
Bridging the Gap between Source Code and Requirements Using GPT
(Student Abstract)

Ruoyu Xu, Zhengyu Xu, Gaoxiang Li, Victor S. Sheng
Computer Science Department, Texas Tech University, Lubbock, Texas, USA

{ruoyxu, zhenxu, gaoli, victor.sheng}@ttu.edu

Abstract

Reverse engineering involves analyzing the design, architec-
ture, and functionality of systems, and is crucial for legacy
systems. Legacy systems are outdated software systems that
are still in use and often lack proper documentation, which
makes their maintenance and evolution challenging. To ad-
dress this, we introduce SC2Req, utilizing the Generative Pre-
trained Transformer (GPT) for automated code analysis and
requirement generation. This approach aims to convert source
code into understandable requirements and bridge the gap be-
tween those two. Through experiments on diverse software
projects, SC2Req shows the potential to enhance the accuracy
and efficiency of the translation process. This approach not
only facilitates faster software development and easier main-
tenance of legacy systems but also lays a strong foundation
for future research, promoting better understanding and com-
munication in software development.

Introduction
The rapid growth of digital technology has led to software
systems becoming an indispensable part of businesses and
organizations across various industries. However, many soft-
ware systems have evolved over decades and are now re-
ferred to as legacy systems (Warren 2012). These legacy sys-
tems are generally large, complex, and poorly documented.
Understanding the architecture of these systems is essential
for managing them. Reverse engineering helps developers
understand operations, identify flaws, and improve systems.
Applications of this process include malware detection, data
recovery, and maintenance and improvement of legacy sys-
tems (Garcı́a-Borgoñón et al. 2023).

Building on this, researchers have implemented various
tools for reverse engineering and automating source code
documentation. Technologies such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
which are applied to generate summaries based on code pat-
terns and structures (Iyer et al. 2016). Khan and Uddin uti-
lized OpenAI’s Codex to automatically generate documen-
tation for the code (Khan and Uddin 2022). Ahmad et al.
harnessed Transformer models for automated documenta-
tion and summarization of source code (Ahmad et al. 2020).
Although some studies have concentrated on documenting

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and summarizing specific code units, such as methods and
functions, they lack a comprehensive solution for obtain-
ing the requirements necessary for software development or
maintenance.

In this study, we introduce SC2Req, which uses the Gen-
erative Pre-trained Transformer (GPT) to convert source
code into requirements. Combining GPT’s code analysis
strength with natural language generation, SC2Req effec-
tively bridges the code-requirement gap. Tested across vari-
ous software projects, SC2Req demonstrated its potential in
aligning documentation with true system requirements, of-
fering a streamlined approach to software development and
legacy system maintenance.

Experiment

Datasets and Preprocessing

We collected source code and requirement pairs from six
software systems spanning different domains. These include
Albergate (55 requirements), SMOS (1073 requirements),
EBT (98 requirements), eTour (310 requirements), iTrust
(534 requirements), and eAnci (567 requirements). In our
six-fold cross-validation experiment, each iteration held out
one dataset as an unseen test set, using the rest five datasets
for training (80%) and validation (20%).

Although we intended to evaluate various program-
ming languages, obtaining varied real-world paired datasets
proved challenging. Therefore, we utilized the GPT-3 text-
DaVinci-003 model to convert Java source code from
our projects into Python and JavaScript, generating multi-
language datasets. For correctness, we employed tests and
expert reviews. Italian datasets like Albergate and eAnci
were translated to English using DeepL and verified by na-
tive Italian computer science students. After data cleaning,
we had a final count of 2,637 code and requirement pairs.

For SC2Req’s assessment, we benchmarked against the
original GPT-3 model (i.e., Basic GPT) and a human-based
approach (i.e., Human Rewritten). For the Human Rewritten
method, we engaged 20 computer science graduate students,
training them to rephrase requirements from source codes.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23686



Dataset Method BLEU Semantic Similarity

Albergate
SC2Req 38.22 0.74

Basic GPT 18.74 0.58
Human Rewritten 36.33 0.73

SMOS
SC2Req 45.73 0.86

Basic GPT 22.35 0.59
Human Rewritten 47.38 0.88

EBT
SC2Req 48.85 0.90

Basic GPT 20.36 0.56
Human Rewritten 49.80 0.92

eTour
SC2Req 44.63 0.83

Basic GPT 25.66 0.60
Human Rewritten 45.37 0.85

iTrust
SC2Req 37.21 0.71

Basic GPT 21.95 0.57
Human Rewritten 36.05 0.71

eAnci
SC2Req 42.55 0.81

Basic GPT 28.12 0.62
Human Rewritten 40.62 0.77

Table 1: Experimental results when each dataset attends
training process in Java programming language

Automating Code-to-Requirements Translation
with GPT-Neo
Complex software and under-documented legacy systems
pose challenges for maintenance, and understanding their re-
quirements is key. We introduce an automated method that
uses the GPT model to transform source code into require-
ments, bridging the code-documentation gap.

