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Abstract

One of the ultimate goals of representation learning is to
achieve compactness within a class and well-separability be-
tween classes. Many outstanding metric-based and prototype-
based methods following the Expectation-Maximization
paradigm, have been proposed for this objective. However,
they inevitably introduce biases into the learning process, par-
ticularly with long-tail distributed training data. In this paper,
we reveal that the class prototype is not necessarily to be de-
rived from training features and propose a novel perspective to
use pre-defined class anchors serving as feature centroid to uni-
directionally guide feature learning. However, the pre-defined
anchors may have a large semantic distance from the pixel
features, which prevents them from being directly applied. To
address this issue and generate feature centroid independent
from feature learning, a simple yet effective Semantic Anchor
Regularization (SAR) is proposed. SAR ensures the inter-
class separability of semantic anchors in the semantic space
by employing a classifier-aware auxiliary cross-entropy loss
during training via disentanglement learning. By pulling the
learned features to these semantic anchors, several advantages
can be attained: 1) the intra-class compactness and naturally
inter-class separability, 2) induced bias or errors from feature
learning can be avoided, and 3) robustness to the long-tailed
problem. The proposed SAR can be used in a plug-and-play
manner in the existing models. Extensive experiments demon-
strate that the SAR performs better than previous sophisticated
prototype-based methods. The implementation is available at
https://github.com/geyanqi/SAR.

Introduction
Classification, either at the image level or at the pixel level
(semantic segmentation), is a foundation computer vision
task with a wide range of applications, including but not lim-
ited to autonomous agent tasks such as scene understanding,
augmented reality, and autonomous driving. Many efforts
have been made in this problem and great progress has been
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Figure 1: The difference between prototypes and semantic
anchors in feature space (UMAP-Based). We train HRNet
with two different seeds on Cityscapes to get these prototypes
and semantic anchors. Shapes, colors, and CD represent ran-
dom seeds, classes, and class dependencies, respectively. The
generation of semantic anchors is independent of the main
task, and it achieves more consistent and weaker inter-class
dependencies on imbalanced data.

achieved in recent years, especially after deep learning meth-
ods (Perronnin, Sánchez, and Mensink 2010; He et al. 2016;
Krizhevsky, Sutskever, and Hinton 2017; Chen, Fan, and
Panda 2021; Long, Shelhamer, and Darrell 2015; Chen et al.
2017a; Wang et al. 2020) being introduced. However, no mat-
ter what kind of methods are utilized or what kind of network
structures are designed, the ultimate goal is to learn represen-
tations of data that are compact within a class and separable
between classes in the semantic space. To achieve this, many
methods have been proposed, such as metric learning and
prototype-based learning.

Metric learning is to pull together the intra-class samples
and push away the samples of different categories by design-
ing a distance metric. A lot of distance metrics have been
widely utilized and benefit the representation learning, such
as the contrastive loss (He et al. 2020; Oord, Li, and Vinyals
2018; Wu et al. 2018; Huang et al. 2019; Wang and Isola
2020; Wang and Liu 2021; Yang et al. 2022) and the triplet
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loss (Schroff, Kalenichenko, and Philbin 2015; Ge 2018).
These losses are utilized to learn effective image represen-
tations for downstream tasks by explicitly selecting positive
data pairs and negative data pairs. Wang and Isola (2020)
revealed that the contrastive representation benefits from the
alignment of features of positive pairs and uniformity of the
induced feature distribution. However, the contrastive repre-
sentation relies on the construction of positive and negative
sample pairs, which might induce bias in the feature learning
process.

