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Abstract

Large language models like ChatGPT can generate human-
like code, posing challenges for programming education as
students may be tempted to misuse them on assignments.
However, there are currently no robust detectors designed
specifically to identify Al-generated code. This is an issue
that needs to be addressed to maintain academic integrity
while allowing proper utilization of language models. Pre-
vious work has explored different approaches to detect Al-
generated text, including watermarks, feature analysis, and
fine-tuning language models. In this paper, we address the
challenge of determining whether a student’s code assign-
ment was generated by a language model. First, our pro-
posed method identifies Al-generated code by leveraging tar-
geted masking perturbation paired with comprehensive scor-
ing. Rather than applying a random mask, areas of the code
with higher perplexity are more intensely masked. Second,
we utilize a fine-tuned CodeBERT to fill in the masked por-
tions, producing subtle modified samples. Then, we integrate
the overall perplexity, variation of code line perplexity, and
burstiness into a unified score. In this scoring scheme, a
higher rank for the original code suggests it’s more likely
to be Al-generated. This approach stems from the observa-
tion that Al-generated codes typically have lower perplex-
ity. Therefore, perturbations often exert minimal influence
on them. Conversely, sections of human-composed codes
that the model struggles to understand can see their perplex-
ity reduced by such perturbations. Our method outperforms
current open-source and commercial text detectors. Specifi-
cally, it improves detection of code submissions generated by
OpenAl’s text-davinci-003, raising average AUC from 0.56
(GPTZero baseline) to 0.87 for our detector.

Introduction

The emergence of large language models has profoundly im-
pacted software development, providing invaluable tools for
programmers. These models possess the capability to au-
tonomously generate code, which, while beneficial in many
respects, poses significant challenges to programming edu-
cation. There’s a growing concern that students may exploit
these models by merely providing a problem description and
test cases. As a result, they could potentially complete code
assignments without ever typing a single line of code them-
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selves. Given the innate proficiency of these language mod-
els, they can effortlessly produce multiple, unique solutions
to students’ basic assignments within mere seconds. More-
over, the generated code often includes annotations and is
constructed with the expertise reminiscent of seasoned pro-
grammers. Such accessibility allows students to merely copy
and paste the code, followed by a direct submission. This
ease of misuse gravely threatens the integrity and objectives
of programming education.

Despite the rising challenges, most current detectors fo-
cus on pinpointing Al-generated text, leaving a gap in tools
specifically designed for Al-generated code. In this paper,
we bridge this gap by introducing a dedicated Al code de-
tector. We then rigorously test its efficiency, comparing it
against renowned open-source and commercial alternatives
within a coding context.

In the prior work DetectGPT (Mitchell et al. 2023), it
shows a very inspiring hypothesis and perturbation method
on the textual context. DetectGPT posits that subtle modi-
fications to Al-generated text generally result in lower log
probability under the model than the original text. Con-
versely, slight alterations to human-written text can yield ei-
ther higher or lower log probabilities than the original. This
suggests that each token produced by the model often resides
at the pinnacle of the log probability function curve.

The concept of code naturalness implies that a similar be-
havior should manifest within code contexts. Building upon
these foundational insights, we refine and validate this per-
spective for code environments. Our hypothesis emphasizes
that minor perturbations can distinctly differentiate between
Al-generated and human-authored code. The core of our ex-
periments revolves around this principle: slight modifica-
tions to Al-generated code are more likely to increase its
perplexity under the model compared to the original code.
On the other hand, alterations to human-written code can
either raise or lower its perplexity relative to the original.
Furthermore, we propose another hypothesis: Code gener-
ated by LLMs exhibits more consistent line-by-line perplex-
ity compared to human-authored code. Our findings affirm
this perspective.

We harness these two observations from the code context
to construct our AIGCode detector. Our strategy seeks to
discern whether a given piece of code is Al-generated by
employing a two-fold approach: perturbation and scoring.
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* Perturbation Mechanism: This involves using a mask
modeling task to subtly modify segments of code that ex-
hibit higher perplexity (PPL).

* Scoring Mechanism: The scoring is influenced by three
metrics: perplexity of the code, standard deviation of per-
plexity across individual lines, and the code’s burstiness.

