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Abstract

Electronic theses and dissertations (ETDs) have been pro-
posed, advocated, and generated for more than 25 years. Al-
though ETDs are hosted by commercial or institutional digi-
tal library repositories, they are still an understudied type of
scholarly big data, partially because they are usually longer
than conference and journal papers. Segmenting ETDs will
allow researchers to study sectional content. Readers can nav-
igate to particular pages of interest, to discover and explore
the content buried in these long documents. Most existing
frameworks on document page classification are designed for
classifying general documents, and perform poorly on ETDs.
In this paper, we propose ETDPC. Its backbone is a two-
stream multimodal model with a cross-attention network to
classify ETD pages into 13 categories. To overcome the chal-
lenge of imbalanced labeled samples, we augmented data for
minority categories and employed a hierarchical classifier.
ETDPC outperforms the state-of-the-art models in all cate-
gories, achieving an F1 of 0.84 – 0.96 for 9 out of 13 cat-
egories. We also demonstrated its data efficiency. The code
and data can be found on GitHub (https://github.com/lamps-
lab/ETDMiner/tree/master/etd segmentation).

Introduction
Electronic theses and dissertations (ETDs) are scholarly
works of students pursuing higher education and success-
fully meeting the partial requirement of academic degrees.
Since 1997, pioneered by Virginia Tech, many universities
started requiring degree candidates to submit their ETDs,
hosted by the university libraries or a centralized system
such as ProQuest (recently acquired by Clarivate). ETDs
have distinct features compared with conference papers and
journal articles. They are book-length documents (i.e., typi-
cally 100 – 400 pages long), and the topics may shift across
chapters. In addition, ETDs have unique metadata fields
(e.g., advisor, discipline, department) compared with regu-
lar scholarly papers. However, most ETD repositories still
have limited tools and services for discovering and access-
ing the content and knowledge in ETDs. One step toward
better content and knowledge discovery is to segment the
entire ETD by content types so information can be further
mined using a customized content reader.
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ETDs can be scanned or born-digital (e.g., LaTeX), with
complex document structures. There are varied resolutions
of scanned images, from typewritten and handwritten texts
containing noise. There are few training samples avail-
able for classification tasks. To address these challenges,
we previously (Ahuja, Devera, and Fox 2022) contributed
datasets and methods to segment ETDs using a bottom-up
strategy. The method automatically annotated major struc-
tural components but still does not perform well in de-
tecting minority classes (e.g., date, degree, equation, algo-
rithms) due to a lack of training samples. Hence we con-
sidered multi-modality state-of-the-art (SOTA) frameworks
(Xu et al. 2021; Appalaraju et al. 2021) which were fine-
tuned on downstream tasks such as document image classi-
fication. These frameworks had been evaluated on the RVL-
CDIP dataset (Harley, Ufkes, and Derpanis 2015), consisting
of scanned document images belonging to 16 classes (e.g.,
letter, form, email). However, even fine-tuned on ETDs, they
do not generalize well to ETDs (e.g., achieving 9% accu-
racy), and retraining them is non-trivial because of the lack
of data. Moreover, text-based classification ignores the in-
formation encoded in the layout. Therefore, we take a top-
down approach by designing a new framework called ETD
Page Classifier (ETDPC – see Figure 1), and apply it to
ETD pages, relative to 13 categories (e.g., title-page, chap-
ters, dedication), using multimodality with a cross-attention
network. Our contributions are as follows.
• We proposed a two-stream multimodal classification

model with cross-attention that uses a vision encoder
(e.g., ResNet-50v2) and a text encoder (e.g., BERT with
Talking-Heads Attention).

• We proposed a method to augment minority ETD pages
leveraging paraphrasing techniques and image-based
transformation.

• We built the ETD500 dataset with 92,371-page annota-
tions of ETDs, plus PNGs, text, and bounding boxes.

• We quantitatively demonstrated our system’s robustness
in classifying ETDs using both original and pseudo-
training samples.