Prototype-based deep learning has been attracting increas-
ing interest recently due to its exemplar-driven nature and
intuitive interpretation, which also can be deemed as only
using one or several hyper-positive samples. By aligning sam-
ples with the most similar prototype in the semantic space,
prototype-based methods have attained remarkable results in
few-shot learning (Wang et al. 2019; Kwon et al. 2021), unsu-
pervised learning (Xu et al. 2020), supervised learning (Zhou
et al. 2022; Wang et al. 2021), and domain adaptation (Jiang
et al. 2022; Lu et al. 2022), especially for long-tailed prob-
lems, e.g, semantic segmentation. ProtoAttend (Arik and
Pfister 2020) shows that prototype learning is more robust
when handling out-of-distribution samples, which should be
attributed to the more compact data representation within
the class. While CNN tends to learn non-discriminative fea-
tures with high activations for different classes (Nguyen and
Todorovic 2019), i.e., the low inter-class distance. Similarly,
learning more separable prototype relationships reduces the
interdependence of class features, leading to enhanced gener-
alization capabilities, especially when the training set follows
a long-tailed distribution. Recently, RegionContrast and Con-
trastSeg (Hu, Cui, and Wang 2021; Wang et al. 2021) propose
to explore the ”global” context of the training set by lever-
aging contrastive loss between pixel features and prototypes.
CAR (Huang et al. 2022) and SASM (Hong et al. 2022)
propose directly optimizing inter-class and intra-class pro-
totype relationships by Euclidean distance. ProtoSeg (Zhou
et al. 2022) proposes a non-learnable classifier using online
clustering to match learned prototypes.

However, the methods mentioned above are all via the
Expectation-Maximization paradigm (Moon 1996), which
estimates prototype assignments given learned features and
updates learned features with updated prototype assignments.
Compared to these sophisticated prototype learning meth-
ods, one realistic but seldom mentioned fact is that the rela-
tive relationships among prototypes undergo an evident drift
with distinct random seeds, even though the training set and
structure of the network are fixed (see Fig. 1). Especially
in long-tailed problems like segmentation, the prototype of
the rare class appears a strong bias towards certain classes.
This phenomenon demonstrates that the traditional prototype
calculations are sub-optimal since they are heavily bound
to the feature learning process and distributions of training
data, which can potentially result in the learning collapse for
tail-end classes.

A potentially better solution could be to directly guide
feature learning using well-separated and fixed class anchors.
To explore this assumption, we generate three sets of pre-
defined anchors as feature centroid guiding feature learning,

by randomly sampling from three distinct sources: standard
normal distributions, random orthogonal matrix, and ran-
dom matrix with a maximum equiangular separability struc-
ture (Papyan, Han, and Donoho 2020). Subsequently, we
minimize the Euclidean distance between pixel features and
their corresponding anchor features to regularize the model.
Amazingly, Tab. 7 shows that although the performance of
randomly generated anchors is unstable, they can be ben-
eficial for performance sometimes, and are comparable to
the performance achieved by sophisticatedly prototype-based
methods. In addition, solely controlling the angular structure
of these class anchors did not guarantee inter-class separa-
bility and a more noticeable performance improvement. We
believe this unstable and limited improvement is due to the
significant semantic gap between the randomly generated
anchors and learned pixel features.

To align the anchor with features in the semantic space
and keep the independence of anchor generation from fea-
ture learning, we propose a simple yet effective Semantic
Anchor Regularization (SAR) for learning intra-class com-
pact and inter-class separable representations. As shown in
Fig. 2, instead of collecting prototypes during feature learn-
ing process, these pre-defined class anchors A ∈ RC×D for
all categories are projected into the semantic space through a
lightweight embedding layer and categorized by the classi-
fier of the main network, where C is the total class number
and D denotes the semantic dimension of last feature layer
before classification. In addition, we apply two key training
strategies, loss reweighting, and exponential moving average
(EMA) updates, to ensure that semantic anchors obtained
during training are independent of the main task. We will
detail these in Sec. Method. In addition to being supervised
by GT labels, by aligning features in the main network with
semantic anchors, several advantages can be achieved: 1) the
intra-class compactness and inter-class separability can be
intuitively achieved by pulling the feature of each class to the
corresponding semantic anchor, 2) induced bias and errors
of the learned prototype which is calculated as the feature
center can be avoided, 3) less influenced by the number of
training samples and robust in long-tailed problem. The main
contributions of this paper are summarized as follows:

• We reveal that prototype representations derived from the
learned features are sub-optimal and propose a simple yet
effective SAR to gain better class representation.

