unique maps are

generated for each student to train the skills that the student
should practice on to become a better driver.
Tiles: Tiles are smaller pieces of the map that contain in-
dividual road segments populated with other static objects,
such as crosswalks, tunnels, highways and traffic lights.
Road segments are static objects, and they can be curved or
straight segments, but more often they contain intersections
of various types, such as T-intersections and roundabouts.
Events: Tile-based events are dynamic content that is lo-
cated on a specific tile, has a predefined path that it follows
and starts to interact with the world when the student is ap-
proaching the tile. Numerous skills in the skill network re-
quire particular events to happen at the correct time to pro-
vide students with the necessary situation for skill develop-
ment, such as training of an overtaking maneuver which ne-
cessitates a slow-moving vehicle in front, complemented by
an appropriately structured road conducive to overtaking.
Chunks: A chunk consists of multiple tiles organized in a
grid. The tiles within the chunk form a road network that
the student can traverse, and where the focus is to train on
a limited set of skills. Chunks are either collections of tiles
of the same type, such as X-intersections or a collection of
predefined tiles comprising a long tunnel.
Dynamic elements: Dynamic elements are elements that
move in the simulation environment and add to the realism
of the driving experiences by introducing unpredictability.
The number of dynamic elements can be adjusted to change
the complexity of the learning environment, and thereby ad-
just the level of difficulty. Dynamic elements include but are
not restricted to vehicles, pedestrians, animals and bikes.
Path: Paths are routes through the map that ensure that all
skills that the map is generated to train actually is trained.
They are generated so that all chunks are visited without
necessarily visiting all tiles. The shortest route between two
chunks are identified by the path planning algorithm.

The lesson generator supports deliberate practice through
generating lessons based on the skill level and by changing
the path through the map dynamically based on the observed
performance on particular skills.

Student Skill Level
The student skill level is modeled as a Bayesian network,
consisting of two types of variables: directly measurable ev-
idence, called performance variables, and latent skill mas-
tery variables. The skill mastery variables capture causal re-
lationships between distinct driving skills, such as overtake,
mirror checking, and blinking comprising a skill network,
which is modeled in collaboration with professional driv-
ing instructors. Complex skills are composed of more basic
skills. For example, the overtake skill is composed of several
skills including mirror checking and blinking. While blink-
ing is an atomic skill, mirror checking is a composite skill
as well and includes checking the rear-view mirror, sideways
mirrors and the blind zones in a pre-defined sequence.

Skill mastery nodes are characterized by three potential
states: mastered, learning, and struggling. These mastery
nodes have the flexibility to have an arbitrary number of par-
ents and child skill mastery nodes, as well as associated evi-
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Figure 3: Skill network emphasizing overtake mastery and
its parent nodes.

dence. Typically, skill mastery nodes remain unobserved, al-
lowing probabilistic inference. Agents generates the directly
measurable evidence for the most basic skills, which is kept
up-to-date in real-time in the knowledge graph.

The conditional probability distribution for parental-child
skill mastery defines the inter-dependencies among the mas-
tery nodes within the network described in equation 1:

P (Masterys|Parent1, Parent2, ..., Parentm), (1)

where Parenti ∈ {Mastered, Learning, Struggling}.
Figure 3 illustrates a small portion of the skill network repre-
senting overtake mastery and its parent mastery nodes lines
of sight, no cutoff, critical distance overtake, speed limit,
lane change and interactions. The conditional probability
distribution can be established through heuristic approaches
or be acquired through the analysis of a dataset generated by
knowledgeable driving instructors. The latter is the case for
the network used in this research.

The performance variables are measured through direct
observations of how a student performs in particular traffic
situations during driving sessions in the simulator. The di-
rect observations are done by agents that have tasks that to a
large degree mirror the skills in the skill network. The agents
register their findings in the knowledge graph so that other
agents can find the information there and reason with this
information for their own tasks. The goal is to predict the
probability distribution of the latent variables based on the
observed evidence through the model’s inter-dependencies.
In this way, the students’ performance on particular skills
can be assessed and their progress monitored over time.

Generating Personalized Driving Lessons
The map generated for a lesson is designed to provide vari-
ety to keep the learner engaged. The lesson automatic design
considers the interleaving of different skills, in line with re-
search showing that interleaved practice can lead to better
learning outcomes than blocked practice (Dunlosky et al.

