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Abstract

Most of existing correspondence pruning methods only con-
centrate on gathering the context information as much as pos-
sible while neglecting effective ways to utilize such informa-
tion. In order to tackle this dilemma, in this paper we pro-
pose Graph Context Transformation Network (GCT-Net) en-
hancing context information to conduct consensus guidance
for progressive correspondence pruning. Specifically, we de-
sign the Graph Context Enhance Transformer which first gen-
erates the graph network and then transforms it into multi-
branch graph contexts. Moreover, it employs self-attention
and cross-attention to magnify characteristics of each graph
context for emphasizing the unique as well as shared essen-
tial information. To further apply the recalibrated graph con-
texts to the global domain, we propose the Graph Context
Guidance Transformer. This module adopts a confident-based
sampling strategy to temporarily screen high-confidence ver-
tices for guiding accurate classification by searching glob-
al consensus between screened vertices and remaining ones.
The extensive experimental results on outlier removal and rel-
ative pose estimation clearly demonstrate the superior per-
formance of GCT-Net compared to state-of-the-art methods
across outdoor and indoor datasets.

Introduction

Two-view correspondence pruning methods strive to form
robust correspondences between two sets of interest points
to lay the foundation for many computer vision tasks, such
as, Structure from Motion (SfM) (Sarlin et al. 2023), Simul-
taneous Localization and Mapping (SLAM) (Johari, Car-
ta, and Fleuret 2023) and Image Fusion (Tang et al. 2023).
Correspondence pruning involves three steps: keypoints and
relating descriptors extraction, the initial correspondence
set establishment and outlier (i.e. false correspondence) re-
moval. More specifically, we employ established methods,
such as SuperPoint (DeTone, Malisiewicz, and Rabinovich
2018) and SIFT (Lowe 2004), to generate keypoints and
computer their descriptors at first. Subsequently, the ini-
tial correspondence set is generated by applying the nearest
matching algorithm to the descriptors. However, the initial
correspondence set often contains numerous outliers (shown
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Figure 1: Visualization results of the procedure for corre-
spondence pruning using GCT-Net, with the red and green
lines representing incorrect and accurate correspondences,
respectively.

in Fig. 1b) due to the limitations of local descriptor repre-
sentation and the presence of low-quality images. Therefore,
the third step, identifying and eliminating outliers, is indis-
pensable. As illustrated in Fig. 1c and Fig. 1d, outliers are
removed and most of inliers are preserved, enhancing the
available insights for post-processing endeavors.

Correspondence pruning methods are mainly evolved in-
to two distinct factions, ¢.e., tradition methods and learning-
based methods. RANSAC (Fischler and Bolles 1981) and
its modifications (Barath, Matas, and Noskova 2019; Chum
and Matas 2005; Chum, Werner, and Matas 2005; Torr and
Zisserman 2000) are representative of traditional methods.
These methods adopt a sampling-verification loop to retain
most of correspondences adhering to a specific geometric
model. However, in scenarios with a high proportion of out-
liers, the runtime of these methods will rapidly increase and
simultaneously, the quality of the results will significantly
deteriorate. In our task, it is common for the initial corre-
spondence set to have an outlier proportion exceeding 80%,
rendering these methods inapplicable.

The most of learning-based advancements approach the
correspondence pruning as a binary classification problem
and achieve remarkable potential. But this treatment also
poses formidable challenges: (1) unordered data should be
handled appropriately to ensure its permutation invariance.
(2) local context and global context should be adequately
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mined to provide the basis to identify outliers.

For example, LFGC-Net (Yi et al. 2018) and OANet
(Zhang et al. 2019) employ the PointNet-like architecture
(Qi et al. 2017a) which embeds Context Normalization (C-
N) into Multi-Layer Perceptrons (MLPs) to deal with each
correspondence individually for gaining the global context.
CLNet (Zhao et al. 2021), MS?DG-Net (Dai et al. 2022) and
NCM-Net (Liu and Yang 2023) all construct the graph net-
work via K-Nearest Neighbor (KNN) to build relationships
among adjacent correspondences for searching and aggre-
gating local context. All these methods aim to obtain ade-
quate local and global context information while preserv-
ing the permutation invariance of input data. However, their
primary emphasis lies in acquiring abundant context infor-
mation, overlooking the practical utilization of such context
knowledge.