• SAR can be used in a plug-and-play manner in existing
models with a little extra training cost (add 0.3 GFLOPs
and 1.56M parameters for HRNet) and no testing cost.

• We evaluate the proposed approach on various challeng-
ing semantic segmentation benchmarks. Extensive ex-
periments and visualization examples demonstrate the
proposed SAR is capable of promoting intra-class com-
pactness and inter-class separability.

Related Work
One of the ultimate goals of learning data representation is
to have good intra-class compactness and inter-class separa-
bility. In the following, we review some related works that
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pursue this goal in metric learning and prototype-based deep
learning.

Metric Learning
Metric learning is to pull together samples within a class and
push away the samples of different categories by designing a
distance metric. Among them, the contrastive loss (He et al.
2020; Oord, Li, and Vinyals 2018; Wu et al. 2018; Huang
et al. 2019; Wang and Isola 2020; Wang and Liu 2021), the
triplet loss (Schroff, Kalenichenko, and Philbin 2015; Ge
2018), and the n-pair loss (Sohn 2016) are the most widely
utilized. These losses are utilized to learn effective image
representations for downstream tasks by explicitly selecting
positive data pairs and negative data pairs. CPC (Oord, Li,
and Vinyals 2018) applied contrastive predictive coding to
learn representations from widely different data modalities,
images, speech, and natural language. MoCo (He et al. 2020)
proposed a momentum contrast method for unsupervised vi-
sual representation learning, which allows them to build large
and consistent dictionaries. Wang and Isola (2020) revealed
that the contrastive representation benefits from the alignment
of features from positive pairs and uniformity of the induced
feature distribution. However, the contrastive representation
relies on the construction of positive or negative sample pairs,
which might induce bias in this process. DCL (Chuang et al.
2020) proposed a debiased contrastive learning method to
reduce false negative samples without human annotations.
After all, the ideal unbiased contrastive learning is unachiev-
able in practice since calculating all pairwise comparisons on
a large dataset is impossible.

Prototype-based Deep Learning
Prototype-based learning can be deemed as special metric
learning which only considers the hyper-positive samples.
Previously, prototype-based learning was combined with
nearest neighbors rule (Cover and Hart 1967) for classifi-
cation tasks. Recently, a lot of work has combined prototype
learning with deep neural networks and achieved remark-
able results in many areas. ProtoAttend (Arik and Pfister
2020) shows that prototype learning is more robust when
handling out-of-distribution samples. DPCL (Kwon et al.
2021) addresses the few-shot semantic segmentation prob-
lem by learning more discriminative prototypes that have
larger inter-class distance and small intra-class distance in
feature space. APN (Xu et al. 2020) utilized an attribute
prototype network to transfer knowledge from known to un-
known classes. To tackle the bias in calculating prototypes,
BiSMAP (Lu et al. 2022) proposed multiple anisotropic pro-
totypes. ProCA (Jiang et al. 2022) proposed a prototypical
contrast adaptation method for domain adaptive segmenta-
tion, which incorporates more inter-class information into
class-wise prototypes. CAR (Huang et al. 2022) proposed
optimizing representation distance from inter-class and intra-
class representation relationships. ProtoSeg (Zhou et al. 2022)
directly selects sub-cluster centers of embedded pixels as pro-
totypes and implements segmentation via nonparametric near-
est prototype retrieving. Unlike these previous methods that
via EM paradigm to optimize representation relationships,
SAR introduces some anchors in the semantic space to serve

as feature centroids and employs them to unidirectionally
guide feature learning. By generating feature centroids inde-
pendently of feature learning, SAR is more consistent across
the learning process and robust to long-tailed distribution.