2013). Combining these principles enables the generation
of lessons that are engaging, effective, and personalized for
each learner’s skill level. See Figure 4 for an example.

Procedural Generation of the Map
The Lesson generator’s map design algorithm revolves
around two different types of preferences: 1) the preference
of training the skills for which a student has the lowest profi-
ciency and 2) the preference of the tiles that trains this exact
skill. To engage the student, lessons are designed to contain
varied maps training a broader set of skills than only those
for which the student have the lowest proficiency. Therefore,
the process of generating maps for particular students with
particular skill levels is not an optimization process. Instead
the maps are generated stochastically in a process where
map tiles that train the low proficiency skills have a higher
probability of being drawn than those the student are more
proficient in. The probability of drawing a tile is calculated
as follows:

Pt =
Ut∑
t∈T Ut

, (2)

where Ut is the utility of a tile. Ut defines how well the skill
trained by the tile t match with the skills that a student needs
to train the most:

Ut = βt +

∑
s∈St

Ls × Us

nt
, (3)

where s ∈ St represents all skills that the tile trains, Ls is
the learning efficiency of a tile, meaning to which degree a
tile trains a skill, nt represents the number of skills a tile
trains, βt represents how well the difficulty of a tile aligns
with the skill that the student’s mastery of the skill mostly
trained by a tile, and Us is the utility of a skill. Us captures
the degree to which a skill s should be selected for training
given how well a student master a skill and which skills that
already have been selected for training:

Us = (1−Ms)
u − Fsv, (4)

where Ms represent how well a student master skill s (0
means that the student does not master the skill while 1
means complete mastery, and the actual value comes from
the student model), u is a parameter controlling the strength
for selecting a skill, Fs represents the frequency of a skill
being trained in the map generated so far, and v represents
the weight with which a skill frequently chosen should be
punished (increasing v promotes more diversity in skill rep-
resentation). The probability of drawing a skill, Ps, is com-
puted similarly as for drawing tiles in equation 2. Tiles are
added to the map iteratively until the duration of driving
through the map dm is estimated to be longer than the du-
ration of a driving lesson dl.The process is sketched out in
Algorithm 1. All parameters are determined experimentally.

Adding Dynamics to the Map
While tile-based events that target training of specific skills,
such as overtake, are added as part of the procedural gen-
eration of the map, dynamic elements, such as vehicles, are
added after the map is generated. The tile-based events are
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Algorithm 1: Generating maps
Input: Skill level Si of student i
Input: Minimum duration of a lesson dl
Output: A map mi that is designed for student i at the stu-
dent’s current skill level Si.

1: Let dm = 0.
2: Let Us = {}.
3: Let Ut = {}.
4: while dm < dl do
5: % Calculate utility for all skills
6: for s ∈ Si do
7: us ← calculate skill utility using equation 4
8: Us ← us

9: end for
10: % Draw skill s to train from Us

11: s← draw from Us using equation 2
12: % Calculate utility for all tiles Ts training skill s
13: for t ∈ Ts do
14: ut ← calculate tile utility using equation 3
15: Ut ← ut

16: end for
17: % Draw tile t to generate chunk from
18: t← draw from Ut using equation 2
19: Ct ← generate chunk from t
20: % Add chunk to map mi

21: mi ← Ct

22: dm ← estimate duration of mi

23: end while
24: return mi

not only located on specific tiles, elements part of the event
have predefined actions and start to interact with the world
when the student is approaching the specific event. Several
skills require particular events to happen at the correct time
to provide students with the necessary situation for skill de-
velopment. For example, training of overtaking maneuvers
necessitates a slow-moving vehicle in front of the student
so that the student has to pass it. The predefined setup en-
forced by an event differs from how dynamic elements are
added to the map. Dynamic elements are added to introduce
complexity into the learning environment, and thereby in-
creasing the level of difficulty. They aim is to emulate the
unpredictability of real-world driving and can be added into
any tile. The skill level is used to decide the appropriate dif-
ficulty for that student and subsequently set the amount of
traffic and pedestrians in the virtual environment.