In this paper, we propose the Graph Context Enhance
Transformer (GCET) block that not only gathers multi-
branch graph contexts but also thoroughly mines and empha-
sizes respective and common significant context information
via self-attention and cross-attention to boost the discrim-
inating capability of the network. In specific, we first em-
ploy KNN to construct the graph network where each node
represents a correspondence and each edge denotes a rela-
tionship between two correspondences. Next, we transform
the graph network filled with a wealth of context informa-
tion into two completely different types of graph context to
receive various evidence. In one type, local context is aggre-
gated by MLPs and maxpooling, which, although sacrificing
a considerable amount of structure information, guarantees
the reliability of graph context. In the other type of graph
context, local context is gathered by affinity-based convo-
lution which captures the vast majority of relationships in
the graph structure while preserving contaminated informa-
tion. It is feasible to immediately integrate the complemen-
tary graph contexts from multiple branches, but it is not the
optimal choice because there is untapped potential yet to be
explored. Here, we utilize self-attention to amplify the cru-
cial parts and reliable dependencies among correspondences
for emphasizing the distinctiveness of graph context within
each branch. In parallel, we employ cross-attention to un-
cover and enhance the shared importance between different
salient graph contexts. Finally, the discriminative fusion s-
trategy is applied to absorb highlight components of graph
contexts and discard redundant portions meanwhile.

Moreover, in order to further apply the fused graph con-
text to the global domain, we present the Graph Contex-
t Guidance Transformer (GCGT) block which adopts the
score-based sampling to select a set of candidates and u-
tilize transformer to guide spatial consensus at the global
level through sampled candidates. Specifically, we first em-
ploy the linear layer to score the confidence values for each
correspondence. Then, we select a set of correspondences
with high scores as the global guiding source and regard
original correspondences as the guiding target. It is worth
noting that before the guiding procedure, we also perform
the cluster operation on the guiding source and target to en-
hance their reliability and reduce computational overhead.
At last, the guiding source and target are fed into trans-
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former to steer correspondences with high global consisten-
cy and shape long-range dependencies. Additionally, we al-
so capture short-range spatial dependencies to complement
the output of transformer.

Our contributions are three-fold: (1) We propose the
GCET block which generates multi-branch graph contexts
with respective characteristics and employs self-attention
and cross-attention to emphasize individual nature and
shared crucial knowledge for better absorbing advantages
from each branch. (2) Drawing on the foundation of glob-
al consensus and guided by the principle of distinct inliers
to guide hidden inliers, we design the GCGT block which
samples credible inliers to direct remaining inliers exhibiting
high spatial consensus. (3) By combining the GCET block
and GCGT block, we develop an effective Graph Context
Transformation Network (GCT-Net) for outlier removal and
relative pose estimation, achieving the state-of-the-art per-
formance on both outdoor and indoor datasets.

Related Work
Learning-Based Correspondence Pruning Methods

The advent of deep learning has provided many new inspira-
tions for tackling outlier rejection. As a pioneer in this field,
LFGC-Net (Yi et al. 2018), driven by (Qi et al. 2017a,b),
subdivides the correspondence pruning task into outlier/in-
lier labeling and essential matrix regression. Besides, it fur-
ther designs a permutation-equivariant architecture, which
integrates CN into MLPs, thereby dealing with unordered
data while obtaining the global context. The most of subse-
quent works adopt the de facto framework and incorporate or
modify components to gain context information to enhance
the network performance. For example, in order to overcome
the disturbance of contaminated information caused by CN,
ACNet (Sun et al. 2020) transforms CN into attentive ones
to discriminately treat various information. OANet (Zhang
et al. 2019) clusters correspondences by the differentiable
pooling layer and recovers the original order of correspon-
dences based on the differentiable unpooling layer for ex-
ploiting potential local context as well as reducing compu-
tation overhead. CLNet (Zhao et al. 2021) first constructs
the local graph for each correspondence to gather local con-
text and then connects all local graphs to generate a global
one to acquire abundant global context. MS?DG-Net (Dai
et al. 2022) leverages the combination of maxpooling and
self-attention to progressively update the local graphs for
multi-level context. Diverging from the aforementioned ap-
proaches, which generates a solitary graph context and di-
rectly employs it in a superficial manner, our method gener-
ates multi-branch graph contexts with respective character-
istics and knowledge and refine graph contexts through both
self-interactions and collaborative interactions.