The foundational premise of our methodology is that Al-
generated code inherently possesses a low score, gauged by
the combined metrics of overall perplexity, standard devia-
tion of perplexity across code lines, and burstiness. Conse-
quently, post-perturbation, it becomes challenging to gener-
ate samples that score lower than the original Al-generated
code. In contrast, human-authored code might be perceived
as more ambiguous by the model, so minor tweaks might
yield an “optimized” version that bears a score lower than
the original code.

We articulate our contributions in this paper as follows:

e We validate the hypothesis, previously observed in
model-generated text, within the code context: pertur-
bations tend to elevate the model’s perplexity for Al-
generated code but can diminish it for human-written
code.

Building on the foundation of DetectGPT, we have ad-
dressed the gap in Al-generated code detection by en-
hancing current zero-shot detection method and devel-
oping a specialized detector for Al-generated code. Em-
pirical results show that our improved detector surpasses
both leading open-source and commercial alternatives in
the code domain.

We delve into the robustness of Al-generated code and
explore various adversarial tactics, including refined
prompting, temperature adjustments, rewrites, and code
blending.

Background

In this section, we delve into the domain of Pre-trained
Large Language Models specifically tailored for coding lan-
guages. We introduce metrics to evaluate the proximity of
code to model-generated content.

Pre-trained Large Language Models on Codes

Pre-trained language models are transforming natural lan-
guage processing (NLP) with their strong performance on
tasks like translation and text summarizing. This has led
to interest in applying these models to programming lan-
guages. By training on source code and documentation,
then fine-tuning for specific programming tasks, these mod-
els can assist with code completion, bug finding, and code
generation. They leverage their pre-existing knowledge to
understand and generate code. Notable research projects
demonstrate the potential of pre-trained models for program-
ming. Models like CodeBERT (Feng et al. 2020), CodeT5
(Wang et al. 2021), PolyCoder (Xu et al. 2022), and PaLM-
Coder (Chowdhery et al. 2022) show early success in adapt-
ing large language models for code. By pre-training on code
and documentation, they learn about programming. Fine-
tuning then enables applications like automated code com-
pletion and error correction. Though still an emerging field,
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these models represent progress toward using the knowledge
within pre-trained language models to comprehend, gener-
ate, and reason about code.

In our approach, we utilize Large Language Models on
Codes (LLMCs) during the perturbation and scoring phase,
specifically for tasks such as tokenizing, perplexity calculat-
ing, and mask-filling.

Perplexity and Burstiness

Perplexity and burstiness are two key metrics for assessing
the quality of code generated by large language models for
code (LLMCs).

Perplexity Perplexity is a measure of how well a probabil-
ity model predicts a sample. In the context of code, it’s used
to evaluate the predictability of the next token or line of code
based on a given context. A lower perplexity indicates that
the model’s predictions are generally more accurate, while a
higher perplexity suggests the model finds the content more
unpredictable.

Burstiness Burstiness in the context of code refers to the
clustering or frequent appearance of certain patterns, identi-
fiers, or constructs in a specific section of the code. For ex-
ample, in a code module dealing with database operations,
there might be a burst of commands and identifiers related
to database queries. Analyzing burstiness in code can help
in understanding patterns, detecting anomalies, or assessing
code quality.

Approach
Problem Description

We are addressing the problem of detecting Al-generated
code submissions and preventing the misuse of large lan-
guage models in education. Our method mainly comprises
three processes: perturbation, scoring, and prediction. Un-
like the random perturbation and score ranking of Detect-
GPT, we optimize the masking process, and fine-tune mask-
filling models on different code languages. Moreover, we
also propose a new scoring algorithm for the ranking of orig-
inal code and perturbed codes. Algorithm 1 provides a de-
tailed description of our evaluation strategy and detection
process.

Perturbation

As shown in Figure 1, the perturbation process includes
masking and mask-filling, which produces several samples
with minor modifications. The degree of modification de-
pends on our mask percentage.

