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Abstract

Temporal knowledge graph reasoning is an essential task that
holds immense value in diverse real-world applications. Exist-
ing studies mainly focus on leveraging structural and sequen-
tial dependencies, excelling in tasks like entity and link pre-
diction. However, they confront a notable interpretability gap
in their predictions, a pivotal facet for comprehending model
behavior. In this study, we propose an innovative method, LS-
GAT, which not only exhibits remarkable precision in entity
predictions but also enhances interpretability by identifying
pivotal historical events influencing event predictions. LSGAT
enables concise explanations for prediction outcomes, offering
valuable insights into the otherwise enigmatic “black box” rea-
soning process. Through an exploration of the implications of
the most influential events, it facilitates a deeper understanding
of the underlying mechanisms governing predictions.

Introduction
Temporal Knowledge Graph Reasoning problem aims to pre-
dict missing facts on Temporal Knowledge Graph (TKGs).
For example, given a specific query (s, r, ?, t) or (?, r, o,
t), we want to predict the missing entity according to a se-
quence of TKGs G0:T . In this work, we mainly focus on
the extrapolation scenario where t > T. Although substantial
research endeavors have been dedicated to advancing repre-
sentation learning techniques for TKGs, it is imperative to ac-
knowledge that there still exist several significant challenges
that need to be solved: (1) Structural dependencies: how to
comprehend and model the complex structural dependencies
among concurrent facts, while concurrently accounting for
the inherent heterogeneity within the knowledge graph; (2)
Sequential patterns: how to effectively capture the evolving
nature of specific events that reflect the behavioral trends
and preferences of entities and relations; (3) Interpretability:
despite the commendable performance achieved by existing
methods in the task, they remain enigmatic ”black box”.

To solve challenges (1) and (2), existing methods like
RE-GCN(Li et al. 2021) employ RNN to capture sequen-
tial patterns among adjacent timestamps and R-GCN for
aggregating neighboring information, encompassing struc-
tural dependencies. However, they failed to account for the
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varying significance of different neighbors within their ag-
gregation mechanism, consequently hindering their ability to
accurately capture the intricacies of structural dependencies.
Regarding challenge (3), there is a limited body of research
addressing the aspect of interpretability within GNN-based
TKG Reasoning.

To address the aforementioned three challenges, we
present our solution, LSGAT, for TKG Reasoning. To ef-
fectively capture structural dependencies and sequential pat-
terns, we propose an attention-based relation-aware GNN
to learn evolving representations of entities. Furthermore, to
enhance interpretability, inspired by (Ying et al. 2019), we
devise an interpretable module to identify the most influential
events during the prediction process.

Methodology
Our proposed LSGAT consists of two components: Reason-
ing Module and Interpreting Module, where the former seeks
to reason for future events stemming from historical events
while the latter provides reasonable interpretability for such
predictions.
Reasoning Module. We aim to predict future events by ex-
tracting the expressive structural dependencies and sequen-
tial patterns from historical events. To capture the evolution
pattern of events in the short term, we design a hierarchical
relational graph attention network, called HRGAT, which
considers both nodes and edge, as our semantic encoder to
obtain the embedding of each entity ht at timestamp t. For a
KG at timestamp t, an object entity at layer l could get infor-
mation from its neighbor entities and corresponding relations,
and then update its representations at the next l+1 layer, i.e.,
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where hls,t, hlo,t, rlt denote the lth layer embedding of entities
s, o and relation r at t; hls,t + rlt implies the translational
property between the subject entity and the corresponding
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object entity via the relation r at t; αl
s,o denotes the influ-

ence coefficient between entity s and o in relation r, Ft de-
notes all facts that happened at t; Wl