Attention Mechanism in Correspondence Pruning

Currently, attention mechanisms have been extensively em-
ployed in many computer tasks, including semantic segmen-
tation (Kirillov et al. 2023), image fusion (Li et al. 2023)
and so on. For the field of correspondence pruning, the in-
troduction of attention mechanisms is beneficial to focus on
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Figure 2: The detailed pipeline of our proposed GCT-Net. Feeding the initial correspondences: N x 4, GCT-Net progressively
aggregates context information and filtrates outliers in the pruning module to reduce the negative impact from polluted in-
formation. Next, the pruned correspondences are delivered to Model Estimation to calculate the essential matrix. Finally, by
performing Full-size Verification with generated matrix, the network outputs epipolar distances to determine whether corre-

spondences are inliers or outliers in the end.

inlier information and suppress redundant information, but
it still necessitates some appropriate modifications. For in-
stance, SENet (Hu, Shen, and Sun 2018) is a simple yet ef-
ficient channel attention mechanism that emphasizes impor-
tant knowledge in the channel dimension via the squeeze-
and-excitation (SE) block. However, it prioritizes the glob-
al aspect and neglects the demand for local aspect in cor-
respondence pruning. Therefore, MSA (Zheng et al. 2022)
introduces the multi-scale attention by remoulding the SE
block, carrying out information recalibration from multiple
perspectives for accurate inlier/outlier classification. Addi-
tionally, CA (Hou, Zhou, and Feng 2021) and CBAM (Woo
et al. 2018), integrating the spatial attention mechanisms,
further consider the weight allocation in the spatial dimen-
sion. But their effectiveness is limited for correspondence
pruning methods. The emergence of vanilla Transformer
brings new prospects for addressing the problem of cap-
turing long-range spatial dependencies, but simultaneously
introduces various challenges. Firstly, considering that the
number of correspondence N typically falls within the range
of 1500 to 2000 in correspondence pruning, the computation
complexity of Transformers, which is O(N? - D), results
in a substantial computational burden. Although some vari-
eties of transformer, like ViT (Dosovitskiy et al. 2020) and
Swin-Transformer (Liu et al. 2021), reduce the computation-
al load, the patch strategy can negatively impact the handling
of unordered data. Secondly, in the initial correspondence
set, outliers constitute the majority, and their presence can
interfere with similarity computation, significantly dimin-
ishing the reliability of the output attention map. Therefore,
we propose the GCGT block which mitigates the impact of
contaminated information during interaction process and re-
duces computational overhead in a scaling approach. This
transformation renders Transformer-like architecture well-
suited for correspondence pruning.

Methodology
Problem Formulation

Given a putative set of image pairs (I, ] /), we first em-
ploy off-the-shelf keypoint extraction methods (Lowe 2004;
DeTone, Malisiewicz, and Rabinovich 2018) to search inter-
est points and calculate concerning descriptors. Afterwards,
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the initial correspondence set @ = [q1,92,43,.-.,4N] €
RN>*4 consisted of N correspondences is generated by
roughly matching keypoints through descriptor similarities.
As the basic element in @), g; represents the i-th correspon-
dence which involves two coordinates normalized by cam-
era intrinsics in respective image. However, the brute-force
matching process contributes to an overwhelming propor-
tion of outliers in the initial correspondence set. Consequent-
ly, an efficient correspondence pruning method should be
developed to conduct more accurate correspondence classi-
fication and relative pose estimation.

