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Abstract

AI-driven materials discovery is evolving rapidly with new
approaches and pipelines for experimentation and design.
However, the pipelines are often designed in isolation. We
introduce a modular reinforcement learning framework for
inter-operable experimentation and design of tailored, novel
molecular species. The framework unifies reinforcement
learning (RL) pipelines and allows the mixing and matching
of choices for the underlying chemical action space, molec-
ular representation, desired molecular properties, and RL al-
gorithm. Our demo showcases the framework’s capabilities
applied to benchmark problems like quantitative estimate of
drug-likeness and PLogP, as well as the design of novel small
molecule solvents for carbon capture.

Introduction
The advancement of chemical research for applications such
as drug and materials discovery hinges upon the generation
of novel, performant molecular species. Traditionally this
process is challenging since it requires significant domain
knowledge and extensive experiments. This makes the pro-
cess expensive and time consuming. Deep learning can re-
duce the effective cost of evaluating a potential material via
providing accurate experiment proxies; however it requires
large amounts of annotated data (Hu 2021). Reinforcement
learning (RL) is a sequential, adaptive solution to this dis-
covery problem. It offers a targeted, flexible approach to
molecular design that is more general and widely applica-
ble than other optimisation techniques.

Unfortunately, the field suffers from fragmented pipelines
and frameworks. Research usually relies on integrated,
monolithic pipelines that combine a specific implementa-
tion of a molecular action space, representation and reward
function. It is therefore difficult to compare the performance
across different pipelines or leverage the advances present
within one pipeline for another.

To address the problem of fragmented pipelines for
benchmarking RL for material discovery, we present MAN-
DREL (MAterial aNd Discovery using REinforcement
Learning): an integrative, modular Python framework that
allows researchers to explore the different training features
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Figure 1: Schematic representation of the MANDREL
molecular RL toolkit

of an RL pipeline. It allows switching across (i) different
chemical representations and formulation of the discovery
tasks, (ii) RL algorithms, and (iii) target properties for re-
wards, ranging from proxies to values calculated from sim-
ulation models, thus accelerating the discovery of small,
generic but novel molecular species with desired properties.

Framework Components
Within MANDREL, the generation of molecules possess-
ing particular properties is described by a Markov decision
process (MDP). As shown in Figure 1, the reward function,
along with functions to featurise the state and/or full molec-
ular graph, are treated as inputs to a Gymnasium environ-
ment (Towers et al. 2023), which is defined for a particular
choice of action space. The combination of these three com-
ponents (reward function, action space and featuriser) allow
for the composition of an MDP. The final component is the
choice of behavioral policy, which governs how the agent in-
teracts with the molecular design environment, with the goal
of learning how to design performant molecules.

Our contribution can be summarised as follows: MAN-
DREL presents a standardised form of the material dis-
covery problem. These environments span several differ-
ent popular means for traversing chemical space: SMILES
(Weininger 1988), SELFIES (Krenn et al. 2022), STONED-
SELFIES (Nigam et al. 2021) and the action space intro-
duced by Zhou et al. (2019). The modular character of the
framework means reward functions representing different
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experiments or simulation proxies can be easily plugged
into and combined with constraints on the molecules gen-
erated based on e.g., synthesisability heuristics (Gao and
Coley 2020). Different choices for featurising the growing
molecules can be swapped in and out. Finally, as our frame-
work is based on the latest Gymnasium version, it is compat-
ible out-of-the-box with current and future state-of-the-art
RL algorithms present in popular libraries such as Stable-
Baselines3 (SB3) and Ray RLlib, without the need to create
a tailored implementation of each algorithm.

Environment Module
Four types of environment with distinct action spaces are
currently implemented:

1. SMILES Gym: Uses SMILES characters to construct
the molecule, with each action being the addition of a
SMILES character.

2. SELFIES Gym: Uses SELFIES characters to construct
the molecule, with each action being the addition of a
SELFIES character.

3. STONED-SELFIES Gym: STONED-SELFIES is an ap-
proach based on SELFIES, but rather than each action
consisting of an additional character, string mutation
operators are applied instead to generate new possible
SELFIE strings. These strings are filtered based on a dis-
tance measure to the previous step, and the action is then
the choice of which of the screened mutant strings to ac-
cept.

4. The environment introduced in Zhou et al. (2019) can be
viewed as a precursor to the STONED-SELFIES action
space. This environment uses a set of heuristic rules to
define valid mutations of a SMILES string, and the action
again selects which of these mutations to accept.

Each environment allows the user to traverse different ver-
sions of the chemical space they define by adjustment of
suitable hyperparameters. For example, the choice of char-
acter primitives for SMILES/SELFIES environments, the
rules for adding bonds to systems containing rings for the
environment based on Zhou et al. (2019), and the degree of
locality imposed on a single step for the STONED-SELFIES
environment.

Agent Component
Our framework is compatible with the popular libraries SB3
and Ray RLlib. We also provide an implementation of the
Masked Deep Q-Network (DQN) algorithm used in Zhou
et al. (2019).

Reward Component
MANDREL currently includes five different illustrative re-
ward functions:

• LogP: A measure of solubility (i.e., water-octanol parti-
tion coefficient) (Guimaraes et al. 2017).

• PLogP: Penalized LogP objective (Nigam et al. 2019).
• QED: Quantitative estimate of drug-likeness (Bickerton

et al. 2012).

• CC-Capacity: Carbon capture absorption capacity metric
for solvent-based capture of carbon dioxide (Van Kessel
et al. 2023). This uses a surrogate model based on Ad-
aBoost with 75 estimators (Hastie et al. 2009).

• CC-Rate: Carbon capture rate metric for solvent-based
capture of carbon dioxide (Van Kessel et al. 2023).
This uses a surrogate model based on a Gaussian pro-
cess (Williams and Rasmussen 2006).

Featurisation Component
The featurisation of a growing molecule is divided into two
categories:

A) Molecular featurisation: A universal routine across all
environments, this takes the form of a function that trans-
forms a SMILES string into a vector representation. Cur-
rently, this is implemented as a Morgan fingerprint (Mor-
gan 1965) but any molecular graph featurisation algo-
rithm can be plugged in.

B) State-specific featurisation: Optional and specific to the
active environment, this one-hot chartecter encoding
featurisation is used to provide additional featurisation
where either a complete molecule is not present at each
step (e.g., this is the case in the SMILES environment)
or the complete molecule is not sufficient to fully charac-
terise the state at each step (e.g., as occurs in the SELF-
IES environment).

Interface
The framework is showcased within a Dash application that
allows users to mix and match choices of the molecular de-
sign task, action space and algorithm; observe the result-
ing training curves (along with the hyperparameters that
were used); and interact with the discovered molecules. An
overview of this interface can be found in the video submis-
sion.

Discussion
MANDREL serves as a platform for direct molecular RL
over explicit graph representations of molecular space. It
provides a modular, flexible, and user-friendly framework
for researchers in the field. The platform offers insights
across the experiments, as illustrated by the examples in this
demo. For example, we recover the QED results presented
in Zhou et al. (2019) within MANDREL and find that us-
ing their masked DQN variant shows marked performance
improvements over both the vanilla DQN and masked PPO
algorithms implemented within SB3 (matching hyperparam-
eters as closely as possible). Exploring the effect of switch-
ing to use the SELFIES environment yields a stable agent
with reduced reward variance but that takes a greater num-
ber of steps to converge. Meanwhile the STONED-SELFIES
environment exhibits similar behaviour to that in Zhou et al.
(2019).
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