Masking In contrast to the indiscriminate masking tech-
nique applied by DetectGPT to textual data, our strategy
adopts a more nuanced approach. Initially, we compute the
Perplexity (PPL) for each line of code. Based on these cal-
culations, a weight for masking is assigned, contingent on
the PPL value of each line. Subsequently, random masking
is applied. Hence, sections of code with elevated PPL values
are subjected to more extensive masking, leading to more
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#include <stdio.h>
#include <math.h>
int main(int argc,char* argv[]){
for(;;){
int q;

return 0;

}

Perplexity of line "int q;": 12.6049311247
Perplexity of line "for(;;){": 4.2904129904

Mask-filling

<mask> </>

Perturbation Process

Sampled from CodeNet s010441177.c

Figure 1: Illustration of the perturbation process. Weights are assigned to code segments based on line-level perplexity, higher
weight means more allocated masks, followed by mask-filling task for slight modifications.

profound modifications. This approach facilitates the gen-
eration of samples that align more harmoniously with the
model’s comprehension, thereby optimizing the number of
required samples. It’s pertinent to note that we abstain from
directly masking tokens that exhibit low log probability. This
decision stems from the observation that models frequently
assign low probabilities to specialized tokens, such as ’#’ or
indentations integral to code formatting, which, in essence,
are not informative for our purpose. Additionally, our ap-
proach offers a distinct advantage over DetectGPT’s random
masking strategy: it enhances the likelihood of generating
samples with reduced PPL values, implying that fewer per-
turbed samples are requisite.

Mask-Filling We have fine-tuned the CodeBERT model
using code corpora from six distinct programming lan-
guages. Then CodeBERT is employed to fill the masks intro-

Algorithm 1: Al-Generated Code Detection
1: procedure DETECT(C)

2: for each line L; in C do // For every line in the code

3: PPL(L;) «+ e ¥ Lity logp(wihwi wa,wi—1) gy
Compute PPL for the line

4: end for

5: W(L;) <« Function of PPL(L;) // Assign mask

weights based on PPL

M + Mask(C,W) // Mask the code based on
weights

C' «+ FillMask(M) // Fill the masked parts

S < a x PPL+ 3 x Std(PPL) 4+« x B // Compute
the score

R + Rank(S,C”) // Rank the score in comparison
with perturbed codes

10: P+ % // Calculate prediction probabil-
ity

11: if P > 0.97 then // Threshold check

12: return 1 // Al generated

13: else

14: return O // Human generated

15: end if

16: end procedure

23157

duced in the input code. Instead of relying solely on the top-
scoring candidate we utilize Nucleus Sampling. This method
ensures a broader spectrum of token candidates, thereby
generating more varied samples.

Scoring and Prediction

We employ a composite strategy to evaluate code submis-
sions, factoring in three distinct metrics: code perplexity
(PPL), standard deviation of PPL across code lines, and code
burstiness. Each metric is assigned a specific weight to com-
pute an overall score. We juxtapose the scores of the original
codes with their perturbed counterparts. A higher ranking
for the original code often indicates a higher likelihood of
it being Al-generated. The rationale behind this is that Al-
generated codes inherently occupy positions at the bottom
of the perplexity curve. During the perturbation process, it
is challenging to produce a sample more preferable to the
model than the Al-generated one, given its grammatical ac-
curacy, coherence, and lower burstiness. Hence, perturbed
versions rarely exhibit a lower score than the Al-generated
samples. Conversely, human-written code might have di-
verse elements that the model finds perplexing. Even minor
modifications can lead to ’optimized’” samples with a score
lower than their original versions. This process is shown in
Figure 2.

Experiments Design
Dataset Preparation

In this section, we will introduce our data collection process
and dataset we created.

CodeNet Dataset The CodeNet dataset (Puri et al. 2021)
by IBM contains 14 million code samples from 4000 coding
problems and covers over 50 programming languages, in-
cluding C++, Python, and Java. Each sample provides infor-
mation on problem description, size, memory use, and CPU
run time. It also includes human-written solutions to these
problems, showcasing different coding strategies. Building
on CodeNet, we refined the data and collect Al-generated
codes for each programming problems.

AIGCode Dataset The AIGCode dataset is derived from
IBM’s CodeNet dataset and is specifically designed to re-
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Figure 2: Illustration of the scoring and prediction procedure. The scoring considers overall perplexity, standard deviation of
perplexity across code lines, and burstiness. A lower score suggests a higher likelihood of the code being generated by a model.

flect the nature of student submissions in educational pro-
gramming tasks. We concentrated our efforts on six pro-
gramming languages that are frequently used in academic
environments: C, C++, C#, Java, JavaScript, and Python. To
ensure the quality and uniformity of our dataset, we applied
a data cleanup process. We filtered codes based on specific
criteria: they needed to have a line length between 10 and
100, an alphanumeric character fraction exceeding 0.25, and
we eliminated all comments and duplicate files. After this
rigorous cleanup, we utilized 80% of the resultant CodeNet
data to fine-tune CodeBERT. Simultaneously, 10% was re-
served for validation purposes, and the remaining 10%, en-
compassing roughly 400 programming problems, was des-
ignated a segment of our test set.