In pursuit of this objective, we propose Graph Contex-
t Transformation Network (GCT-Net) and illustrate its net-
work architecture in Fig. 2. We adopt the progressive prun-
ing strategy (Zhao et al. 2021) in our network which is ca-
pable of gradually screening outliers and thus mitigates the
negative impact of contaminated information. With the per-
spective of pruning module, the input data passes through
3 ResNet blocks, the Graph Context Enhance Transformer
(GCET), another 3 ResNet blocks and Graph Context Guid-
ance Transformer (GCGT). ResNet blocks are used to boost
representation ability of the network, GCET aims to en-
hance the converted graph context, and GCGT further lever-
ages enhanced context to guide remaining inliers. In gen-
eral, we first utilize two series-connected pruning modules
to deal with the input correspondence set (). The opera-
tions in these two modules can be respectively expressed
as: (Q1,01) = fo1(Q) and (Q2,02) = fo2(Q1) where ol
and 02 are their related parameters. Here, ); € RN1*4
and Q2 € RN2*4 denote the pruned correspondence set
(N > N; > Ny)and 0; € RN *1 and 0y € RN2X1 rep-
resent the output logit values. Based on logit values, we sort
correspondences in descending order and preserve 50% of
correspondences by pruning the lower 50%.. It is worth not-
ing that the feature map of Q)5 is preserved and additionally
passed through a linear layer to estimate the inlier weight
set w. The next step (¢.e. model estimation), regarding w as
supplementary input, involves and Q2 with w to execute the
parametric model calculation (i.e., estimate essential matrix
E) Finally, we leverage E combined with @ to carry out the
full-size verification which can retrieve the falsely removed
inliers during sequential pruning process. In short, the mod-
el estimation and the full-size verification can be expressed
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Figure 3: Structure diagram of our proposed graph context
enhance transformer.

as:
E:H(Q27w)7 (1)

ED =V(E.Q), )

where H(-,-) denotes the weighted eight-point algorithm
(Ma et al. 2021) and V (-, -) represents the full-size verifica-
tion operation to measure the epipolar distance set of all cor-
respondences (i.e., ED = [edy,eds, ... ,edy] € RN*1).
Each correspondence ¢; corresponds to a polar distance ed,;,

and we classify ¢; into inliers when ed; is less than an artifi-
cially set threshold.

Graph Context Enhance Transformer

Collecting abundant local context is highly beneficial for ac-
curate correspondence pruning. The graph network plays a
significant role in establishing and exploring relationships
among neighbors. (Zhao et al. 2021) and (Dai et al. 2022)
leverage the nature of graph network to generate graph con-
texts with respective advantages. However, the converted
graph contexts are not thoroughly explored and refined re-
sulting in a lost opportunity to substantially improve the ef-
fectiveness of subsequent tasks.

As shown in Fig. 3, GCET first transforms the feature
map of correspondences F' = {fi,---, fy} into the graph
network G; = (V;,&;) where G; denotes i-th correspon-
dence, V; = (v},---,vF) contains k neighbors and & =
(e},--- ,eF) indicates the relationships between G; and its
neighbors. Here, we describe €] as [f;|| fi — f]] where [-||-]
means the concatenation operation. Then, the graph network
is converted into two different types of graph context: credi-
ble graph context (CGC) and structure graph context (SGC)
by maxpooling with MLPs and convolution with p neigh-
borhood segmentation (Zhao et al. 2021) to gather diverse
context information. This process can be expressed as fol-
lows:

CGC = M LPs(Mazpooling(M LPs(E;))),
SGC = Convs(Conuvy (&;)),

3
“

1971

where C'onv; and C'onvs are convolutional operations with
kernel sizes of 1 X pand 1 X %, respectively.