Related Work
In layout analysis for general documents, the existing frame-
works usually adopt bottom-up approaches to identify docu-
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Figure 1: ETDPC – A Multimodality Framework (I – Image,
and T – Text).

ment formats (forms, receipts, etc.). Several frameworks, in-
cluding LayoutLM (Xu et al. 2020), LayoutLMv2 (Xu et al.
2021), and DocFormer (Appalaraju et al. 2021) used multi-
modality, introduced several pre-training tasks to the model,
and then fine-tuned for downstream tasks.

These frameworks differ in their methodological ap-
proach and pre-training tasks. The authors in both Lay-
outLM (Xu et al. 2020) and LayoutLMv2 (Xu et al. 2021)
used the joint multimodal, where vision and text features are
concatenated into one long sequence and then fed through a
transformer self-attention layer to learn the cross-modality
interaction between visual and textual information. Doc-
Former (Appalaraju et al. 2021) instead proposed a discrete
multimodal, focusing on sending visual and textual features
through individual transformer layers. In each layer, visual
and language features separately undergo self-attention with
shared bounding box (bbox) information as a spatial feature.

Another multimodal architecture (Dauphinee, Patel, and
Rashidi 2019) classifies using VGG16 and bag of words,
respectively, for the visual and textual-based architec-
tures. Their fusion technique has individual models running
through their own architectures; later the class score vec-
tors were concatenated. Finally, the resulting class score was
classified by a meta-classifier using the XGBoost model.

RVL-CDIP (Harley, Ufkes, and Derpanis 2015) is a
benchmark dataset of letters, forms, emails, files, resumes,
etc., with 400,000 grayscale images in 16 classes. It is split
into training, validation, and test sets. Dauphinee, Patel, and
Rashidi (2019) trained their model using this dataset and
reported 93.03% accuracy. Furthermore, DocFormer-base
(Appalaraju et al. 2021) achieved an accuracy of 96.17%,
which outperformed the 95.64% accuracy of LayouLMv2
(Xu et al. 2021).

Although these frameworks performed well on general
document layout analysis, our experiments show that they
do not work well for ETDs. Hence, a framework based on
fine-tuning YOLOv7 has been proposed to segment ETDs
based on visual features. The framework was evaluated on a
new dataset called ETD-OD (Ahuja, Devera, and Fox 2022)
that consists of over 25,000 page images from 200 ETDs
with manually drawn bboxes around objects (e.g., title, au-
thor, paragraph, etc.). However, the lack of training samples

led to low performance on minority categories such as date,
algorithm, and equation.

To classify pages in legal documents, Wan et al. (2019)
proposed a text-based architecture, which used chunk em-
beddings (i.e., splitting the documents into multiple chunks),
which were then used to train Doc2Vec to extract features.
It achieved an overall accuracy of 97.97%.

Our work attempts to overcome the limitations of existing
frameworks by directly training a multimodal model with
cross-attention using a dataset created by manual labeling
and augmentation. We employ a hierarchical classification
strategy to mitigate the sample imbalance problem.

Methodology
Conceptual Overview
In general, a multimodal workflow involves several uni-
modal neural networks to encode various input modalities
independently. The extracted features are then combined
using a fusion module. Finally, the fused features are fed
into a classification network to make the prediction. There
are three types of fusion (Baltrušaitis, Ahuja, and Morency
2017): a) Early Fusion – the features from each modality
are combined at the start, and then the full model archi-
tecture is applied to the combined features; b) Late Fusion
– the individual modalities run through their own architec-
tures, and the features from each modality are combined at
the end to make the prediction; and c) Hybrid Fusion – a
combination of early and late fusion. In this paper, we con-
sider a two-stream multimodal model with a cross-attention
layer by leveraging the early fusion technique. Figure 1
shows each modality extracting individual embeddings, with
a projection layer to unify the dimensions. Then, leveraging
the early fusion, we concatenated each projection and com-
bined them with the features from the cross-attention layer.
Finally, the full model was applied to the combined features.

