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Abstract

Simultaneous Coalition Structure Generation and Assign-
ment (SCSGA) is an important research problem in multi-
agent systems. Given n agents and m tasks, the aim of SC-
SGA is to form m disjoint coalitions of n agents such that
between the coalitions and tasks there is a one-to-one map-
ping, which ensures each coalition is capable of accomplish-
ing the assigned task. SCSGA with Multi-dimensional Fea-
tures (SCSGA-MF) extends the problem by introducing a d-
dimensional vector for each agent and task. We propose a
heuristic algorithm called Multiple Distance Metric (MDM)
approach to solve SCSGA-MF. Experimental results confirm
that MDM produces near optimal solutions, while being fea-
sible for large-scale inputs within a reasonable time frame.

Problem Formulation
Let A = {a1, . . . , an} be a set of n heterogeneous agents
and T = {t1, . . . , tm} be a set of m independent tasks. The
agents and tasks are each represented by d features rep-
resenting problem attributes such as skills or resources of
the agents, and likewise the skills or resources required to
perform the tasks. Formally, the feature vector associated
with agent ai ∈ A is S(ai) = (s1(ai), . . . , sd(ai)) and
with task tj ∈ T is S(tj) = (s1(tj), . . . , sd(tj)). Here
si(.) ∈ R is the feature value for the i-th skill or resource.
Any coalition of agents Cj = {ai1 , . . . , ai|Cj |

} ⊆ A is as-

signed a d-dimensional value v(Cj) = ( 1
|Cj |
∑|Cj |

l=1 S(ail)).
Let dM(x, y) be a measure of distance between two vectors
x and y. In this paper we address the following problem of
SCSGA with Multi-dimensional Features (SCSGA-MF):
Input: A tuple {A, T , S(A), S(T ), v}; where S(A) =
{S(a1), . . . , S(an)}, S(T ) = {S(t1), . . . , S(tm)} and v
provides the values for all v(Cj).
Output: A CS = {C1, . . . , Cm} over A that minimizes∑m

j=1 dM(v(Cj), S(tj)) to prioritize the assignment of
agents that are closest to each task.
The following constraints must be satisfied by any two coali-

tions Cj , Ck,∈ CS : Cj , Ck 6= ∅, Cj ∩ Ck = φ,
m⋃
j=1

Cj = A.
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Proposed Algorithm
For SCSGA-MF, we design a heuristic to iteratively assign
agents to tasks in two phases. In the first phase, based on
an optimization criteria, agents are assigned until the re-
quirements of all tasks are fulfilled. In the second phase,
any remaining free agents are assigned to tasks in a bal-
anced manner to minimize a second optimization criteria.
Our heuristic operates by maintaining two lists: one for
unfulfilled tasks (initially containing all tasks, denoted as
L(T ) = {t1, . . . , tm}, and the other for free agents (initially
containing all agents, denoted as L(A) = {a1, ..., an}). The
heuristic also precomputes a distance matrix, Dc ∈ Rn×m,
whereDc(i, j) provides a distance measure between vectors
S(ai) and S(tj). The choice of a specific distance metric for
Dc can influence the heuristic’s performance by constrain-
ing it to certain agent and task distributions. To enhance the
versatility of our Multiple Distance Metric (MDM) heuristic
across a broader range of agent and task distributions (as
proposed by (Zhang et al. 2022)), we compute and com-
bine a set of nM distance metrics {d(1)M , ..., d

(nM)
M } to form

Dc. Thus, the combined distance matrix is computed as
Dc(i, j) =

∑nM
k=1 d

(k)
M (S(ai), S(tj)).

Given this initial setup, in the first phase, MDM iter-
atively assigns a single unique free agent to each unful-
filled task. These iterations continue until all tasks have
been fulfilled. Let U ∈ {0, 1}n×m be an assignment ma-
trix, which allows each agent ai to be assigned to exactly
one task tj by the imposed constraint ∀i,

∑m
j=1 U(i, j) =

1. In each iteration, every unfulfilled task tj ∈ L(T )
is assigned a single unique free agent ai ∈ L(A),
so as to optimize the following problem of the Par-
tial Sum of the Distances of the Agent-Task Pairs (PS-
DATP): min

∑|L(T )|
j=1

∑|L(A)|
i=1 U(i, j)Dc(i, j), subject to

∀i,
∑m

j=1 U(i, j) = 1. This problem is solved optimally by
the Hungarian Algorithm (HA). If |L(T )| ≤ |L(A)|, the HA
identifies |L(T )| agent-task pairs that minimize PSDATP,
thus assigning a single unique free agent to each task. How-
ever, if in an iteration |L(T )| > |L(A)|, which can hap-
pen when there are fewer free agents left in L(A) than un-
fulfilled tasks, the HA identifies |L(A)| optimal agent-task
pairs that minimize PSDATP, thus assigning the remaining
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agents to a subset of the unfulfilled tasks. After each iter-
ation, L(A) is updated to remove agents assigned in that
iteration, and L(T ) is updated by removing tasks that have
had all their requirements fulfilled. The first phase of MDM
terminates when either L(T ) = ∅ or L(A) = ∅. Thus,
three possible outcomes can occur at the end of the first
phase: (1) If L(T ) 6= ∅ and L(A) = ∅, the MDM heuris-
tic terminates with no free agents but unfulfilled tasks re-
maining. (2) If L(T ) = ∅ and L(A) = ∅, then MDM
terminates with no free agents and all tasks fulfilled. (3)
If L(T ) = ∅ and L(A) 6= ∅, then all tasks are fulfilled,
yet free agents remain. The second phase of MDM only
occurs when the third outcome arises. During this phase,
the remaining free agents are assigned to tasks in a bal-
anced manner until no free agents are left. In each itera-
tion, a single free agent is assigned to a unique task by
optimizing a similar problem of Partial Sum of the Dis-
tances to Agents: min

∑m
j=1

∑|L(A)|
i=1 U(i, j)Dc(i, j), sub-

ject to ∀i,
∑m

j=1 U(i, j) = 1. Here the HA is used to iden-
tify min{|L(A)|,m} optimal assignments in each iteration.
At the end of the second phase MDM thus terminates with
no free agents and all tasks being fulfilled.