Although CGC discards a majority of edge information, it
remains the most credible neighbor relationships. Converse-
ly, SGC, captures the most of structure information among
nodes but is susceptible to interference from contaminated
information. Next, in order to amplify the strengths of these
graph contexts, we employe self-attention to recalibrate
themselves and leverage cross-attention in parallel to uncov-
er shared significant part. However, both self-attention and
cross-attention demand substantial computation resources,
especially when dealing with a large number of N. There-
fore, before the recalibration of graph contexts, it is im-
perative to streamline graph contexts into {CGC’, SGC'}
through a clustering operation (Zhang et al. 2019) to com-
pact vertices in a learnable manner. The detail operation can
be formulated as follows:

CGC',SGC" = Cluster(CGC, SGC), )
CGC"* = (SA(CGC") @ CA(SGC',CGC")),  (6)
SGC™* = (SA(SGC") & CA(CGC', SGC")),  (7)

where CGC"¢ and SGC’¢ denote enhanced graph con-
texts in a clustered state. SA(-) represents the self-attention
and C'A(+,-) indicates the cross-attention where the query
is derived from the preceding input and the key-value pairs
source from the second input. Additionally, @ is the atten-
tional fusion operation (Dai et al. 2021) which discriminate-
ly treats transitional graph contexts to generate the complete
graph context with strong characteristics.

Finally, the enhanced graph contexts are recovered to
the original sizes to keep the permutation invariance and
go through another attentional fusion to combine respective
highlighted advantages. The process can be described as:

CGC*,SGC® = Recover(CGC"°, SGC"*),
GC® = (CGC* & SGC°),
where GC* is the output of GCET.

®)
(C)]

Graph Context Guidance Transformer

Global consensus is served as convictive evidence to assist
in inlier/outlier discerning. Nevertheless, due to the substan-
tial presence and random distribution of outliers, excavating
global consensus among inliers is a highly challenging task.
To extend the application of the enhanced graph context to
the global realm, we design GCGT, to guide the inlier dis-
crimination process by mining the consensus among inliers.

The detailed guidance process is shown in Fig. 4. In spe-
cific, we first subject the enhanced graph context to a linear
layer, assigning confidence scores to each node to generate a
score table (ST). Based on ST, we proceed to sort confidence
scores in descending order and sample vertices with higher
confidence scores to form a set of candidates. Notably, be-
fore delving into the consensus guidance procedure, we ex-
pand the candidate set to enhance its expressive capacity and
mitigate the potential disruption caused by hidden outliers.
Simultaneously, we perform the cluster operation to the en-
hanced graph context before sampling phase, streamlining
its representation and concurrently reducing the computa-
tional load during the guidance process. These preparations
can be described as:
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Figure 4: The detailed structure of our proposed graph con-
text guidance transformer.

ST = Linear Layer(GC®), (10)
GS = Expand(Sample(Sortge.(ST, sr))), (11)
GT = Cluster(GC®), (12)

where Sortge. implies sorting targets in descending order,
sr indicates sampling rate, and GS and GT represents the
guiding source and the guiding target, respectively. Expand
is the inverse operation of Cluster.

Next, we employ the vanilla Transformer to conduct the
consensus guidance which seeks similarities between G.S
and G'T to assign greater attention to inliers. Here, the query
is a linear projection of G'S and the key-value pairs source
from GT'. To prevent from information loss during guidance
procedure, we apply skip connection to GS. Besides, we also
perform OAFliter (Zhang et al. 2019) to the clustered graph
context, which captures spatial-wise dependencies comple-
menting the output of Transformer. Finally, we recover the
fusion results of the output of OAFilter and consensus guid-
ance and further integrate GC*® to harmonize the balance be-
tween local context and global consensus. These operations
can be formulated as follows:

GR = (TF(GS,GT) + GS) ® OAFilter(GT)),
GCoyt = (Recover(GR) & GC°),

13)
(14)

where GR means guiding results, T'F indicates the vanilla
Transformer and GC,,,; is the final graph context output by
GCGT.