Building on these 400 programming challenges, we em-
ployed the OpenAT’s text-davinci-003 (OpenAl 2022) model
for two main tasks: text-to-code generation and code transla-
tion. The former involves generating code from problem de-
scriptions, while the latter translates code from one program-
ming language to another. All Al-generated codes that suc-
cessfully passed at least one test case were integrated into the
test set. This resulting dataset comprises 5,214 Al-generated
codes. To maintain balance, an equal number of human-
written codes were selected at random from CodeNet, en-
suring they matched in terms of language and programming
problem.

Detector and Baseline

In this section, we introduce a range of Al-generated content
detectors, from open-source to commercial solutions, that
serve as baselines. Each detector possesses its own distinc-
tive strategies and mechanisms. These detectors are com-
pared with our AIGCode Detector on the Al-generated code
dataset to benchmark performance.

GPT2-Detector Leveraging the RoBERTa (Liu et al.
2019) architecture, the GPT2-Detector (Solaiman et al.
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2019) is fine-tuned specifically to identify outputs from the
1.5B-parameter GPT-2 model. This detector is trained on
outputs generated using a combination of temperature and
nucleus sampling. This training methodology ensures it gen-
eralizes well across outputs produced by various sampling
methods.

DetectGPT DetectGPT (Mitchell et al. 2023) introduces
a novel approach to discern machine-generated text through
the analysis of probability curvature. Remarkably, it by-
passes the need for dedicated classifiers or assembling
datasets of real or generated texts. Using out-of-the-box
mask-filling models, like T5 (Raffel et al. 2020) and mT5
(Xue et al. 2020), it gauges the curvature of a model’s out-
put probability distribution. In practice, DetectGPT exhibits
superior discriminative capabilities over other zero-shot de-
tection methods.

RoBERTa-QA Derived from the RoBERTa language
model, RoOBERTa-QA (Guo et al. 2023) is designed for text
classification, particularly in question-answering contexts.
By accepting paired inputs, namely a question and its corre-
sponding answer, the model can discern Al-generated con-
tent with higher accuracy. A distinctive token is employed to
merge the question and its answer, optimizing the classifica-
tion process.

GPTZero Renowned as a premier Al detector, GPTZero
(Tian and Cui 2023) specializes in determining if content, be
it a sentence, paragraph, or entire document, originates from
a large language model, for instance, ChatGPT. The detec-
tion strategy relies on metrics like perplexity and burstiness.
Having been trained on a vast corpus encompassing both
human and Al-generated English texts, GPTZero boasts of
serving millions of users worldwide, spanning various sec-
tors such as education, publishing, and legal.

The Writer AI Detector This freely accessible tool aims
to discern Al-generated content by identifying specific tex-
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tual patterns that AI models frequently produce (Writer.com
2023). The detection criterion encompasses various aspects,
from recurrent phrasal patterns and sentence structures to the
overarching tone of the content.

Research Questions

RQ1: How Does AIGCode Detector Compare With Cur-
rent Open-Source and Commercial Text Detectors? To
ensure that the AIGCode Detector stands up to the de-
mands of current technology, we benchmark its performance
against a selection of five renowned open-source and com-
mercial text detectors.

RQ2: How Does the Perplexity Calculation Influence the
Performance of AIGCode Detector? The perplexity cal-
culation model serves as the foundation for our AIGCode
Detector and can significantly impact its efficacy.

RQ3: How Robust Is the AIGCode Detector Against
Attacks? In real-world applications, codes generated by
Large Language Models (LLMs) often undergo modifica-
tions before submission. Users might apply regular rewrites
to Al-generated codes or adjust certain hyper-parameters of
LLMs to bypass detection. We designed a variety of muta-
tion methods to try to bypass the detector.

Metrics

To comprehensively assess the effectiveness, we used fol-
lowing metrics:

AUC. The AUC (Area Under the Receiver Operating
Characteristic Curve) score of a detector measures its abil-
ity to differentiate between Al-generated text (positive class)
and human-written text (negative class). A score closer to
1.0 signifies effective differentiation, while a score around
0.5 indicates the detector’s performance is equivalent to ran-
dom chance.

FPR. FPR (False Positive Rate) measures the proportion
of human-written code that is incorrectly identified as Al-
generated by the detector.