Static and dynamic content and the path are currently
added in the offline generation of a lesson. However, both
dynamic elements and the path can be adjusted online during
the lesson in response to the student performance. For exam-
ple, the number of dynamic elements in the virtual world can
be reduced if the students fail at tasks where the dynamic
elements are extraneous stressors to the skill being learned
(Rudland, Golding, and Wilkinson 2020). Also, the path can
be changed to increase training of a skill that the student
need to practice more or to reduce the practice of a skill the
student excels at. The path can also change if the student is

Figure 4: Example of automatically generated lesson.

driving through the lesson faster than estimated so that the
student fills the time allotted to her.

Case Study
In order to evaluate the viability of the lesson generator
systematically, we have done a case study of four different
students with different characteristics. The case studies are
done through simulation for two reasons: 1) to control the
characteristics of the students and 2) to get early feedback
before starting to test on actual students. A proper evalua-
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(a) Radar diagram showing skills trained in lessons (red) and
skill levels of a student (blue).

(b) Distribution of skills trained for ten consecutive lessons gen-
erated for the exact same student.

Figure 5: Case study of high proficiency student with the weaknesses tunnel, queue and highway driving.

tion requires an improved and diverse set of tiles, which is
both costly and requires effort of sparse resources to design.

To control the study variables, the case study consists of
four students with differing skill levels characterized as low
proficiency, low proficiency with strengths, high proficiency,
and high proficiency with weaknesses. Low proficiency skills
have low values, while high proficiency skills have high val-
ues, so a low skill proficiency student with strengths gen-
erally has low skill levels but some that score higher. Fur-
thermore, for each of the 22 predefined tile types, one ex-
ample tile has been created for this test, including straight
road with crosswalk, curved road, T-intersection, tunnel, T-
intersection with traffic lights and high-way. Our experiment
resulted in the expected differences in generated routes for
the four profiles underpinning the viability of the method.

Figure 2 shows three tiles that were generated for a high
proficiency student with some weaknesses. The tiles train
complex skills such as T-intersections with traffic lights and
highways. They are also populated with quite some dynamic
elements, inclucing cars, a pedestrian, and an animal that
can be glimpsed in the back of Figure 2b. Figure 5a shows a
radar diagram of the skill level (blue) of the high proficiency
student with some weaknesses. From the figure it is clear
that the weaknesses are highway driving, queue driving and
tunnel driving. The figure also shows that the driving lesson
that has been generated trains these skills specifically (red).
Figure 5b illustrates the distribution of skills trained per les-
son when ten consecutive lessons are generated for the same
student represented by the exact same skill network. It shows
that the skills representing the weaknesses of the student are
consistently trained the most. Figure 4 illustrates a complete
lesson for the the high proficiency student. The twelve dif-
ferent chunks are described and the path going through the
map is highlighted. Different skills, none with low complex-

ity, are trained in this map, which is done to keep the student
challenged and engaged.

Limitations and Path to Deployment
The research presented here is a pilot that has been con-
ducted on synthetic students represented by carefully de-
signed skill models, so the system has not been tested on
human students yet. Also, the test only involved offline gen-
eration of content, which means that online dynamics have
not yet been tested, although the current design fully sup-
ports it. Furthermore, the tiles are not of production quality
and only one tile per tile type has been designed. Develop-
ing 3D content of high quality is costly and requires skilled
personnel, and hence this has been delayed until the system
was tested in an offline fashion. In the future, tiles could be
imagined to be generated fully on the fly instead of gener-
ating the map offline.Also, we would like to personalize the
teaching style and test and evaluate the feedback to given
students to further improve the learning rate.

Procedurally generating personalized lessons based on the
skill level of students is key to fully automate driver edu-
cation training and removing the costly involvement of hu-
man driving instructors in the early stage of driver education
(Rehm et al. 2024). The lesson generator will be deployed at
the driving school Way AS in stages and not fully replace the
current regime where students train particular skills per les-
son. Both students and traffic educators will be involved to
provide qualitative feedback on how lessons best can be gen-
erated to help students learn faster. In addition, controlled
experiments will be conducted to monitoring progress quan-
titatively. Our experience is that a feedback loop involving
students, teachers and developers should be established to
ensure a high-quality solution.
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