Visual Modality
We used ResNetv2 (He et al. 2016b), an improved version of
ResNet (He et al. 2016a), with the propagation formulation
of the connections between the neural layers. ResNETv2
has new residual units with pre-activation. Instead of putting
batch normalization and ReLU after convolution, the au-
thors put them prior to the convolution. ResNetv2 performed
better than the original ResNet on the ImageNet-1k (Rus-
sakovsky et al. 2015) and CIFAR-10 / 100 datasets1.

To use the ResNet50v2 model, we resized the ETD im-
ages to 224 × 224 pixels and fed them into the visual en-
coder. The output feature map was average-pooled to a fixed
size with the width (W) and height (H). Later, it is flattened
into a visual embedding sequence of length W×H.

Textual Modality
For textual modality, we used BERT with the Talking-Heads
Attention and the Gated GELU position-wise feed-forward
networks (Shazeer et al. 2020), which is a transformer-
based text encoder based on the original BERT (Devlin

1https://www.cs.toronto.edu/∼kriz/cifar.html
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et al. 2019) architecture by replacing the multi-head atten-
tion with the talking-heads attention and replacing the ordi-
nary dense layer with a gated linear unit with a GELU ac-
tivation. The authors compared it against the Text-to-Text
Transfer Transformer (T5) (Raffel et al. 2020) model, which
used multi-head attention. The results showed that talking-
head-based models outperformed the multi-head attention
on MNLI (Kim, Kang, and Kwak 2018) by at least 2% on
F1.

To generate the embeddings, we first use AWS Textract2
to extract text from the document images. We then used the
pre-trained model of BERT with Talking-Heads Attention
(large) (Shazeer et al. 2020) from TensorFlow Hub as a text
encoder. Using its pre-processing module, we performed to-
kenization and extracted the following features: a) input
type IDs, which identify which sequence a token belongs
to when there is more than one sequence; b) input mask,
which indicates whether a token should be attended to or
not; and c) input word IDs, which are the indices corre-
sponding to each token in the sentence. These features are
then fed through a trainable embedding layer.

Multimodal with Cross-Attention
The vision and text encoders generate embeddings. How-
ever, the dimension of both embeddings needs to be unified
for further early fusion. One general method that has been
adopted to map the dimensions of these embeddings is ap-
plying a linear projection. Thus, we introduce a projection
layer, where the embeddings from both modalities are com-
bined. Our model takes one 256-D projection layer with 0.8
as a dropout rate (Srivastava et al. 2014). Later, the model
fetches each embedding projection and performs an early fu-
sion. To make our model focus on the most important pixels
of an image that relate to their corresponding textual parts,
we use the “cross-attention” (Chen, Fan, and Panda 2021).
Cross-Attention (Wei et al. 2020) combines asymmetrically
two separate embedding sequences of two different modali-
ties (i.e., visual and text). Further, we concatenate the early
fusion of the projection layer with the attention sequence.
We finally passed it through the “softmax” layer for the clas-
sification.

Experiments
Dataset: We compiled ETD500 (Hasan Choudhury et al.
2021), which consists of 500 scanned ETDs published be-
tween 1945 and 1990. There are 350 STEM and 150 non-
STEM majors from 468 doctoral, 27 master’s, and 5 bach-
elor’s degrees. The dataset contains a total of 92,371 pages,
available in PNG format. For the page-level classification
task, we manually annotated all pages of ETD500 using an
annotation tool developed by Caragea et al. (2016), into 13
distinct category labels (Table 1). Later, OCR was performed
on all pages using AWS Textract, a cloud-based service that
detects and extracts texts from scanned documents. Textract
converts PDF images into JSON containing text, ID, type
(i.e., words or lines), bbox, and confidence score values.