FNR. FNR (False Negative Rate) quantifies the propor-
tion of Al-generated code that the detector mistakenly clas-
sifies as human-written.

Bypass Rate. For the robustness test, we assess the abil-
ity of our detector to identify mutated Al-generated codes
by BypassRate = % Here, the numerator denotes
the count of Al-generated codes that, post-mutating, eluded
the detector’s scrutiny, while the denominator signifies the
overall count of Al-generated codes subjected to mutating
with the aim of circumventing the detector.

Hyper-Parameters

For fine-tuning CodeBERT, we employed 5.8G of code
sourced from CodeNet, spanning 6 distinct programming
languages. The training process lasted for 500,000 steps, us-
ing a batch size of 32, and was executed on two GTX 4090
GPUs. From this process, we obtained 6 distinct CodeBERT-
tuned models, each tailored for a specific programming lan-
guage. We conduct mask-filling task using CodeBERT with
a masking percentage of 5%. For calculating perplexity, we
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mainly leveraged the OpenAl’s text-davinci-003 model. In
contrast to the DetectGPT method which required 500 sam-
ples, our approach significantly reduced the sample require-
ment to just 50. This efficiency is attributed to our strategic
mask selection mechanism. For Al-generated codes using
text-davinci-003, the temperature was set to 0.6, and top_p
to 0.1. Higher temperature and top_p values increased the er-
ror rate, while lower values tended to produce more similar
answers.

Main Results

In this section, we will present experiment results along with
research questions in an attempt to answer each question.

RQ1: Performance of AIGCode Detector Against
Existing Detectors

To evaluate the efficacy of the AIGCode Detector, we bench-
mark its performance against five prominent open-source
and commercial text detectors. Our comparisons are con-
ducted on the AIGCode dataset. Within the AIGCode De-
tector framework, we employ CodeBERT as the mask-filling
model and text-davinci-003 as the primary scoring model.

For those detectors giving probability, we choose its best
performance threshold. For detectors having requirement of
input length, we truncate and use the prior tokens as input.
Results is shown in Table 1. AIGCode Detector has rela-
tively high AUC on all programming languages, as well as
low FPR and FNR.

RQ2: Influence of Models Used to Calculate
Perplexity

To investigate the role of perplexity calculation models in
the effectiveness of the AIGCode Detector, we utilized a va-
riety of Large Language Models including GPT2-x1 (Rad-
ford et al. 2019), GPT-J (Wang and Komatsuzaki 2021),
GPT-NeoX (Black et al. 2022), and text-davinci-003 (Ope-
nAl 2022), to compute perplexity scores. Additionally, we
examined how alterations in the masking percentage of
CodeBERT can impact the detector’s performance when
aligned with different scoring models. In Figure 3, we chose
the C language subset as our test data. Figure 3 gives in-
sights into how different perplexity calculation models per-
form in terms of AUC as the masking in the test code varies.
It particularly highlights the heightened sensitivity of large
parameter models like ’text-davinci-003,” which are trained
on specialized code corpora.

In the Table 2, we employed these models to compute per-
plexity and set 15% mask percentage. It shows models with
larger parameters have a better grasp of code semantics and,
as a result, perform better in detection.

RQ3: Robustness Against Attacks

We evaluated the robustness of the AIGCode Detector
against several adversarial attack methods designed specifi-
cally to target such detectors. We selected 560 Al-generated
C codes from the AIGCode dataset, all of which were accu-
rately detected by both GPTZero and the AIGCode Detec-
tor. Subsequently, we employed four mutation strategies to
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C C++ C# Java JavaScript Python
Detectors AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR
GPT2-Detector 0.64 0.83 0.03 0.68 0.84 0.05 046 092 0.13 044 091 0.11 0.39 090 0.26 0.38 0.89 0.25
DetectGPT 0.56 0.00 1.00 0.42 0.00 1.00 0.49 0.00 1.00 0.43 0.00 1.00 0.51 0.00 1.00 0.49 0.00 1.00
RoBERTa-QA 0.68 0.00 1.00 0.53 0.00 1.00 0.48 0.00 1.00 0.64 0.00 1.00 0.52 0.00 1.00 0.60 0.00 1.00
Writer 0.78 0.13 091 0.62 0.15 0.98 0.52 0.13 091 0.54 0.01 096 0.56 0.10 0.89 0.51 0.08 0.97
GPTZero 0.90 0.06 0.20 0.83 0.20 0.68 0.29 0.18 0.96 0.28 0.18 0.88 0.41 0.08 0.90 0.59 0.00 1.00
CGCode Detector 0.95 0.16 0.08 0.88 0.13 0.02 0.86 0.12 0.07 0.82 0.15 0.05 0.81 0.21 0.15 0.92 0.14 0.03
Table 1: Performance of Different Detectors Across Six Programming Languages.
C C++ C# Java JavaScript Python
Detectors AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR
GPT2-xl 0.79 0.28 0.12 0.75 030 0.15 0.73 0.29 0.14 0.72 0.27 0.13 0.71 0.28 0.16 0.69 0.32 0.17
GPT-J 0.82 025 0.18 0.76 0.27 0.19 0.76 0.24 020 0.77 0.26 0.21 0.79 0.25 022 0.78 024 0.23
GPT-NeoX 0.87 0.26 0.24 0.83 0.27 025 0.80 026 0.26 0.74 025 0.25 0.75 0.27 0.27 0.83 0.28 0.28