Method
Recap of Prototype-based Deep Learning
In the setting of semantic segmentation, each pixel i of an
image I has to be assigned to a class c ∈ C. Specifically, let
model Sϕ,θ comprises a feature extractor fϕ parameterized
by ϕ and a classifier gθ parameterized by θ, i.e., Sϕ,θ(x) =
gθ(fϕ(x)). Denote a 2D dense feature map for I and its
corresponding semantic feature as F = fϕ(I) ∈ RHW×D

and the ground truth label as Y ∈ RHW×C . H , W , and
D denote I’s height and width, and number of channels,
respectively. Existing methods typically obtain the prototype
by using the average features of all pixels of a certain class
during training. Specifically, prototype P c of a class c can be
formulated as follows,

P c =

∑HW
i=1 [Yi == c]·F∑HW
i=1 [Yi == c]

∈ RD, (1)

where [·] denotes the Iverson bracket. To improve the repre-
sentation relationship between and within classes, many met-
ric strategies D(·, ·) have been proposed and can be grouped
into two types: intra-class compactness loss and inter-class
dispersion loss. The training loss with prototype regulariza-
tion can be expressed as (here we take the intra-class pixel-
to-prototype compactness loss as an example for illustra-
tion (Huang et al. 2022)):

Lseg = Lce(Sϕ,θ(I),Y ) + λDintra−p2p(Y ·P ,F ), (2)

where λ is the trade-off that balances the cross-entropy loss
Lce and regularization loss Dintra−c2p which aims to reduce
the distance between prototypes and class features. Y ·P dis-
tributes prototypes to corresponding positions in each image.
Similarly, inter-class pixel-to-prototype loss can be expressed
as pushing two different classes of pixel features and proto-
types apart.

Motivation
Although previous prototype-based methods have achieved
significant results, the following two problems still exist:
1) Feature entanglement. Conventionally, the prototype is
generated from the learned feature and updated with con-
sideration of the previous state (i.e., prototypes in memory
bank) (Zhou et al. 2022; Wang et al. 2021) during training. As
a result, some errors and induced biases accumulate during
the whole training process. For example, the bias caused by
the long-tailed problem, where there are numerous features
learned from red cars but very few from green cars in the
training set, leads to an overemphasis on color attributes for
the car’s prototype. 2) Classifier imperceptible. Although a
large number of metric functions have been proposed for op-
timizing inter-class distance in the semantic space, they are
not directly perceptible to the model classifier which predicts
probabilities.
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Figure 2: Framework of the proposed method which consists of a main stream (lower stream) for segmentation/classification
and an auxiliary stream (the upper stream) for SAR. Pre-defined class anchors are first embedded into the semantic space to
mitigate the semantic gap and then categorized by the classifier of the mainstream. The embedded anchors are ensembled into
semantic anchors in an EMA manner. The learned feature with dimension is pulled to the corresponding semantic anchor for
better intra-class compactness and inter-class separability. Bold pink lines highlight the proposed SAR.

To address issue 1, we propose Class-anchor Regulariza-
tion (CR) to decouple feature centriod generation from fea-
ture learning, by pulling pixel features for each class to pre-
defined class anchors with good angle relationships. Our
motivation stems from the fact that in the training paradigm
of empirical risk minimization, class representations are not
only bound to the data but also guided by the objective func-
tion. As seen in Fig.1, class prototypes can be any feature
vector in the semantic space as long as they are separable.
In this sense, if we explicitly guide class representations to-
wards some pre-defined anchors that are independent of fea-
ture learning and well-separated, we can attain more consis-
tent and discriminative class representations. In other words,
the prototype is predetermined and consistently maintains
good inter-class relationships, as opposed to being estimated
from the learned representations through the Expectation-
Maximization (EM) paradigm. Errors and biases caused by
long-tailed distributions can be effectively minimized com-
pared to EM estimation.

However, as shown in Tab. 7, CR cannot steadily improve
performance since suffers from the issue 2. The semantic gap
between learned features and class anchors greatly inhibits
the effect of class anchors. To solve these problems simul-
taneously, we further propose the classifier-aware Semantic
Anchor Regularization.