GPT’s prowess in natural language processing tasks in-
spired its adaptation for the code-to-requirements translation
endeavor. We chose the GPT-Neo 2.7B (Black et al. 2022),
a more accessible and cost-effective alternative to GPT-3,
with 2.7 billion parameters compared to GPT-3’s 175 bil-
lion. We fine-tuned it on our specific code-to-requirements
datasets. Undertaking 1,000 training steps using zero-shot
learning, the model was enabled to directly generate require-
ments from the provided source code, without additional in-
put. This automation not only streamlines the understanding
process of semantics and structure but also curtails manual
intervention and the associated error potential.

Results and Analysis
Three methods (i.e., SC2Req, Basic GPT, and Human
Rewritten) were evaluated on six datasets (i.e., Albergate,
SMOS, EBT, eTour, iTrust, and eAnci) in three program-
ming languages (i.e., Java, Python, JavaScript) using BLEU
Score and Semantic Similarity metrics, as presented in Ta-
bles 1 and 2.

SC2Req’s performance is analyzed in two scenarios:
without hold-out data (show in Table 1) and with hold-out
data (show in Table 2). Notably, SC2Req consistently out-
performs Basic GPT in all programming languages. As Ta-

Dataset BLEU Score Semantic Similarity
Albergate 33.05 0.72

SMOS 35.39 0.81
EBT 42.98 0.88
eTour 27.07 0.78
iTrust 29.11 0.66
eAnci 34.55 0.77

Table 2: Experimental results when each dataset is held out
training process for SC2Req in Java programming language

ble 1 illustrates, SC2Req achieves a BLEU score of 38.22
and semantic similarity of 0.74 on the Albergate dataset in
Java, while Basic GPT achieves scores of 18.74 and 0.58 re-
spectively. SC2Req’s performance is comparable to that of
the Human Rewritten method. In Table 1, SC2Req achieves
scores of 44.63 in BLEU and 0.83 in semantic similarity on
the eTour dataset, while Human Rewritten scores are slightly
higher at 45.37 and 0.85 respectively. In the hold-out ex-
periment (Table 2), SC2Req maintains commendable perfor-
mance across various languages. In Java, the BLEU scores
ranged from 27.07 (eTour) to 42.98 (EBT).

In the qualitative analysis, SC2Req presents distinct ad-
vantages over both the Basic GPT and Human Rewritten
methods. Specifically, it recreates a more substantial portion
of the original text, thus delivering a truer representation of
the content. Moreover, SC2Req avoids adding extraneous el-
ements, which ensures clarity in understanding the depicted
processes and requirements. It also prioritizes vital aspects
that are often overlooked by benchmark methods, further un-
derscoring its qualitative superiority.

References
Ahmad, W. U.; Chakraborty, S.; Ray, B.; and Chang, K.-W.
2020. A transformer-based approach for source code sum-
marization. arXiv preprint arXiv:2005.00653.
Black, S.; Gao, L.; Wang, P.; Leahy, C.; and Biderman, S.
2022. Gpt-neo: Large scale autoregressive language model-
ing with mesh-tensorflow, 2021. Zenodo.
Garcı́a-Borgoñón, L.; Barcelona, M. A.; Egea, A. J.; Reyes,
G.; Sainz-de-la maza, A.; and González-Uzabal, A. 2023.
Lessons Learned in Model-Based Reverse Engineering
of Large Legacy Systems. In International Conference
on Advanced Information Systems Engineering, 330–344.
Springer.
Iyer, S.; Konstas, I.; Cheung, A.; and Zettlemoyer, L. 2016.
Summarizing source code using a neural attention model.
In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
2073–2083.
Khan, J. Y.; and Uddin, G. 2022. Automatic Code Doc-
umentation Generation Using GPT-3. In 37th IEEE/ACM
International Conference on Automated Software Engineer-
ing, 1–6.
Warren, I. 2012. The renaissance of legacy systems: method
support for software-system evolution. Springer Science &
Business Media.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23687