Table 2: Performance for Different Perplexity Calculation Models of AIGCode Detector.

AUC vs. Mask Percentage for Different PPL calculation Models

0.9 1

0.8

0.6

—e— GPT2-xl (2B)
GPT-] (6B)

—%— GPT-NeoX (20B)

—=— text-davinci-003 (175B)

0.5 1

15 20 25 30

Mask Percentage

5 10
Figure 3: Illustration of the AUC vs. Mask Percentage for
Various Perplexity Calculation Models. Model text-davinci-
003 has a greater sensitivity on codes compared to other
models. Consequently, text-davinci-003 will consistently re-
sults in an increase in the perplexity of perturbed samples
while its mask percentage higher than 15%, which make al-
most all perturbed samples’ PPL is larger than original code.

generate four derivative subsets, with the primary objective
of challenging and potentially evading detection by the said
detectors.

Regular Rewrite: To enhance the human-like quality of
Al-generated code, we employed two primary strategies.
Firstly, using a curated lexicon of function and variable
names, we systematically replaced 80% Al-chosen names
with alternatives from our list. Secondly, guided by specific
stylistic conventions, we made targeted character replace-
ments.
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Sampling Techniques: These techniques dictate the out-
put randomness and determinism of Al-generated content,
impacting its resemblance to human-generated content. We
set Temperature Sampling (Top-k) to 0.9, Nucleus Sampling
(Top-p) to 0.5 to create more creative and random answers.

o Temperature Sampling/Top-k: By varying the sampling
temperature, we can influence the randomness of the out-
put. A higher temperature (closer to 2) produces more
randomness, whereas a lower value (closer to 0) results
in more deterministic outputs.

Nucleus Sampling/Top-p: This approach selects tokens
based on the cumulative probability. Using a smaller per-
centage, like 0.1, the output is constrained to the top 10%
probable tokens, leading to more deterministic and co-
herent text.

Smarter Prompts: Effective prompting plays a pivotal
role in steering LLMs towards desired outputs. Utilizing
more precise and cleverly formulated prompts can induce
LLMs to generate outputs that are close to human-produced
content. We add several prefix-prompts for code generation
task, such as: ”Please generate a code answer written in a
more casual, human-like style with high randomness as if
a beginner programmer or a hobbyist wrote it. I want the
code to appear less formal and more like something some-
one might quickly jot down.”

Code Blending: Integrating Al-generated segments with
human-authored parts can craft a seamless blend that chal-
lenges detection. Instead of entirely Al-generated or human-
written content, merging segments from both can produce a
code that retains human-like irregularities while benefiting
from ATI’s efficiency. We truncated half of the human-written
code and prompted the model with the program specification
to complete the remaining portion.

Table 3 indicates ’Sampling Techniques” and “Code
Blending” strategy significantly challenge detectors, result-
ing in high bypass rates. The variability introduced by in-
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Detector Mutation Set Bypass Rate
Regular Rewrite 0.22
Sampling Techniques 0.32
GPTZero Smarter Prompts 0.20
Code Blending 0.87
Regular Rewrite 0.13
Sampling Techniques 0.37
AIGCode Detector Smarter Prompts 0.17
Code Blending 0.75

Table 3: Bypass Rates for Different Detectors and Mutation
Sets.

creased temperature in sampling and the hybrid nature of
code blending effectively mask Al-generated code patterns,
making detection difficult.

