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Abstract

A robotic workshop assistant has been a long-standing grand
challenge for robotics, speech, computer vision, and artifi-
cial intelligence (AI) research. We revisit the goal of vi-
sual identification of tools from human queries in the cur-
rent era of Large Vision-and-Language models (like GPT-
4 (OpenAI 2023)). We find that current off-the-shelf mod-
els (that are trained on internet images) are unable to over-
come the domain shift and unable to identify small, obscure
tools in cluttered environments. Furthermore, these models
are unable to match tools to their intended purpose or affor-
dances. We present a novel system for online domain adap-
tation that can be run directly on a small on-board processor.
The system uses Hyperdimensional Computing (HD) (Kan-
erva 2009), a fast and efficient neuromorphic method. We
adapted CLIP (Radford et al. 2021) to work with explicit
(“I need the hammer”) and implicit purpose-driven queries
(“Drive these nails”), and even with depth images as input.
This demo allows the user to try out various real tools and
interact via free-form audio.

System Demonstration

Figure 1: Example workflow speech-to-text and visual
grounding. Robot fetching the tool will not be demonstrated.

The setup for the demonstration is shown in Figure 2. Vi-
sual input comes from a webcam mounted on a tripod that
can be moved around the display area. A headset with a mi-
crophone is used for audio. A set of tools and pegboard will
be provided. The adapted models will be demonstrated on
laptops and the NVIDIA Jetson Orin (Barnell et al. 2022).
New tools can be enrolled during the demo. The identified
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Figure 2: Demo setup: Webcam, Orin, tools and pegboard.

Figure 3: Example results showing precision of our method.

tools will be displayed on monitors. Users will be able to
modify components and interact with different queries.

Our method for domain adaptation is a two-stage pipeline.
The first stage is a region proposal network (RPN) (Ren et al.
2015) that outputs thousands of boxes. The RPN can be ag-
nostic to the domain or classes. The second stage is a classi-
fier that maps each box into a category or as background.

In order to improve the generalization between domains,
we propose to incorporate text (from audio) as an additional
input to the classifier, e.g. combining the appearance of ob-
jects (e.g., say a shovel) with its purpose (e.g., to dig a hole)
can help generalize to new tools with similar appearance
on a part of the tool (e.g., a spade can also dig a hole).
We use a vision and language model called CLIP (Radford
et al. 2021). CLIP can embed images and text in a vector
space such that an image and its caption will have high co-
sine similarity. Our method applies CLIP to each proposal
(the cropped image). Each proposal is captioned with ei-
ther the name of the tool, or the purpose of the tool (Table
1), or “background” for ROIs with insufficient overlap with
ground truth boxes.

We use Hyperdimensional Computing (HD) (Kanerva
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Tool Purpose 1 Purpose 2
Hammer drive nails remove nails

Level check horizontal check vertical
Square measure 90-degree measure length

Table 1: Example tool and purpose captions.

Algorithm 1: Training / Inference in Target Domain
Input: RGB or depth images I
Input: (In training) Labelled bounding boxes B
Parameter: Size of HD vectors D
Output: (Training) HD Exemplars E for source categories

1: # Initialize training
2: e← 0D for each e ∈ E
3: # Loop if training
4: for each training image I do
5: Boxes B ← RegionProposals(I)
6: for each box b ∈ B do
7: ϕb ← CLIP(b); vb ← EncodeHD(ϕb)
8: # In Training (inference caption comes from user)
9: caption← b.label from B else “background”

10: ϕQ ← CLIP(caption); vQ ← EncodeHD(ϕQ)
11: V ← vq ⊕ vb
12: # In Training
13: E[label]← E[label] + V ; n[label]← n[label] + 1
14: # In inference
15: d← 1

D ||V − e||1 for each exemplar e ∈ E
16: Label b with caption if max(Softmax(1-d)) > ϵ
17: end for
18: end for
19: # In training
20: E[i]← 1D(E[i]

n[i] > 0.5) for each label i
21: return E

2009) to perform online domain adaptation (Alg. 1). We ran-
domly project embedding vectors (from CLIP) to a high-
dimensional binary vector space (“EmbedHD” function).
We apply the same projection to visual and text embed-
ding, preserving any semantic similarities. The visual and
text HD vectors are combined using XOR (“binding”) and
average (“bundling”) to produce exemplars E. We form two
exemplars per tool using names and purpose captions. Dur-
ing inference, we need to handle arbitrary queries and new
tools. Inference treats each ROI and query pair as a binary
classification problem: given the user’s query and ROI, the
probability that the ROI is not captioned by the query is the
hamming distance to exemplars E.

Zero-shot mAP Vision Vision+Language
ALET to SKIML 9.5 20.5
SKIML to ALET 5 20

Table 2: Impact of vision+language on zero-shot mAP.

Figure 4: Mean Average Precision (mAP) for zero-shot
(gray) and finetuned (blue) object detection after training on
source domain (x-axis) and tested on target domain (y-axis).

Eval. purpose queries mAP@0.5 @0.5:0.95
Exemplars from tool name 27.61 18.43
Exemplars from purposes 43.57 28.83

Table 3: Impact of exemplars from purpose annotations.

Results
We use two datasets for evaluating domain adaptation. The
ALET dataset (Kurnaz et al. 2020) consists of 50 tools
with multiple tools per image in cluttered environments.
The SKIML dataset is a proprietary dataset with 12 tools
with one tool per image. SKIML and ALET classes have
some common tools but not all. We train on SKIML and test
on ALET and vice-versa to evaluate zero-shot performance.
Figure 4 shows Mean Average Precision (mAP) for object
detection. Our method achieves non-trivial zero-shot mAP
that is about 50% of the finetuned mAP on the target do-
main and able to transfer from 12 SKIML tools to 50 ALET
tools (20 mAP zero-shot vs 40 mAP finetuning). The high
zero-shot precision is due to the combination of vision and
language modalities (Table 2). Table 3 shows incorporating
purpose annotations via new exemplars improves precision.

Automatic speech-to-text uses a wav2vec2 (Baevski et al.
2020) architecture. We finetuned this model on our in-house
English training data which contains 2250 hours of speech.
Our system was tested on the edge device, NVIDIA Orin,
and validated against a GPU server (NVIDIA A5000). A
comparison of the time to process on image is shown in Ta-
ble 4. The time is dominated by generating region propos-
als. However, proposals have to be generated only once to
process all queries. When a new query is entered, only the
CLIP text embedding and the hamming distances have to be
recomputed and the binary HD operations are fast.

Runtime (s/image) Region Proposals CLIP HD
A5000 GPU 4.38 2.30 0.52

NVIDIA Orin 18.08 6.85 1.95

Table 4: Runtime on server vs Orin edge device.
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