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Abstract

Implicit field representations offer an effective way of gener-
ating 3D object shapes. They leverage an implicit decoder
(IM-NET) trained to take a 3D point coordinate concate-
nated with a shape encoding and to output a value indicat-
ing whether the point is outside the shape. This approach
enables the efficient rendering of visually plausible objects
but also has some significant limitations, resulting in a cum-
bersome training procedure and empty spaces within the
rendered mesh. In this paper, we introduce a new Hyper-
Cube architecture based on interval arithmetic that enables
direct processing of 3D voxels, trained using a hypernetwork
paradigm to enforce model convergence. The code is avail-
able at https://github.com/mproszewska/hypercube.

Introduction The recently introduced in (Chen and Zhang
2019) implicit decoder (IM-NET) architecture has several
advantages over a standard convolutional model. First of all,
it can produce outputs of various resolutions, including those
not observed in the training. Furthermore, IM-NET learns
shape boundaries instead of voxel distributions over the vol-
ume, which results in surfaces of a higher quality. On the
other hand, IM-NET has some limitations. First of all, the
point coordinates are concatenated with the shape embed-
ding and to reconstruct an object the model needs to pos-
sess knowledge about all objects present in the entire dataset.
Therefore IM-NET architecture is hard to train on many dif-
ferent classes. Moreover, the implicit decoder processes only
points sampled from within voxels, instead of the entire vox-
els. This yields problems at the classification boundaries at
object edges and gives severe rendering artifacts.

In this paper, we address the above limitations by intro-
ducing a novel approach (HyperCube) to the implicit rep-
resentation of 3D objects. It leverages a hypernetwork ar-
chitecture to produce weights of a target implicit decoder,
based on the input feature vector defining a voxel. This tar-
get decoder assigns an inside or outside of a shape label
to each processed voxel. Such architecture is more com-
pact than IM-NET and therefore much faster to train, while
it does not need to know the distribution of all objects in
the training dataset to obtain object reconstructions. Further-
more, its design allows a flexible adjustment of the target
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Figure 1: Comparison of HyperCube (left) and HyperCube-
Interval (right) architectures.

network processing feature vectors. This enables us to input
the entire voxels into the model leveraging interval arith-
metic and the IntervalNet architecture (Morawiecki et al.
2019), and leads to the inception of our HyperCube-Interval
model. The HyperCube-Interval architecture takes as an in-
put relatively small 3D cubes (hence the name), instead of
3D point samples within the voxels. Therefore, it does not
produce empty space in the reconstructed mesh representa-
tion, as visualized in Fig. 4.

Our solution is an extension of the data reprehension tech-
nique from IM-NET with the hypernetwork paradigm used
in the HyperCloud model (Spurek et al. 2020a,b). As a con-
sequence, we take the best of both methods and obtain a
reconstruction quality of the IM-NET, while reducing the
training and inference time as in the case of the HyperCloud.

HyperCube and HyperCube-Interval Our HyperCube
model takes a voxel representation X ⊂ R3 and passes it to
a hypernetwork Hϕ : X → θ to output weights of a (small)
target network Tθ : X → {0, 1}. Next, X (i.e., any point
uniformly sampled from X) is compared with the output
from the target network Tθ (we take a voxel grid and predict
inside/outside labels). To train our model we use the mean
squared error loss function.

The above architecture gives competitive qualitative and
quantitative results to IM-NET, yet it offers a significant pro-
cessing speedup. However, the remaining shortcoming of
IM-NET, namely the reconstruction artifacts close to clas-
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Plane Car Chair Rifle Table

MSE IM-NET 2.14 4.99 11.43 1.91 10.67
HyperCube 2.44 4.37 9.07 1.91 9.37

IoU IM-NET 78.77 89.26 65.65 72.88 71.44
HyperCube 65.35 90.05 72.61 63.97 73.78

CD IM-NET 4.23 5.44 9.05 3.77 11.54
HyperCube 4.74 3.36 8.35 4.20 8.82

Table 1: Reconstruction capabilities. The mean is calculated
for reconstructions of 100 first elements from the test set in
each category. MSE is multiplied by 103, IoU by 102, and
CD by 104.

Figure 2: Comparison of training times and GPU memory
used by IM-NET and HyperCube.

Figure 3: The number of connected components produced
by meshes obtained via architectures with and without inter-
vals.

sification boundaries resulting from sampling strategy, re-
mains. To address this limitation and process entire 3D
cubes instead of sampled points, we leverage interval arith-
metic (Dahlquist and Björck 2008) and a neural architecture
that implements it, i.e., the IntervalNet (Morawiecki et al.
2019). This leads to the HyperCube-Interval model that is a
copy of HyperCube using IntervalNet instead of MLP as a
target network. We use worst-case accuracy instead of cross-
entropy to ensure that the whole voxel is correctly classified.

Training time and memory footprint Fig. 2 displays a
comparison between our HyperCube method and the com-
peting IM-NET. For a fair comparison, we evaluated the ar-
chitectures proposed in (Chen and Zhang 2019). The models
were trained on the ShapeNet dataset. Our HyperCube ap-
proach leads to a significant reduction in both training time
and memory footprint due to a more compact architecture.

Reconstruction capabilities For the quantitative compar-
ison of our method with the current state-of-the-art solu-
tions in the reconstruction task, we follow the approach in-
troduced in (Chen and Zhang 2019). Metrics for encoding
and reconstruction are based on point-wise distances, e.g.,

Plane Car Chair Rifle Table

MSE

IM-NET 2.98 10.98 17.11 2.41 13.38
IM-NET % 0.45 0.70 0.68 0.56 0.64
HyperCube 2.99 7.47 16.46 2.61 13.23

HyperCube % 0.57 0.70 0.72 0.68 0.69

IoU

IM-NET 56.05 77.36 50.46 51.53 54.08
IM-NET % 0.61 0.71 0.72 0.69 0.75
HyperCube 61.68 86.34 53.52 59.80 61.23

HyperCube % 0.67 0.71 0.76 0.73 0.77

CD

IM-NET 7.38 5.72 13.99 8.06 17.36
IM-NET % 0.58 0.71 0.78 0.72 0.82
HyperCube 5.02 4.28 12.92 4.96 12.49

HyperCube % 0.66 0.74 0.78 0.74 0.81

Table 2: Generative capabilities. The mean of minimum
MSE/CD, maximum IoU between the test set and the col-
lection of generated objects with 5 times greater resolution,
% of the test set objects matched as closest ones.
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Figure 4: Competition between architectures working on
points (HyperCube) and intervals (HyperCube-Interval).

Chamfer Distance (CD), Mean Squared Error (MSE), and
Intersection over Union (IoU) on voxels. Results presented
in Table 1 show that HyperCube achieve comparable results
to the reference method.

Generative capabilities We examine the generative capa-
bilities of the provided HyperCube model compared to IM-
NET. Table 2 demonstrates that both models perform simi-
larly along all metrics.

Intervals vs points The classification boundary can be
regularized using IntervalNet. In Fig. 4 we present such ex-
amples. As we can see, HyperCube-Interval produces single
objects without empty space. To verify it, we calculate the
number of connected components produced by mesh and vi-
sualize them on histograms, see Fig. 3. HyperCube-Interval
produces better models for Airplane and Car classes.

Conclusions In this work, we introduce a new implicit
field representation of 3D models. It is more lightweight and
faster to train than existing solutions while offering compet-
itive or superior results. Finally, our method allows incor-
porating interval arithmetic which enables processing entire
3D voxels, instead of their sampled version, hence yielding
more plausible and higher quality 3D reconstructions.
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