Semantic Anchor Regularization
Semantic Anchor Regularization (SAR) introduces classifier-
aware semantic anchors by projecting the pre-defined class
anchors into the semantic space and sorting them through
the classifier, to address issue 2. As shown in Fig. 2, SAR
learns in the fashion of multi-task learning (Caruana 1997)
by introducing a simple auxiliary steam (the upper steam) to
classify the embedded anchors. The lower stream is the main

task stream to perform segmentation/classification based on
existing models. The C-way classifier is shared between the
auxiliary and main streams. In training, we randomly gener-
ate pre-defined class anchors A ∈ RC×D and fix them, and
project them into the semantic space through a trainable em-
bedding layer hψ , getting namely embedded anchors hψ(A),
and utilizing them update semantic anchors Â by Exponen-
tial Moving Average (EMA) strategy. In this manner, the
separability of semantic anchors is guaranteed according to
the classifier’s decision directly in the semantic space. Hence,
shifting class representations toward corresponding semantic
anchors can get intra-class compact embedding space and
naturally achieve inter-class separability. Specifically, the pro-
posed SAR is a pixel-to-anchor compactness loss by directly
minimizing the distance between data representations and
corresponding semantic anchors,

Lp2a = Dmse(F , Y ·Â) (3)
The next problem that needs to be addressed is how to train
embedding layers in a way that disentangles them from the
main task.

Disentanglement Learning. To mitigate biased learning
resulting from training drift and long-tailed distributed data,
two simple yet effective training strategies are proposed to
ensure that the semantic anchor is generated independently
of feature learning. 1) Reweight. The classifier is required to
make correct predictions with high confidence for all embed-
ded anchors instead of the high mean confidence. Specifically,
the loss for the auxiliary task can be formulated as a weighted
cross-entropy loss in Eq. 4.

Laux−ce = −
∑C

i=1
wi log g

i
θ(hψ(A

i)) (4)

where wc denotes the classification weight of the c-th pre-
defined class anchor. A threshold τ is utilized to filter the
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Model Backbone mIoU

FCN 75.1
FCN+Ours ResNet-101 75.9 (+0.8)

DeepLabV3 80.2
DeepLabV3+Ours ResNet-101 80.6 (+0.4)

HRNet 79.9
HRNet+Ours HRNetV2-W48 81.4 (+1.5)

OCRNet 80.7
OCRNet+Ours HRNetV2-W48 81.7 (+1.0)

SegFormer 81.9
SegFormer+Ours MiT-B4 82.3 (+0.4)

UPerNet∗ 82.7
UperNet+Ours Swin-L 83.2 (+0.5)

Table 1: Quantitative results on Cityscapes. * represents based
on our reproduction.

high-confidence predictions in Eq. 5 and the wc can be calcu-
lated as Eq. 6. By re-normalizing the wc after high-confidence
suppression, more attention can be put on low-confidence
embedded anchors,

wc =

{
1, if gcθ(hψ(A

c)) > τ

gcθ(hψ(A
c)), otherwise

(5)

wc =
log(wc)∑C
i=1 log(wi)

, (6)

The above reweight strategy serves two purposes. First, it
can be utilized to correct biases towards common classes the
classifier learns under the guidance of the main task. Second,
attributed to the Eq. 5, embedded anchors with prediction con-
fidence higher than τ are not changed along with the training,
it can accelerate the convergence of the auxiliary task, which
is already quite simple (C samples, C-way classification),
and avoid too much influence on the main task. In practice, for
the 160K training schedule on ADE20K (Zhou et al. 2017),
the embedding layer is updated frequently only during the ini-
tial 600 steps, and subsequently, it is updated approximately
every 25 steps. 2) Update by exponential moving average.
Furthermore, to avoid entangled updates of embedded an-
chors and main task features, we employ the Exponential
Moving Average (EMA) manner to get semantic anchors at
each training step t,

Ât = αÂt−1 + (1− α)hψ(A)t, (7)

In addition, we only use and update semantic anchors when
it is correctly classified with a probability greater than δ for
better inter-class separation.