1 and a denote learnable
weights, and g(·) is the LeakyReLU function. In addition,
we use GRU to maintain the continuity of the development
of events. For the long-term spatial and temporal dependen-
cies of entities, we utilize R-GCN as a semantic aggrega-
tor to obtain the embeddings of all entities and relations
based on the constructed global graph Φt, which contains M
subgraphs:{Gt−M ,Gt−M+1, · · · ,Gt−1}. After that, we uti-
lize ConvTransE as decoder to calculate the probability of
interaction between subject s and object o under the relation
r at time t. Formally,

p(o|s, r,Ht,Rt) = σ(HtConvTransE(hs,t, rt), (2)

where σ(·) is the Softmax function; Ht,Rt denote the ob-
tained embedding matrix for entities and relations at times-
tamp t; hs,t, ho,t, rt are the embeddings of s, o, r in Ht and
Rt, respectively. After obtaining the probability pshort, plong

from short term and long term, the final probability is ob-
tained by weighted summation:

pfinal = α× plong + (1− α)× pshort. (3)

Interpreting Module. We choose to provide explanations
for the predicted events by identifying pertinent influential
historical events. We observe that a node o’s computation
graph tells the GNN how to generate o’s embedding ho, which
determines the final prediction. Intuitively, our goal is to
elucidate the model’s prediction by deriving GS , where GS

is a small subgraph of the computation graph. Then, in such
GS , we can identify the most influential historical events
supporting the predicted future events. In practice, a mask
of adjacency matrix M ∈ Rn×n is learned to obtain GS .
Formally, to generate an explanation in terms of GS , our
optimization target is:

min
M

−
C∑

c=1

1 [y = c] logP (Y = y|G = Ac ⊙ ψ(M)), (4)

where 1 is an indicator function, Ac denotes the adjacent ma-
trix of computation graph and ψ(·) is the Sigmoid function.

Experiments
To Evaluate the effectiveness of our proposed method, we
conduct experiments on two typical TKG datasets: ICEWS18,
and ICEWS05-15. We compare our method with the follow-
ing baselines: RE-GCN(Li et al. 2021), CyGNet(Zhu et al.
2021), CENET(Xu et al. 2023), and HGLS(Zhang et al. 2023).
Besides, we also compare LSGAT with different variants:
LSGAT-L, which only considers the long-term evolution de-
pendency; LSGAT-S, which only considers the short-term
dependency. We evaluate the LSGAT and baselines using
three widely employed metrics in TKG Reasoning: MRR and
Hits@{1, 10} under the raw setting.
Main results. Table 1 shows the experimental results of all
models on these two datasets and we have the following
remarks. LSGAT outperforms all baselines in non-trivial mar-
gins. GNN-based models achieve better performances than

Method
ICEWS18 ICEWS05-15

MRR H@1 H@10 MRR H@1 H@10

RE-GCN* 29.11 19.10 48.90 45.55 34.34 66.57
CyGNet 26.46 16.45 46.43 39.18 27.92 60.52
CENET 26.45 17.57 44.25 39.00 28.71 58.82
HGLS 29.27 19.20 49.72 46.19 35.21 67.15

LSGAT-L 27.01 17.45 45.83 39.44 28.45 61.28
LSGAT-S 29.24 19.10 49.35 45.34 34.05 66.62

LSGAT 30.06 19.86 50.24 46.92 35.71 68.04

Table 1: Performance Comparison. Noted that, * indicates
that we remove the static information from the model to
ensure the fairness of comparisons between all baselines.

influential events weights

(Russia, Accuse, Israel, 9.18) 0.3
(Putin, Make statement, Israel, 9.18) 0.35
(Konashenkov, Make statement, Israel, 9.17) 0.1
(Israel, attack, Syria, 9.12) 0.1

Table 2: Case study: the most influential events and
their corresponding weights for the predicted future event:
(Government(Russia), Accuse, Israel, 9.19) in ICEWS18.

copy-mechanism based models such as CyGNet and CENET.
Moreover, our LSGAT outperforms all other GNN based
methods which present the superiority of the proposed LS-
GAT. Furthermore, it is evident that LSGAT outperforms both
LSGAT-L and LSGAT-S across all evaluation metrics. This
observation validates that the amalgamation of long-term and
short-term dependencies effectively and adequately captures
the evolving characteristics of events.
Case study. Table 2 demonstrated the interpretability of our
model. LSGAT can provide the most influential historical
events and their corresponding weights for the prediction,
e.g., (Government(Russia), Accuse, Israel, 9.19).
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