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Abstract

Recently, the field of Speech Enhancement has witnessed
the success of diffusion-based generative models. However,
these diffusion-based methods used to take multiple iterations
to generate high-quality samples, leading to high computa-
tional costs and inefficiency. In this paper, we propose SD-
FEN (Shallow Diffusion for Fast spEech eNhancement), a
novel approach for addressing the inefficiency problem while
enhancing the quality of generated samples by reducing the
iterative steps in the reverse process of diffusion method.
Specifically, we introduce the shallow diffusion strategy initi-
ating the reverse process with an adaptive time step to accel-
erate inference. In addition, a dedicated noisy predictor is fur-
ther proposed to guide the adaptive selection of time step. Ex-
periment results demonstrate the superiority of the proposed
SDFEN in effectiveness and efficiency.

Introduction

Speech enhancement (SE) plays an important role in many
speech-related tasks, e.g., speech recognition and speech
synthesis, aiming to improve the perceptual quality of
speech signals in the presence of non-stationary background
noise. Some studies attempt to introduce the diffusion model
in SEs, achieving great success (Lu et al. 2022; Tai et al.
2023). However, a profound challenge persists within these
diffusion-enhanced models: high computation overhead due
the need for multiple time-step iterations in diffusion mod-
els to attain high-quality speech samples significantly hinder
their practical deployment in real-world scenarios.

To address the problem of high computation overhead, we
present our solution, SDFEN, for fast Speech enhancement.
Specifically, inspired by (Liu et al. 2021) in audio synthesis,
we introduce the shallow diffusion strategy, initiating the in-
ference process with a intermediate timestep t rather than
generating sample with a full trajectory.

To further reduce the steps in reverse process, we propose
a novel noise predictor that aims to predict the proper prior
with sufficient knowledge at time step t in the above shallow
diffusion process, enabling the restoration of clean speech.
An overview of proposed SDFEN is in Figure 1.
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Figure 1: Overview of the proposed SDFEN architecture.
Specifically, we generate the speech in only two steps. In
the first step, a prior condition is generated from the noisy
speech y, which is then applied to the diffusion model to
obtain the estimated speech xt2 . In the second step, we reuse
the generated speech xt2 to generate better estimates.

Methodology
Problem Definition. Speech enhancement aims to transfer
noisy-reverberant speech to clean speech. Fomally, a noisy
signal y in time domain can be expressed as y = x + n
where x and n denote clean and noise signal, respectively.
The goal of speech-enhanced diffusion is to enhance intelli-
gibility and quality by extracting x from y:

pθ(x0|y) =
∫

p(xT )︸ ︷︷ ︸
Prior

T∏
t=1

pθ(xt−1|xt,y)︸ ︷︷ ︸
Posterior

dx1:T , (1)

where xT is sampled from a Gaussian distribution N (0, I).
Shallow diffusion. Recent studies (Liu et al. 2021) show
that the sample generated at a relatively large time step t
contains a large amount of noise. Inspired by this, we in-
troduce the shallow diffusion that generate speech from an
intermediate time step τ :

pθ(x0|y) =
∫

p(xτ |y)︸ ︷︷ ︸
Prior

τ∏
t=1

pθ(xt−1|xt,y)︸ ︷︷ ︸
Posterior

dx1:t, (2)

where p(xτ |y) denotes a conditional prior at time step τ
(we implement it via standard forward diffusion (Ho, Jain,
and Abbeel 2020)):

x̂τ ∼ p(xτ |y) :=
√
ᾱtx̂0 +

√
1− ᾱtϵ. (3)

In this way, the computational costs in the reverse process
can been significantly reduced (from T time step to t time
step), while having (almost) no significant influence in de-
noising performance. In practice, we devise a noise predictor
pψ(xτ |y) to generate a better estimation.
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Accordingly, Eq. (2) can be rewritten as:

pθ(x0|y) =
∫

pψ(xτ |y)
τ∏
t=1

pθ(xt−1|xt, y)dx1:t. (4)