In summary, the above training strategy ensures the inde-
pendence of learning between semantic anchors and pixel
features, even though the main task and auxiliary task share
the same classifier, which is inherently different from previ-
ous works (Huang et al. 2022; Wang et al. 2021; Wu et al.
2023; Hu, Cui, and Wang 2021) collecting prototypes based
on the feature learning process.

Model Backbone mIoU

FCN 39.9
FCN+Ours ResNet-101 40.4 (+0.5)

DeepLabV3 45.0
DeepLabV3+Ours ResNet-101 45.3 (+0.3)

HRNet 42.0
HRNet+Ours HRNetV2-W48 42.8 (+0.8)

OCRNet 43.2
OCRNet+Ours HRNetV2-W48 43.7 (+0.5)

SegFormer 49.1
SegFormer+Ours MiT-B5 49.5 (+0.4)

UPerNet 52.2
UperNet+Ours Swin-L 52.6 (+0.4)

Table 2: Quantitative results on ADE20K.

Overall. Integrating all components, the overall loss for
SAR representation learning is the weighted sum of the pre-
sented loss components,

Lseg = Lce + λ1Laux−ce + λ2Lp2a (8)

Experiments
Experimental Settings
Semantic segmentation which is a typical and challenging
classification task at the pixel level is adopted as the main
downstream task to evaluate the proposed method. In ad-
dition, We further apply SAR for image classification ex-
ploratory experiment in Appendix Sec. A.

Datasets. Our experiments are conducted on three datasets,
including Cityscapes (Cordts et al. 2016), ADE20K (Zhou
et al. 2017), and Pascal-Context (Mottaghi et al. 2014)
Cityscapes contains 5,000 fine-grained annotated European
street scenes with 2,975/500/1,524 for train/val/test. It con-
tains 19 classes for scene parsing or semantic segmenta-
tion evaluation. ADE20K is one of the most challenging
large-scale scene parsing datasets due to its complex scene
and up to 150 category labels. The dataset is divided into
20,210/2,000/3,352 images for train/val/test, respectively.
Pascal-Context is split into 4,998/5,105 for training/test set
with 59 semantic classes plus a background class. As a com-
mon practice in semantic segmentation tasks, we use its 59
semantic classes for evaluation.

Network Architectures. Our implementation is based on
the mmsegmentation framework (Contributors 2020) and
follows default model configurations. The embedding layer
is designed as a stack of two LinearModule (Linear, Bn,
ReLU) and one ConvModule (Conv, Bn, ReLU). All back-
bones are initialized using corresponding weights pre-trained
on ImageNet-1K (Deng et al. 2009).

Implementation Details. The proposed SAR and its base-
lines use the same image augmentation for fair comparisons,
including random resize with ratio [0.5, 2.0], random horizon-
tal flipping, random cropping, and random photometric dis-
tortion. We empirically set λ1 = 1, α = 0.999, τ = 0.9 and
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δ = 0.8 for our all experiments. We use smaller λ2 = 0.05
for DeepLabV3 (Chen et al. 2017a), which has a relatively
unstable training process. In addition, to ensure generality,
all other models use λ2 = 0.1, although customizing hyper-
parameters for each benchmark can further improve perfor-
mance. Following previous work (Contributors 2020; Chen
et al. 2017a; Liu et al. 2021), we use the stochastic gradient
descent (SGD) (Robbins and Monro 1951) optimizer with a
learning rate of 0.01, weight decay of 0.0005, and momentum
of 0.9 for Convolution-based models. For Transformer-based
models, we use the AdamW (Loshchilov and Hutter 2017)
optimizer with a learning rate of 0.00006 and weight decay
of 0.01. The learning rate is scheduled following the polyno-
mial annealing policy. For Cityscapes (Cordts et al. 2016),
we train a batch size of 8 with a crop size of 512 × 1,024
(Transformer-based models trained by 1,024 × 1,024 crop
size). For ADE20K and Pascal-Context, we train a batch
size of 16 with a crop size of 512× 512 and 480× 480, re-
spectively. Unless otherwise specified, the models are trained
for 80k, 160k, and 40k iterations with 8GPUs (Transformer-
based models) or 4GPUs (Convolution-based models) on
Cityscapes, ADE20K, and Pascal-Context, respectively.

