
ChatGPT-Generated Code Assignment Detection Using Perplexity of Large
Language Models (Student Abstract)

Zhenyu Xu, Ruoyu Xu, Victor S. Sheng
Department of Computer Science, Texas Tech University
zhenxu@ttu.edu, ruoyxu@ttu.edu, victor.sheng@ttu.edu

Abstract

In the era of large language models like ChatGPT, maintain-
ing academic integrity in programming education has become
challenging due to potential misuse. There’s a pressing need
for reliable detectors to identify ChatGPT-generated code.
While previous studies have tackled model-generated text de-
tection, identifying such code remains uncharted territory. In
this paper, we introduce a novel method to discern ChatGPT-
generated code. We employ targeted masking perturbation,
emphasizing code sections with high perplexity. Fine-tuned
CodeBERT is utilized to replace these masked sections, gen-
erating subtly perturbed samples. Our scoring system amal-
gamates overall perplexity, variations in code line perplex-
ity, and burstiness. In this scoring scheme, a higher rank for
the original code suggests it’s more likely to be ChatGPT-
generated. The underlying principle is that code generated by
models typically exhibits consistent, low perplexity and re-
duced burstiness, with its ranking remaining relatively stable
even after subtle modifications. In contrast, human-written
code, when perturbed, is more likely to produce samples that
the model prefers. Our approach significantly outperforms
current detectors, especially against OpenAI’s text-davinci-
003 model, with the average AUC rising from 0.56 (GPTZero
baseline) to 0.87.

Introduction
Large language models, like ChatGPT from OpenAI, can
now generate code autonomously. This is revolutionizing
software development but also poses a challenge for educa-
tion. Students might use these models to complete coding as-
signments without doing the work themselves. This misuse
undermines the purpose of programming education. Most
text detectors today are designed to detect model-generated
text, not code. The study DetectGPT (Mitchell et al. 2023)
presented an interesting finding: making small changes to
model-generated text typically results in lower log proba-
bilities of the model of interest than the original text, while
changes to human-written text can increase or decrease these
probabilities. This means that model-produced tokens usu-
ally sit at the peak of the log probability curve. The concept
of code naturalness implies that a similar behavior should
manifest within code contexts. We tested the idea that small

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

modifications can clearly separate ChatGPT-generated code
from human-written code. Our experiments found that mi-
nor changes to ChatGPT-produced code often make it more
perplexing for the model than the original. However, for
human-written code, such changes can have mixed results.
We also suggest that code generated from large language
models shows steadier perplexity line-by-line than human
code, and our results support this.

We harness these two observations from the code con-
text to construct our detector. Our strategy seeks to dis-
cern whether a given piece of code is ChatGPT-generated
by perturbation and scoring. First, a perturbation mecha-
nism applies a mask modeling task to slightly modify seg-
ments of code that exhibit higher perplexity (PPL). Second,
a scoring mechanism is influenced by three metrics: per-
plexity of the code, standard deviation of perplexity across
lines of code, and the code’s burstiness. A lower score in-
dicates a greater probability that the code generated from
model. This process is shown in Figure 1. The foundational
premise of our methodology is that ChatGPT-generated code
inherently possesses a low score, gauged by the combined
metrics of overall perplexity, standard deviation of perplex-
ity across code lines, and burstiness. Consequently, post-
perturbation, it becomes challenging to generate samples
that score lower than the original ChatGPT-generated code.
In contrast, human-authored code might be perceived as
more ambiguous by the model, so minor tweaks might yield
an ”optimized” version that bears a score lower than the
original code.

Approach
Dataset Description
Our CGCode (ChatGPT-generated code) dataset, based on
IBM’s CodeNet, aims to mimic student submissions for pro-
gramming tasks. We focused on six primary programming
languages: C, C++, C#, Java, JavaScript, and Python. Af-
ter ensuring each code met criteria for quality and length
and removing duplicates and comments, we used 80% of
the data to fine-tune and validate CodeBERT, setting aside
10% each for validation and testing. We enhanced the test
subset, and leveraged OpenAI’s text-davinci-003 for text-
to-code generation and code translation tasks for 400 prob-
lems in each test subset. The test set now contains 5,214