Once MDM terminates, all agents assigned to a task
are identified as belonging to a coalition Cj , whose
value is the mean of the agent vectors v(Cj) =
1
|Cj |

∑
ai∈Cj

S(ai). The coalition structure solution value
as per the multiple distance metrics can thus be calculated
as
∑m

j=1

∑nM
k=1 d

(k)
M (v(Cj), S(tj)). We also devise an Ex-

act Algorithm (EA) for SCSGA-MF. EA explores all possi-
ble m-sized coalition structures using a brute-force approach
and selects the coalition structure that produces the mini-
mum solution value. Notice that the total number of pos-
sible coalition structures over n agents is denoted as Bn,
where αn

n
2 ≤ Bn ≤ nn. Hence, EA incurs a high computa-

tional cost, expressed asO(
{
n
m

}
) ≡ O(mn). In comparison,

MDM is more efficient: (i) If m ≥ n, then only one itera-
tion of the HA is required, incurring a cost of O(n2m). (ii)
If m < n, then a total of dn/me iterations are needed, and
each iteration runs the HA forO(nm2). Thus, MDM runs in
O(min{dn/menm2, n2m}) = O(n2m) time.

Data Set Solution Value Run Time
MDM EA MDM EA

UPD 51.94 46.83 0.002 100.64
NPD 111.24 111.10 0.001 102.09
SUPD 4.94 4.54 0.001 95.07
SNPD 3.86 3.79 0.001 96.6
FD 104.19 99.81 0.002 95.7
β 47.06 46.65 0.001 101.73

Table 1: Given 13 agents and 3 tasks. The average solution
values, run times (in seconds) are shown for MDM and EA.

Experiments & Discussions: To evaluate the effectiveness
of the MDM heuristic compared to EA, we follow the stan-
dard benchmarks used in (Präntare, Appelgren, and Heintz
2021). Specifically we use Uniform Probability Distribution
(UPD), Normal (NPD), Sparse Uniform (SUPD), Sparse

n 1e+4 2e+4 3e+4 4e+4 5e+4 6e+4
UPD 7 26 70 118 172 253
NPD 10 45 149 391 549 675
SUPD 8 28 67 114 169 253
SNPD 9 48 134 261 397 651
FD 9 59 128 277 481 785
β 8 30 68 114 172 247

Table 2: Average run times (in seconds) for increasing num-
ber of agents (n) and tasks (m=d0.3×ne)

Normal (SNPD), F (FD), and Beta (β) to generate the values
of the d-dimensional vectors (we consider d = 5) for the
agents and tasks. For the set of nM := 7 distance metrics
{d(1)M , ..., d

(7)
M}, we consider metrics from two categories.

The first category consists of Minkowski metrics `p(x, y) =
(
∑d

i=1 |xi − yi|p)1/p, where we explore four such metrics
with p values of 0.5, 1, 2, ∞. The three other metrics be-
long to the second category, defined on vector dot products.
The first is the cosine distance dc(x, y) = 1 − xT y

||x||2 ||y||2 ,
and the other two are polynomial distances dp(c,d)(x, y) =

α−((1/e)xT y+r)e, where α = maxx,y{((1/e)xT y+r)e},
with {r, e} as {0, 2} and {1, 4} respectively. Thus the set
of seven distance metrics {d(1)M , ..., d

(7)
M} are respectively

{l0.5, l1, l2, l∞, dc, dp(0,2), dp(1,4)}. To provide a consistent
input space for all metrics to operate on, all input values are
min-max scaled to [0,1]. Furthermore, each distance matrix
computed from these metrics is normalized to [0,1] using
their scalar min-max values, to facilitate their fair contribu-
tion towardsDc. Given 13 agents and 3 tasks, Table 1 shows
the average solution values and run times of MDM and EA.
EA can efficiently solve problems with up to 13 agents and
3 tasks quickly, but for 14 agents, its run time grows signifi-
cantly, taking 4261 seconds for UPD. Hence, in Table 1, we
report the results for MDM and EA with 13 agents and 3
tasks. Table 1 reveals that MDM’s solution values closely
match EA’s, with minimal deviations, particularly for FD
and UPD. Additionally, MDM consistently outperforms EA
in terms of speed, finishing all cases in just 1 millisecond.
Table 2 illustrates MDM’s ability to efficiently handle large-
scale inputs, accommodating up to 60,000 agents and 18,000
tasks within a reasonable time frame.
Conclusion: The efficacy of the MDM heuristic indicates
that machine learning techniques which learn best fit param-
eterized distance metrics (Zhang et al. 2022) may succeed
on the large-scale SCSGA-MF problem.
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