Main Results
To verify the effectiveness, SAR is evaluated and compared
with other SOTA methods on three segmentation benchmarks
using different backbone networks.

Tab. 1 shows the performance on Citysacpes (Cordts
et al. 2016) dataset. It can be seen that by integrating
SAR with FCN (Long, Shelhamer, and Darrell 2015),
DeepLabV3 (Chen et al. 2017b), HRNet (Wang et al. 2020),
OCR (Yuan, Chen, and Wang 2020), SegFormer (Xie et al.
2021) and Swin Transformer (Liu et al. 2021), their perfor-
mance in mIoU are increased by 0.8%, 0.4%, 1.5%, 1.0%,
0.4% and 0.5%, respectively. These improvements are signif-
icant compared to these commonly used strong baselines.

The consistent performance improvement can be observed
in Tab. 2, which adopts the same baselines as Tab. 1. In
addition, we also couple SAR with DisAlign (Zhang et al.
2021) which is a two-stage approach specifically designed to
address long-tail segmentation. We report results in Tab. 3,
After incorporating DisAlign (DA), we achieved further im-
provements in the column of mTailIoU (34.5% v.s. 34.3%).
This implies that our approach can effectively serve as a
complement to methods focused on long-tailed distributions.

To show SAR’s capacity for effectively handling tailed
classes, we also perform experiments on Pascal-Context
which follows serious long-tail distributions. The overall per-
formance is shown in Tab. 4 (MMSeg does not provide avail-
able config for Transformer-based methods on this dataset),
while for a detailed analysis of specific tail-end classes, please
refer to Appendix Sec. B.

Comparison with Prototype-based Methods
We conduct a fair comparison between SAR and other im-
portant prototype-based methods, such as ProtoSeg (Zhou
et al. 2022) and CAR (Huang et al. 2022), as these methods
employ experimental settings that differ from the MMSeg

mIoU mHIoU mBIoU mTIoU

Stage1

HRNet 42.0 65.5 46.0 32.8
HRNet+SAR 42.7 66.2 45.6 34.3 (+1.5)

Stage2

DA+HRNet 42.2 65.6 46.0 33.1 (+0.3)
DA+SAR 42.9 66.1 46.0 34.5 (+1.7)

Table 3: Incremental improvements for DisAlign (DA) that
is focused on long-tail segmentation on ADE20K. mHIoU:
mHeadIoU. mBIoU: mBodyIoU. mTIoU: mTailIoU.

Model Backbone mIoU (%)

FCN 48.4
FCN+Ours ResNet-101 49.7 (+1.3)

DeepLabV3 52.6
DeepLabV3+Ours ResNet-101 53.3 (+0.7)

HRNet 50.3
HRNet+Ours HRNetV2-W48 51.1 (+0.8)

OCRNet* 52.0
OCRNet+Ours HRNetV2-W48 52.4 (+0.4)

Table 4: Quantitative results on Pascal-Context. * represents
based on our reproduction.

benchmark. For a performance comparison of the classifica-
tion task, please refer to Appendix Sec. A.

Ablation Studies
In Tab. 7, we evaluate the efficacy of each component in
the proposed SAR on Cityscapes (Cordts et al. 2016). Lce
means the case only using HRNet as baseline. Without em-
bedding layer (+Lp2a), learned features in the segmentation
task are directly regularized by the pre-defined anchors A
which are randomly sampled from the three sources. As dis-
cussed in Sec. Motivation, these random class anchors are
able to improve the performance of the baseline but with
strong variations. To reduce semantic gaps between class an-
chors and semantic space, we embed the pre-defined anchor
into semantic space (+embedding layer) and control their sep-
arability using the classifier for segmentation (+Laux−ce). In
this manner, a stable improvement of 0.7 in mIoU can be ob-
tained. Further, the EMA updating strategy and Reweighting
strategy are utilized in disentanglement learning these seman-
tic anchors. Combining all components, SAR can achieve an
increment of 1.5 in mIoU compared to the baseline.