Related Work
Code Generation Using Large Language Models

Al chat-bots like ChatGPT and Claude, while designed for
natural language interactions, have shown proficiency in
code-related tasks due to their training on vast datasets of
source code and documentation. This enables them to handle
tasks such as code completion, bug fixing, and code synthe-
sis. In a more specialized vein, OpenAI’s Codex, an offshoot
of GPT-3 (Brown et al. 2020), is tailored for programming
tasks and shines in code generation and comprehension. A
prime example of its application is GitHub Copilot (GitHub
2021), an Al-assisted coding tool co-developed by GitHub,
OpenAl, and Microsoft. It intelligently offers real-time code
suggestions, drawing from the user’s coding context or a de-
scriptive comment, and is adept at understanding both the
active file and its associated files. Similarly, tools like Code-
Gen (Nijkamp et al. 2022), Amazon CodeWhisperer (Ama-
zon Web Services 2022), and CodeGeeX (Zheng et al. 2023)
harness the power of Al to generate code based on natural
language inputs.

AI-Generated Text Detectors

Classical machine learning techniques, such as bag-of-
words combined with logistic regression, have been foun-
dational, with studies like those by Solaiman et al. (So-
laiman et al. 2019) employing them to differentiate GPT-2
outputs from human writing. Log probability-based meth-
ods have been introduced, with Solaiman (Solaiman et al.
2019) using TGM to evaluate total log probability and GLTR
(Gehrmann, Strobelt, and Rush 2019) offering statistical
techniques to pinpoint differences between GPT-2 and hu-
man content. The DetectGPT (Mitchell et al. 2023) em-
ploys log probabilities produced by the targeted model and
random perturbations from a generic pre-trained language
model (like TS). Additionally, leveraging pre-trained lan-
guage models through fine-tuning has emerged as a domi-
nant strategy. For instance, GROVER (Zellers et al. 2019)
utilizes a linear classifier on its base model to outclass other
detectors, emphasizing the importance of public availability
of such generators for research. Meanwhile, the fine-tuned
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RoBERTa model (Uchendu et al. 2020) achieves approx-
imately 95% accuracy in detecting GPT-2-generated web
pages, benefiting from its inherent bidirectional representa-
tions. Kirchenbauer et al. (Kirchenbauer et al. 2023) propose
a watermarking framework for large language models. This
method embeds signals into generated text that remain algo-
rithmically detectable, yet are imperceptible to humans.

Discussion

In this section, we recognize the inherent limitations of our
current methodology and explore the potential avenues for
future research.

Limitations: A key limitation is the dependency on a
single generative model (i.e. OpenAI’s text-davinci-003), a
mainstream GPT-3.5 variant trained on code. We haven’t
tested our approach across a diverse set of code genera-
tion models. This singular reliance could introduce biases.
As the DetectGPT research suggests, when the generation
and PPL calculation models are identical, detection accu-
racy might be slightly improved. Another limitation is our
balanced dataset, the balanced dataset provides a fair base-
line, illustrating model performance without the influence of
class imbalance. In contrast, the unbalanced dataset reflects
potential scenarios the model may encounter in real-world
settings, where data is often imbalanced.

Future Work: To address the limitations identified, fu-
ture research will focus on evaluating the proposed ap-
proach across a broader spectrum of code generation mod-
els, mitigating potential biases. We also plan to delve deeper
into scenarios with real-world data imbalances, refining
our methodology to ensure consistent and reliable detec-
tion accuracy. Besides, our approach currently depends on
code rewriting, which is both time-consuming and resource-
intensive. To address these challenges, we’re considering the
adoption of supervised models. The goal is to train a super-
vised model that can efficiently detect Al-generated code by
recognizing specific perplexity patterns instead of just rely-
ing on code embeddings. By integrating deep learning with
log probability techniques, we anticipate improved detection
of Al-generated code.

Conclusion

In conclusion, we present the AIGCode Detector, an inno-
vative tool adept at pinpointing Al-generated code assign-
ments using perplexity analysis and targeted perturbations.
Our evaluations highlight its superiority over current detec-
tors. Our tool not only serves as a strong defense for aca-
demic integrity but also promotes the judicious use of Al
in programming education. In future pursuits, we anticipate
refining this tool by exploring its efficiency across a wider
range of Al models and real-world applications.
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