To further accelerate the inference process, we substitute
the second term

∏τ
t=1 pθ(xt−1|xt, y) with one-step genera-

tion, so that we can further reduce the sampling steps from
entire τ steps to 2 steps. And the updated inference process
can be represented as:

pθ(x0|y) =
∫ ∫

pθ(x̂t2 |yt1 ,y)pθ(x0|x̂t2 ,y)dx̂t2dyt1

where t1, t2 are two pre-defined hyper-parameters. And
once we choose the appropriate parameters, the x0 can be
obtained in only two steps.
Training Objective. (Lu, Tsao, and Watanabe 2021) and
following studies parameterize the denoising model by
predicting ϵ using a neural network ϵθ(xt, t) to achieve
pθ(xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI) which implicitly
establishes:

x̂0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ

)
.

As discussed earlier, we want SDFEN to start with a small
timestep and we strive to make t small. However, as t ap-
proaches zero, small changes in x-space have an increas-
ingly amplified effect on the implied prediction in ϵ-space.
In other words, the efforts made by the diffusion enhance-
ment model at small time step become so negligible that dif-
fusion models lose their ability to recover natural-sounding
speech from defective speech.

To this end, we turn to predict in x-space by re-
parameterizing the training target in ϵ-space loss, and finally
obtain a new training target as:

L = Ex0∼p(x),t∈[1,T ]

[
∥x0 − fθ (xt,y, t) ∥22

]
. (5)

Experiments
Dataset and Baselines. We use the VoiceBank-DEMAND
dataset (Veaux, Yamagishi, and King 2013) for performance
evaluations. We compare SDFEN with the following diffu-
sion enhancement baselines: DiffuSE (Lu, Tsao, and Watan-
abe 2021), CDiffuSE (Lu et al. 2022), SGMSE (Welker,
Richter, and Gerkmann 2022), and DR-DiffuSE (Tai et al.
2023) on the VoiceBank-DEMAND dataset (Veaux, Yam-
agishi, and King 2013).
Evaluation metrics. We use the following metrics to eval-
uate SE performance: short-time objective intelligibility
(STOI), the perceptual evaluation of speech quality (PESQ),
the mean opinion score (MOS) prediction of the speech sig-
nal distortion (CSIG), and the MOS prediction of the intru-
siveness of background noise (CBAK). In addition, we show
the number of steps in the reverse process to assess the effi-
ciency of models.
Implementation Details. We implement our method us-
ing DiffWave architecutre (Kong et al. 2021), the same
architecture as all baselines. DiffWave takes 50 steps
with the linearly spaced training noise schedule βt ∈

Method Step STOI PESQ CSIG CBAK
* – 92.1 1.97 3.35 2.44

DiffuSE 6 93.5 2.39 3.71 3.04
CDiffuSE 6 93.7 2.43 3.77 3.09
SGMSE 50 93.3 2.34 3.69 2.90

DR-DiffuSE 6 92.9 2.50 3.68 3.27

SDFEN 2 93.4 2.55 3.81 3.27

Table 1: Performance Comparison. We represent the number
of steps in the reverse process as the efficiency of models. *
denotes the unprocessed model. The best results are in bold
font.

[
1× 10−4, 0.035

]
. All methods are trained for 300k itera-

tions on RTX 3090 with a batch size of 16 audios. We de-
termine optimal values for t1 and t2 by evaluating their per-
formance on a validation dataset, extracted as a subset from
the training data.
Performance Comparison. Table 1 summarizes the exper-
imental results and we have the following observations: (1)
SGMSE with 50 steps yields subpar results compared to that
generated with fewer steps. This phenomenon is consistent
with our hypothesis that generating samples starting from
a relatively noisy step has no significant benefit for gener-
ating faithful speech. (2) Compared with all baselines, SD-
FEN achieves better generation results with only two steps,
showing the strong efficiency and effectiveness of the shal-
low diffusion.
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