Detailed Analyses. More detailed ablation studies can refer
to Appendix Sec. C, including independence of semantic
anchor, model robustness, hyper-parameters sensitivity, and
extra computational and storage burden analyses.

Qualitative Evaluation on the Segmentation Results
Visualization of learned representations. Fig. 3 visual-
izes the feature learned with and without the proposed SAR
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HRNet                                       SAR                                        HRNet                                       SAR                                   HRNet                                       SAR

Figure 3: Visualization of the learned features with HRNet and SAR on Cityscapes utilizing UMAP.

Method Resolution Schedule mIoU

Model learned on ADE20K

HRNet 160K 512×512 42.0
SAR 160K 512×512 42.8 (+0.8)

ProtoSeg 160K 520×520 43.0 (+1.0)
SAR 160K 520×520 43.3 (+1.3)

Model learned on Cityscapes

HRNet 80K 1024×512 79.9
HRNet 160K 1024×512 80.6 (+0.7)

ProtoSeg 160K 1024×512 81.1 (+1.2)
SAR 80K 1024×512 81.4 (+1.5)

Table 5: Fair comparison of SAR and ProtoSeg based on
HRNet as the baseline.

Method mIoU Method mIoU

DLV3 52.6 HRNet 50.3
CAR 52.9 (+0.3) CAR 50.7 (+0.4)
SAR 53.3 (+0.7) SAR 51.1 (+0.7)

Table 6: Fair comparison with CAR on Pascal-Context using
520×520 training crops. DLV3: DeepLabV3

Lce Lp2a Laux−ce EMA Reweight mIoU (%)

✓ 79.9

✓ ND 79.8∼80.3
✓ OM 79.2∼79.9
✓ MES 79.8∼80.4

✓ N ✓ 80.6 (+0.7)
✓ N ✓ ✓ 81.1 (+1.2)
✓ N ✓ ✓ ✓ 81.4 (+1.5)

Table 7: Ablation studies on the key components of our pro-
posed SAR on Cityscapes. ND: standard Normal Distribu-
tion, OM : random Orthogonal Matrix, MES: random ma-
trix with a Maximum Equiangular Separability structure.

using UMAP (McInnes, Healy, and Melville 2018) analysis.
Learning with SAR improves intra-class compactness and
inter-class separability. According to the basic assumption
proposed in (Oliver et al. 2018), the decision boundary gener-
ated by SAR will pass through more sparse regions and have
stronger robustness and generalization

HRNet          SAR           HRNet          SAR            HRNet           SAR

Figure 4: Qualitative results on ADE20K (L. 2 Cols.),
Cityscapes (M. 2 Cols.), and Pascal-Context (R. 2 Cols.).

Qualitative results. We present qualitative examples of the
segmentation results in Fig. 4. Examples are from ADE20K,
Cityscapes, and Pascal-Context, respectively. The results
from the HRNet and HRNet training with SAR are included
for comparison.

Conclusion
In this paper, we present that prototype representations de-
rived from the learned features are sub-optimal since they
heavily rely on the data distribution. We proposed a novel
perspective to leverage pre-defined class anchors which are
decoupled from pixel features to guide representation learn-
ing. However, directly using these anchors suffers from the
semantic gap between pre-defined anchors and learned fea-
tures in the semantic space. To address this issue, we pro-
posed semantic anchor regularization (SAR) for improved
class representation. SAR adopts a disentangled learning
approach to collect these semantic anchors, using them to
unidirectionally guide feature learning. SAR can be applied
in a plug-and-play manner to help existing models achieve
better performance and address long-tail distributions. Exper-
iments on downstream semantic segmentation with extensive
ablation studies have validated the effectiveness of the pro-
posed SAR method. In addition, exploratory experiments in
Appendix Sec. A show SAR is promising as a general solu-
tion for classification-based tasks. We hope that our proposal
can advance future studies of representation learning and im-
balanced learning. Limitations and future work are provided
in Appendix Sec. D.
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