2https://aws.amazon.com/textract/

Category #Pages #Aug Pages Description

Chapters 71200 - content within sections la-
beled as chapters

Appendices 9891 - detailed content not in-
cluded in chapters

References 3385 - a list of biographical details
of in-text citations

ToC 1114 - the list of chapters and page
numbers

TitlePage 911 - a page containing a title and
other metadata

Abstract 777 602 a narrative summary for the
whole thesis

ListofFigures 586 651 pages that include a Listof-
Figures and page numbers

Ack 543 542 acknowledgment

ListofTables 477 584 pages that include ListofTa-
bles and page numbers

CV 124 1116 a curriculum vitae

Dedication 77 971 devoting the work to mo-
tivating or supportive per-
sons

C. Abstract 66 1518 a chapter summary (occa-
sional)

Other 3220 - pages that do not fit into any
of the other 12 categories

Total 92,371 5,984 -

Subtotal (non-
chapters)

21,171 - -

Table 1: ETD500 – page category labels (Category), total
number of labeled pages (#Pages), the number of augmented
pages (#Aug) (ToC = TableofContents, C. Abstract = Chap-
terAbstract).

Data Augmentation: Table 1 gives the number of la-
beled pages for each category. The labeled data is highly
skewed towards Chapters, Appendices, References, and
Other pages, making it inappropriate to be used directly for
training a machine learning model. Our goal was to per-
form data augmentation and increase the sample sizes to
at least 1,000 for the minority categories (i.e., with fewer
samples (Table 1)) to mitigate the imbalance before training.
We adopted the following strategies to generate pseudo-ETD
training samples for the minority classes.
• We first paraphrase the text extracted by the OCR.
• Second, we convert the text into images.
• Finally, we perform an image-based transformation.

For paraphrasing the ETD text, we adopted Google’s
PEGASUS (Zhang et al. 2020)3, a pre-trained model for text
summarization. The base architecture of PEGASUS (Zhang

3https://huggingface.co/docs/transformers/model doc/pegasus
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Category Pa Ra F1a Pb Rb F1b Pc Rc F1c

Chapters 0.87 0.98 0.92 – – – – – –

Appendices 0.65 0.29 0.40 0.83 0.93 0.88 (+0.48) 0.83 0.93 0.88 (+0.00)

ReferenceList 0.92 0.92 0.92 0.94 0.94 0.94 (+0.02) 0.95 0.94 0.95 (+0.01)

TableofContent 0.81 0.75 0.78 0.80 0.86 0.83 (+0.05) 0.84 0.83 0.84 (+0.01)

TitlePage 0.87 0.88 0.88 0.88 0.94 0.91 (+0.03) 0.87 0.94 0.91 (+0.00)

Abstract 0.33 0.02 0.03 0.60 0.50 0.54 (+0.51) 0.59 0.56 0.74 (+0.20)

ListofFigures 0.60 0.57 0.58 0.66 0.64 0.65 (+0.07) 0.78 0.67 0.69 (+0.04)

Acknowledgment 0.82 0.81 0.82 0.85 0.84 0.84 (+0.02) 0.88 0.84 0.93 (+0.09)

ListofTables 0.58 0.35 0.44 0.65 0.44 0.52 (+0.08) 0.71 0.59 0.62 (+0.07)

CurriculumVitae 0.83 0.26 0.40 0.92 0.58 0.71 (+0.31) 0.86 1.00 0.94 (+0.23)

Dedication 1.00 0.27 0.43 1.00 0.55 0.71 (+0.28) 0.98 0.91 0.94 (+0.23)

ChapterAbstract 0.00 0.00 0.00 0.00 0.00 0.00 (+0.00) 1.0 0.95 0.96 (+0.96)

Other 0.61 0.20 0.30 0.75 0.55 0.63 (+0.33) 0.78 0.54 0.64 (+0.01)

macro F1 0.68 0.48 0.53 0.74 0.64 0.68 (+0.15) 0.83 0.81 0.83 (+0.15)