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23688



C C++ C# Java JavaScript Python

Detectors AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR AUC FPR FNR

GPT2-Detector 0.64 0.83 0.03 0.68 0.84 0.05 0.46 0.92 0.13 0.44 0.91 0.11 0.39 0.90 0.26 0.38 0.89 0.25
DetectGPT 0.56 0.00 1.00 0.42 0.00 1.00 0.49 0.00 1.00 0.43 0.00 1.00 0.51 0.00 1.00 0.49 0.00 1.00
RoBERTa-QA 0.68 0.00 1.00 0.53 0.00 1.00 0.48 0.00 1.00 0.64 0.00 1.00 0.52 0.00 1.00 0.60 0.00 1.00

Writer 0.78 0.13 0.91 0.62 0.15 0.98 0.52 0.13 0.91 0.54 0.01 0.96 0.56 0.10 0.89 0.51 0.08 0.97
GPTZero 0.90 0.06 0.20 0.83 0.20 0.68 0.29 0.18 0.96 0.28 0.18 0.88 0.41 0.08 0.90 0.59 0.00 1.00

CGCode Detector 0.95 0.16 0.08 0.88 0.13 0.02 0.86 0.12 0.07 0.82 0.15 0.05 0.81 0.21 0.15 0.92 0.14 0.03

Table 1: Performance of Different Detectors Across Six Programming Languages

Figure 1: Illustration of the perturbation and scoring proce-
dure. Weights are assigned to code segments based on line-
level perplexity, higher weight means more allocated masks,
followed by mask-filling task for slight modifications. A
lower score suggests a higher likelihood of the code being
generated by ChatGPT.

Chatpt-generated codes, balanced with an equivalent num-
ber of human-written ones, matched by language and prob-
lem type.

Perturbation and Scoring Process
Masking Unlike the random masking strategy of Detect-
GPT on text, our method for code uses a measured strat-
egy. We utilize Perplexity (PPL) to gauge the complexity of
each line of code, and apply masks based on this. Lines of
code with high PPL values receive more masks. This method
proves to be more efficient than random masking, leading to
less required samples.

Mask-filling After fine-tuning CodeBERT across a spec-
trum of programming languages, it’s harnessed to fill our
code masks. We opt for Nucleus Sampling to obtain a di-

verse set of token suggestions, ensuring the creation of a rich
variety of modified samples.

Scoring Our evaluation of code integrates three metrics:
PPL, PPL variation across code lines, and code burstiness.
The scores of original and altered code are juxtaposed.
ChatGPT-generated code often attains better scores due to its
intrinsic coherence. Altered versions of ChatGPT-generated
code seldom score lower, while human-written code might
see lower scores with minimal modifications.

Experiment and Results
To evaluate the efficacy of our Detector, we bench-
mark its performance against five prominent open-source
and commercial text detectors: GPT2-Detector, DetectGPT,
RoBERTa-QA, GPTZero, and The Writer AI Detector. Our
comparisons are conducted on the CGCode dataset. Within
the CGCode Detector framework, we employ CodeBERT as
the mask-filling model and text-davinci-003 as the primary
scoring model. For those detectors giving probability, we
choose its best performance threshold. For detectors having
requirement of input length, we truncate and use the prior to-
kens as input. Results are shown in Table 1. CGCode Detec-
tor has relatively high AUC on all programming languages,
as well as low FPR and FNR.

Conclusion
In conclusion, we present the CGCode Detector, an innova-
tive tool adept at pinpointing ChatGPT-generated code as-
signments using perplexity analysis and targeted perturba-
tions. Building on the foundation of DetectGPT, we have
addressed the gap in ChatGPT-generated code detection by
enhancing current zero-shot detection method and develop-
ing a specialized detector for ChatGPT-generated code. Em-
pirical results show that our detector surpasses both lead-
ing open-source and commercial alternatives in the code do-
main. Due to its flexibility, our method can also be extended
to other code generation models.

References
Mitchell, E.; Lee, Y.; Khazatsky, A.; Manning, C. D.; and
Finn, C. 2023. Detectgpt: Zero-shot machine-generated
text detection using probability curvature. arXiv preprint
arXiv:2301.11305.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23689


