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Abstract

The maritime industry’s continuous commitment to sustain-
ability has led to a dedicated exploration of methods to re-
duce vessel fuel consumption. This paper undertakes this
challenge through a machine learning approach, leveraging
a real-world dataset spanning two years of a ferry in west
coast Canada. Our focus centers on the creation of a time se-
ries forecasting model given the dynamic and static states,
actions, and disturbances. This model is designed to predict
dynamic states based on the actions provided, subsequently
serving as an evaluative tool to assess the proficiency of
the ferry’s operation under the captain’s guidance. Addition-
ally, it lays the foundation for future optimization algorithms,
providing valuable feedback on decision-making processes.
To facilitate future studies, our code is available at https:
//github.com/pagand/model optimze vessel/tree/AAAI.

Introduction
Numerous researchers explore models for vessel Fuel Con-
sumption (FC) prediction using log-based and sensor-based
data. Log-based methods can be associate with human errors
and suffer from lower sample frequency. Sensor-based mod-
els, follow a process, including data normalization and fea-
ture engineering. Nevertheless, a gap exists in the literature
as most models lack real-time ship operator input and envi-
ronmental considerations. Further investigation is needed for
feature selection, multicollinearity, non-stationary data han-
dling, and better integration of domain knowledge with data-
driven approaches. Agand et al. (2023a) propose a compre-
hensive approach integrating domain knowledge and data-
driven techniques, incorporating physical insights, correla-
tion matrices, and PCA. However, it does not account for
data temporality, which may impact performance.

In this work, a reality-based time series forecasting model
with the primary objective of auto-regressively predicting
states of a ferry is proposed. For this analysis, an operational
dataset measured on the ferry every minute over a two year
period was used. These records capture the sensor data from
a ferry operating in the west coast of Canada for more than
3000 transits along a constant route. This predictive model’s
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Figure 1: Proposed sequential model architecture

pivotal role lies in its ability to generate a precise represen-
tation of the ship’s states such as location -latitude (LAT)
and longitude (LON)-, fuel consumption (FC), and speed
over ground (SOG) in future steps. According to Fig. 1, we
utilized the previous predicted values in an auto-regressive
manner, with information about external disturbance (e.g.
wind, current, weather, etc.), and static features (such as
direction of movement, docking area, elapsed time of trip,
etc). Finally, we open-sourced a reinforcement learning (RL)
compatible dataset to D4RL framework in addition to a Gym
environment (Fu et al. 2020).

Preprocessing
In this stage, outlier management was addressed using the
1.5 IQR method, treating them as missing data points and
employing various imputation techniques for isolated miss-
ing values within trips. After devising domain knowledge on
draft, cargo, and waves, we developed a clustering method
to assign operating modes (mode 1 for autopilot travel and
mode 2 for docking regions) based on factors like speed, ac-
celeration, and shaft speed. Wind factors were incorporated
through squared relative wind speed and categorized wind
direction. Feature selection involved computing the Pearson
correlation coefficient and leveraging domain knowledge for
decision-making. Feature engineering introduced accelera-
tion and displacement, and we normalized data values to a
0-1 range. Additionally, power transformations were applied
to features with skewed distributions, aiming to align them
more closely with Gaussian distributions.
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Metric NAR NAR
+GRU

AR AR
+GRU

FC
RMSE 0.1876 0.0769 0.0777 0.0608

Std. 0.0856 0.04049 0.0605 0.0365
R2 -0.023 0.296 0.298 0.701

SOG
RMSE 0.1412 0.0322 0.0435 0.0304

Std. 0.0854 0.0178 0.0451 0.0179
R2 0.091 0.602 0.404 0.793

LAT.
RMSE 0.1023 0.0684 0.0613 0.0385

Std. 0.0712 0.0167 0.0133 0.0137
R2 0.281 0.6193 0.685 0.874

LON.
RMSE 0.1370 0.1097 0.0960 0.0604

Std. 0.0842 0.0267 0.0225 0.0157
R2 0.404 0.671 0.746 0.899

Table 1: Prediction results for non-auto-regressive (NAR)
and auto-regressive (AR) w/o GRU refinement.

Modeling
As shown in Fig. 1, the framework consists of two compo-
nents: a pretrained transformer model called informer (Zhou
et al. 2021), responsible for executing time series forecast-
ing and feature fusion. Inspired from (Agand et al. 2023b),
it is followed by a Gated Recurrent Unit (GRU) module
employed to predict the residual, thereby mitigating auto-
regressive cumulative errors within the predicted outcomes.
The determination of the sequence length necessitates two
crucial considerations. Tt must be of sufficient to facilitate
accurate forecasting while it should avoid excessive elonga-
tion, as it signifies the time interval to wait in each trip before
making new predictions. Following trade-offs, a sequence
length of 25 minutes, coupled with a prediction horizon of 5
minutes, was deemed the optimal configuration.

Environment
We have open sourced a RL compatible dataset for offline
RL setting with a gym environment that can be served as
reality-based simulator. We constructed an offline dataset
tailored for conventional RL frameworks, comprising cur-
rent/next observations, actions, rewards, and termination in-
dicators. The actions encompass heading, shaft speed, and
mode selections. For observations, we employ both current
and next states, encompassing static factors such as trip start
hour, direction, dynamic factors including heading rate, re-
sistance (torque/thrust) (Carlton 2019), displacement, and
previous outputs, as well as disturbance-related variables
like time, weekday, current, season, weather, wind direction,
wind force, and water depth. In terms of rewards, we have
defined three distinct intermediate rewards. The first penal-
izes deviations from the top 1% trips of the dataset that uses
the least fuels, the second penalizes fuel consumption (FC),
and the last comprises sparse rewards, with +1 awarded for
on-time arrival at the docking area and a penalty of -0.1 for
each minute beyond the schedule. The model outputs four
variables: LAT, LON, SOG, and FC.

In the Gym environment, we implemented curriculum
learning by defining three reward stages. The first stage fo-

cuses on emulating the decisions made by captains in the
dataset. In the second stage, rewards are structured to en-
courage behavior similar to the top 1% of best-performing
trips. The third stage emphasizes the minimization of FC
while adhering to the designated time schedule. The re-
inforcement learning process concludes with the issuance
of the “done” signal, triggered when the ferry successfully
reaches its intended destination. Conversely, if the ferry fails
to reach its destination within 25% more time steps than
usual, the process times out, resulting in a negative reward.

Conclusion and Future Work
As demonstrated in Table 1, we observe that the root mean
square error (RMSE) and coefficient of determination (R2)
exhibit the best performance for all four quantities when em-
ploying the AR + GRU approach. The second-best results
are associated with the standard deviation (Std.) of SOG and
LAT, while FC and LON still exhibit the best performance
across all approaches. In general, the AR approach outper-
forms the others, primarily due to allowing the transformer
to learn and mitigate cumulative errors during training.

We outline a step-wise approach to develop a time-series
model for a ferry using real data. Additionally, we intro-
duce an offline dataset and a simulator that both can serve
as training tools for captains or an environment for machine
learning systems. The forecasting model will be instrumen-
tal in assessing the optimization model’s effectiveness. The
Gym environment undergoes three stages of training. Ini-
tially, it aims to replicate captain driving behaviors, then
shifts to imitating top trips with the lowest FC, and finally
strives to surpass captain performance by pursuing to mini-
mize FC while adhering to the time schedule and other limi-
tation. This multi-stage training approach is expected to ac-
celerate the convergence of RL systems. For future direction,
we consider leveraging RL to optimize the navigational best
practice to maximize fuel efficiency.
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