Table 2: Performance on ETD samples in the test set – a) performance of one-level classifier (i.e., Case a), where ETDPC is
trained on ETD500; b) performance of two-level classifier (i.e., Case b), training first on chapter vs. non-chapter pages, and next
on the remaining categories, including 21,171 manually labeled samples; and c) performance of the two-level classifier (Case
c), trained on 21,171 manually labeled samples and 5,984 augmented samples. We demonstrated the F1 scores with remarkable
improvements for each category.

et al. 2020) is a standard transformer encoder-decoder. In
our experiment, we first use PegasusTokenizer, which
is based on SentencePiece4, to tokenize the input text while
adding several parameters, including padding (i.e., pad to
the longest sequence in the batch), max-length (i.e., pad to a
maximum length specified with the argument max-length),
and truncation (i.e., truncate to a maximum length specified
with the argument max-length). To generate the paraphrase,
we use the PegasusForConditionalGeneration
model. After paraphrasing the text, we use a Python mod-
ule called textwrap5 to wrap the text with a width of 90,
which represents the maximum length of wrapped lines. To
convert the text into images, we change the fonts and size,
adjust the textual position on a page, and finally draw the
text on an image using Python’s pillow library6. To per-
form image-based transformation, we use a library called
ImgAug7. We adopted the following transformations from
ScanBank (Kahu et al. 2021) to generate the final pseudo
images.

• Additive Gaussian noise – A flatbed scanner works by
reflecting the light from paper and creating an image of
the paper based on the naturally reflected light. Hence,
we use Additive Gaussian Noise to mimic this effect. The
parameters of this noise are heuristically chosen using
trial and error.

4https://github.com/google/sentencepiece
5ttps://docs.pyton.org/3/library/textwrap.html
6https://pypi.org/project/Pillow/
7https://github.com/aleju/imgaug

• Salt-and-pepper noise – Salt-and-pepper noise is often
seen on images caused by sharp and sudden disturbances
in the image signal. We heuristically chose 0.9 as the
probability of replacing a pixel with noise.

• Gaussian Blur – Unlike natural images, digital images
must be encoded with a specified resolution resulting in a
pre-determined number of bytes and some loss of sharp-
ness. Therefore, we apply Gaussian blurring to smooth
the images using a Gaussian Kernel, σ= 0.5.

• Linear Contrast – Although today’s scanners are built
using modern technology, they cannot capture all colors
of a natural object. To incorporate this scanning effect,
we add Linear Contrast (α= 1).

Fine-tuning Hyper-parameters & Training: We used
our in-house high-performance computing cluster (HPC),
which runs a deep learning-based container service with var-
ious versions of TensorFlow and PyTorch. We use a Tesla
V100-SXM2 GPU to train our model and 12-core CPUs to
perform other tasks, such as data augmentation. We heuris-
tically fine-tuned the hyper-parameters. Our model with
around 460M total parameters is trained on the original
and augmented ETD pages. For the hyper-parameters, we
choose the “Adam” optimizer with weight decay of 0.004,
epsilon of 1e-07, clip value of 2.0, and learning rate of 0.001.
In addition, we choose sparse categorical focal loss as the
cost function. To avoid overfitting, we use the dropout rate
of 0.8. We set up “early stopping” while monitoring the “val-
idation loss” and the “model checkpoint” to save the best
weight in each epoch. We finally trained the model with a
batch size of 32 and 40 epochs, each taking around 1 hour.
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Evaluation and Results
We split the manually labeled ETD pages into train, valida-
tion (25%), and test sets (15%) and consistently use the same
test set for all evaluations.

Case a – One-Level Classifier: The ETDPC model, ap-
plied to predict all of the 13 categories, achieved an overall
accuracy of 84% (Table 2). The classifier achieved lower F1
scores on the categories with relatively small sample sizes
than the categories with relatively large sample sizes. For
“Chapters” it achieved an F1 score of 0.92.

