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Abstract

Crime prediction stands as a pivotal concern within the realm
of urban management due to its potential threats to pub-
lic safety. While prior research has predominantly focused
on unraveling the intricate dependencies among urban re-
gions and temporal dynamics, the challenges posed by the
scarcity and uncertainty of historical crime data have not been
thoroughly investigated. This study introduces an innovative
spatial-temporal augmented learning framework for crime
prediction, namely STAug. In STAug, we devise a CrimeMix
to improve the ability of generalization. Furthermore, we har-
ness a spatial-temporal aggregation to capture and incorpo-
rate multiple correlations covering the temporal, spatial, and
crime-type aspects. Experiments on two real-world datasets
underscore the superiority of STAug over several baselines.

Introduction
Accurately predicting criminal activities has emerged as a
critical endeavor within the realm of urban safety and man-
agement. The presence of various criminal incidents, such
as robberies and burglaries, poses a continuous threat to the
well-being of both individuals and society as a whole. Re-
cent studies (Xia et al. 2021; Zhao et al. 2022; Gao et al.
2023) mainly focused on exploring the multiple crime de-
pendencies with sparse crime data. However, the uncer-
tain interactive semantics are under-explored. To address the
above concern, as shown in Fig. 1, we present a novel so-
lution called STAug for crime prediction. STAug first op-
erates a CrimeMix module to effectively enrich samples
from vicinity distribution and increase adversarial robust-
ness. Then, it operates the spatial-temporal aggregation that
primarily investigates the temporal dynamics, crime type re-
lations, and spatial correlations underlying crime cases.

Solution: STAug
Problem Definition. Given historical crime data X ∈
RR×T×C , with R, T , and C signifying the number of grid-
scale regions, time slots, and crime types, respectively. Our
objective is to develop a model that can estimate the future
situation of crime incidents for various crime types in each
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region for the upcoming time slot T + 1, which can be de-
noted as X̂T+1 ∈ RR×C .
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Figure 1: The architecture of STAug.

Augmentation with CrimeMix. Based on prior relevant re-
search, it is evident that crime data exhibits a high degree of
sparsity in its distribution, which significantly impacts the
training of models. Consequently, we propose a novel mod-
ule named CrimeMix to enhance the crime model’s perfor-
mance, which draws inspiration from Mixup (Zhang et al.
2018). The primary purpose is to enhance the robustness
and generalization capabilities of models by generating new
training examples through a combination of existing crime
data time, which can be denoted as follows:

x̃t,c = λxt1,c + (1− λ)xt2,c, (1)

x̃r,t = λxr,t1 + (1− λ)xr,t2 , (2)

where xt1,c,xt2,c are raw urban crime vectors, and xr,t1 ,xr,t2
are crime multi-label vectors. λ ∈ [0, 1] is distributed ac-
cording to a Beta distribution: λ ∼ β(α, α). In this way, we
can produce rich samples to boost crime pattern learning.
Crime Embedding. We first prepare dense representations
for each crime type. We start by generating random initial
embeddings ec ∈ Rd for each crime type c. These initial
embeddings serve as a foundation. Then, we create specific
representations er,t,c ∈ Rd for each instance, capturing the
crime pattern associated with the c-th type in region r during
time slot t. These representations are computed as follows:

er,t,c =
X̃r,t,c − µ

σ
· ec, (3)
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where µ and σ refer to the mean and standard deviation of
the entire tensor X̃ for normalization. The resulting four-
dimensional tensor H ∈ RR×T×C×d serves as input for the
next step of our analysis.
Spatial-Temporal Aggregation. To capture correlations
across different regions and crime types, we apply routing
and attention mechanisms. Specifically, for each time slot t,
the general pipeline can be denoted as follows:

Attn (Hi,t,c,Hj,t) = ∥Mm=1

C∑
c′=1

γm
c,c′ ·VmHj,t,c′ , (4)

Herein, γm
c,c′ represents the attention score between two

crime types, capturing the dependency degree between
crime type c in region ri and crime type c′ in region
rj . Vm ∈ Rd/M×d is the trainable parameters regarding
Hj,t,c′ . We use multi-head attention for diverse attention
views. Hence, || represents a concatenation operation. Cor-
respondingly, the attention score γm

c,c′ is computed as:

γ̄m
c,c′ =

(QmHi,t,c)
⊤
(KmHj,t,c′)√

d/M
, (5)

γm
c,c′ =

exp
(
γ̄m
c,c′

)
∑

c′ exp
(
γ̄m
c,c′

) , (6)

where Qm and Km ∈ Rd/M×d are trainable parameters.
To explore spatial and temporal interactions, we construct

a crime graph G, treating each region r as a graph node
v ∈ V . We establish edges between neighboring regions
to capture spatial correlations and between regions where
crimes occur on the same day to incorporate temporal cor-
relation. In detail, an adjacency matrix A representing these
correlations can be defined as follows:

Aij =

{
1, if vi and vj are neighboring;
0, otherwise. (7)

Herein, the neighboring indicates the relation between two
nodes is either spatial or temporal relevant. To capture long-
distance interactions, we make message propagation as:

H
(l+1)
i = ReLU(

R∑
j=1

A′
i,j ·Attn(H

(l)
i ,H

(l)
j )), (8)

where H(l+1)
i is the representation after l ∈ L iterations. Be-

sides, A′ = D−1/2AD1/2 is a normalized adjacent matrix,
where D indicates a diagonal (degree) matrix.
Optimization. Now we sum up the target crime tensor HL

along the time slot dimension to obtain the final representa-
tion κ ∈ RR×C×d and produce the next time slot’s crime
result X̂T+1 with the Sigmoid function. The crime predic-
tion task minimizes the objective as follows:

L = −
T∑
t

δ (Xt) log X̂t+ δ̄ (Xt) log
(
1− X̂t

)
+η∥Θ∥22, (9)

where δ (·) and δ̄ (·) are element-wise positive and negative
indicator functions, respectively (Xia et al. 2021). The last
term is L2 regularization and η denotes the decay weight.

Data NYC-Crimes Chicago-Crimes

Crime Types Burglary Robbery Theft Battery
Number 31,799 33,453 124,630 99,389
Crime Types Assault Larceny Damage Assault
Number 40,429 85,899 59,886 37,972

Table 1: The description of urban crime datasets.

Method NYC CHI

micro macro micro macro

DeepCrime 0.5727 0.5713 0.5186 0.5174
ST-SHN 0.6154 0.6144 0.6390 0.6410
ST-DPL 0.6465 0.6413 0.7237 0.7296

STAug 0.6573 0.6567 0.7361 0.7356

Table 2: Overall performance on two datasets.

Experiment
We evaluate our proposed method using the crime data col-
lected from Chicago (CHI) and New York City (NYC).
Each record in the dataset includes information about crime
category, timestamp, and geographical coordinates. Table 1
records the statistics of them. We select DeepCrime (Huang
et al. 2018), ST-SHN (Xia et al. 2021) and ST-DPL (Gao
et al. 2023) as our baselines. We adopt two widely used
metrics for performance evaluation, including micro-F1 and
macro-F1 (Huang et al. 2018; Xia et al. 2021).
Performance Comparison. Table 2 presents the main re-
sults. Note that we use micro and macro in Table 2 to repre-
sent micro-F1 and macro-F1, respectively. Overall, we can
observe that our model achieves the best gains in perfor-
mance across all datasets. Compared with baselines, our ap-
proach not only proposes a novel spatial data argumentation
to alleviate the sparsity issue but also considers the com-
plex spatial-temporal dependencies between different types
of crime patterns.
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