Case b – Two-Level Classifier: To mitigate the data im-
balance problems, we train a two-level classifier. The first
level classifies ETD pages into chapters and non-chapters.
The second level classifier classifies non-chapter pages into
Abstract, Acknowledgement, ListofFigures, ListofTables,
Dedication, CV, and C. Abstract, etc., trained on 21,171
manually labeled pages.

Case c – Two-Level Classifier with Augmented Data:
To achieve better performance, we used the original train-
ing data, consisting of 21,171 manually labeled with 5,984
augmented training samples (Table 1).

Baseline Models: For comparison, we fine-tuned Doc-
Former (Appalaraju et al. 2021), LayoutLMv2 (Xu et al.
2021), and VGG16 (Simonyan and Zisserman 2015) on
the ETD500 dataset. LayoutLMv2 and DocFormer achieved
low accuracy, below 30% on the test dataset. Surprisingly,
VGG16, a simple model based only on visual features, per-
formed slightly better than LayoutLMv2 and DocFormer
(Table 3).

Results: Table 3 shows that ETDPC significantly outper-
formed the baseline models, LayoutLMv2 and DocFormer,
with accuracy increases of 0.76 and 0.57, respectively. We
also see a significant performance increase of 0.25 of the
accuracy, and 0.44 of the F1 score, compared to VGG16.

We report three types of performance in Table 2: a) perfor-
mance of the one-level classifier, b) performance of the two-
level classifier, and c) performance of the two-level clas-
sifier trained with augmented samples. The total inference
time to predict the output took 13 minutes. Table 2 indicates
the one-level classifier performed well for classifying the
“Chapters” category, achieving a 0.92 F1 score. The remain-
ing categories achieve poor performance due to data imbal-
ance. To mitigate data imbalance, we introduced a second-
level classifier, which trained on 21,171 non-chapter man-
ually labeled ETD pages. The two-level classifier achieves
improved performance, boosting the F1 score, ranging from
0.02 to 0.48 (F1b in Table 2), depending on the categories.
However, we still observed poor performance for the mi-
nority categories (i.e., containing less than 1K training sam-
ples (Table 1)), including Abstract, ListofFigures, Acknowl-
edgment, ListofTables, Curriculum Vitae, Dedication, and
Chapter Abstract. Thus, we added augmented samples (Ta-
ble 1) for these minority categories. Our result shows a
significant increment in the performance, boosting the F1
scores up to 0.96, depending on the categories.

Models #param Accuracy macro F1

LayoutLMv2-base1 200M 0.09 -

DocFormer2 174M 0.28 -

VGG16 121M 0.60 0.39

ETDPC (ours) 460M 0.85 0.83
12 Due to the poor performance, only accuracy is reported.

Table 3: Comparison against baseline models. We report
classification accuracy and macro F1 on the test set.

Table 2 shows that ListofFigures and ListofTables
achieved relatively low F1 scores. Upon further investiga-
tion, we observed 36 samples of ListofTables were misclas-
sified as ListofFigures, whereas 23 samples of ListofFigures
were misclassified as ListofTables. After randomly inspect-
ing the testing samples, we found that they are visually very
similar except for the page headings. One way to improve
the performance of these two categories is by integrating a
heuristic-based method to capture lexical patterns, such as
“Table” or “Figure”, or the appearance of “List of Figures”
or “List of Tables” in the headings.

Ablation Study
We performed an ablation analysis of our proposed model.
We conducted two types of ablation studies: Experiment-
1: Changing the text encoder in the multimodal model;
Experiment-2: Using individual modalities. We describe
each experiment in the following.

Experiment-1: Figure 2 (a) illustrates that when using the
BERT with Talking-Heads Attention as a textual modality in
our multi-modal model instead of BERT-large, ETDPC im-
proved significantly, boosting the F1 score by 0.02 to 0.43,
depending on the categories.

Experiment-2: For this experiment, we used the train-
ing samples in Case c. We used each individual modal-
ity for this experiment. Training with only visual modality
took approximately 30 minutes. Training with only textual
modality took approximately 14 hours. Training with our
proposed multimodal with cross-attention mechanism took
approximately 16 hours. Figure 2 (b) shows that our pro-
posed multimodal model with both modalities outperformed
each individual modality, achieving 0.84 to 0.96 F1 scores
for 9 out of 13 categories. The model achieves relatively
low F1 scores for four categories, including “ListofTables”,
“Other”, “ListofFigures”, and “Abstract” with F1 scores
ranging from 0.62 to 0.74. However, the performance of
the multimodal model for these categories still outperformed
each individual modality, improving F1 scores ranging from
0.10 – 0.17 when compared to only visual modality and F1
scores ranging from 0.02 – 0.17 when compared to only tex-
tual modality.

Data Efficiency
From Table 2, the F1 scores of several minority categories,
such as ListofTables and ListofFigures, are below 0.70. We
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(a) Experiment 1 (b) Experiment 2

Figure 2: Ablation Study – a) Experiment 1 illustrates the performance increment when changing the original BERT model to
BERT with Talking-Heads. b) Experiment 2 illustrates the performance of using the individual modalities vs. the multimodal
model with cross-attention.

Figure 3: Diminishing returns in performance with increase
in the number of training samples.

investigate whether the performance may improve when
adding more training samples proportionally to these cat-
egories. Using the training dataset in Case c (i.e., 21,171
manually labeled and 5,984 augmented samples, a total of
27,155), we gradually increased the size of the training sam-
ples to the following minority categories: Abstract, Dedi-
cation, ListofFigures, ListofTables, and TitlePage, by 20%
each time.

We show the data efficiency for five categories in Figure 3.
The F1 score for the ListofTables category first decreased
by ∼ 0.05 for the ListofTables and then increased by almost
0.10 when the training size was 100%. The F1 score of the
ListofFigures category reached the lowest when the train-
ing size is 60% and then increased by about 0.05 when the
training size was 100%. The F1 score of the Abstract cat-
egory decreased consistently until the training size is 80%
and then increased marginally by about ∼ 0.02. The perfor-
mance of the Dedication remained constant. The F1 score of
the TitlePage category first decreased by ∼ 0.02, and then
remained constant. Overall, the data efficiency analysis im-
plies that the current datasizes are sufficient for most minor-

ity categories except for ListofTables and ListofFigures. In
the future, we will add more training data and further inves-
tigate data augmentation.

Conclusion & Deployment Path
We developed ETDPC, a framework aiming to classify
ETD pages into 13 categories using a two-stream multi-
modal model with a cross-attention by leveraging vision
(e.g., ResNet50v2) and language (e.g., BERT with Talking-
Heads) models. The proposed model outperforms SOTA
document page classification models. Although our model
uses ETD500, consisting of scanned ETDs, for born-digital
ETDs, it is straightforward to convert them to images. Our
model takes 0.06 seconds to process a single ETD on aver-
age, so it is scalable to millions of ETDs. Our model is also
customizable. For example, we can easily adopt a multilin-
gual language model to classify non-English ETDs.

Deployment Path The AI method we developed will be
deployed following the steps below. First, we will integrate
our model into a pipeline that extracts text using an open-
source OCR package, such as docTR (Mindee 2021), which
produces quality text and is more affordable than commer-
cial OCR APIs, e.g., Amazon Textract. Second, we will de-
ploy our framework on real-world data at the Old Domin-
ion University Digital Commons hosting 3000+ ETDs and
conduct an evaluation by manually inspecting the segmented
ETDs from different years and academic disciplines. We will
then mark and relabel incorrectly classified pages and fine-
tune our pre-trained model using newly labeled pages. Fi-
nally, we will deploy the refined model on ETDs of the Old
Dominion University and the Virginia Tech Libraries. Even-
tually, we will index ETD sections of different categories
and make them available on the library websites.
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