Loss Function

Following (Yi et al. 2018), we employ a hybrid loss function
to optimize GCT-Net. The loss function is composed of two
constituents:

L = Loty (04, 9) + Lreg (B, E) | (15)
where L., and L,., denotes the correspondence classifi-
cation loss and the essential matrix regression loss, respec-
tively.  represents a parameter utilized to balance these two
losses. L.;s can be further formulated as:

K
Los(0i,y:) = ZH(W © 04, i),

=1

(16)

where H represents the binary cross entropy loss. o; signi-
fies the logit values derived from ¢-th pruning module. y;

1972

denotes the ground-truth label set for the i-th pruning mod-
ule where labels are ascertained by the threshold of 10~%.
©® is the Hadamard product. The parameter 7; is a dynam-
ic temperature vector, strategically leveraged to mitigate the
negative effects of label ambiguity (Zhao et al. 2021). K in-
dicates the count of correspondence pruning modules. L;.cq
can be described as follows (Ranftl and Koltun 2018):

!’ ~
(» T Ep)?
1Bl + 1Bpl% + B9 7y + 1ETP 1%

L.(E,E) = an

where pand p’ denote the coordinate sets in image matching
pairs. gj;) stands for the i-th element in vector .

Experiments
Evaluation Protocols

Datasets We conduct experiments on outdoor and indoor
datasets (i.e., YFCC100M and SUN3D) to demonstrate the
outlier removal capability of GCT-Net. The YFCC100M
dataset contains 100 million publicly accessible travel im-
ages divided into 71 sequences. The SUN3D dataset, com-
prising a substantial collection of RGBD images, has been
categorized into 254 sequences. As in (Zhang et al. 2019),
these sequences are further divided to generate a training
set, a validation set, and a test set. Some images from the
sequences being used as training set are retained to act as
known scenario testing.

Evaluation metrics We evaluate our proposed GCT-Net
in terms of both inlier/outlier classification and relative pose
estimation tasks. In the inlier/outlier classification task, the
network is supposed to remove outliers and preserve as
many inliers as possible. Therefore, Precision (P), Recall
(R) and F-score (F') are selected as our evaluation metrics.
In relative pose estimation task, the mean average precision
(mAP) is adopted as our criteria which measures the angular
differences between estimated vectors and the ground truth
ones with the perspective of both rotation and translation.

Evaluation Protocols

In the overall framework implementation of our network,
following (Zhao et al. 2021), we utilize two consecutive
pruning modules with a pruning rate of 0.5 each to achieve
progressive selection. SIFT is employed to generate an ini-
tial set of N = 2000 correspondences where the number of
channel dimension d is extended to 128. In GCET, the neigh-
bor number k£ in KNN algorithm is set to 9 for construct-
ing the graph network. In GCGT, we configure the sampling
rate sr to be 0.2. As for the common components in GCET
and GCGT, the channel reduction ratio r in attentional fu-
sion (Dai et al. 2021) and the head number A in Transformer
(Vaswani et al. 2017) is all configured to 4. In alignmen-
t with configuration of (Zhang et al. 2019), we utilize the
Adam optimizer (Kingma and Ba 2014), to set the batch size
to 32 and maintain the learning rate of 10~2 to train our net-
work. It’s noteworthy that the training process spans a total
of 500k epochs where for the initial 20k epochs, J in Eq. 15
is set to 0, and for the remaining 480k epochs, 9§ is fixed to
0.5.
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Datasets YFCC100M SUN3D
Methods P@®) R(%) F (%) P (%) R(%) F (%)
RANSAC 4351 50.68 46.82 4489 48.68 46.71
LFGC 54.67 8476 6647 4395 8371 57.64
OANet++ 5578 85.93 67.65 46.15 8436 59.66
ACNet 55.54 85.38 6730 4597 8394 59.40
T-Net 58.21 86.38 69.55 4727 84.16 60.54
CLNet 75.08 76.42 7573 60.01 68.10 63.80
MS?DG-Net 59.11 884 70.85 4695 84.55 60.37
MSA 5870 87.99 7042 48.10 83.81 61.12
ConvMatch  58.77 89.39 7092 47.54 8538 61.07
Ours 77.00 79.02 78.00 61.12 69.34 64.31

Table 1: Comparison of the Precision, Recall, and F-
score between GCT-Net and other methods across the
YFCC100M and SUNS3D datasets for the correspondence
classification task.

Correspondence Classification

We perform a comprehensive comparison between GCT-Net
and a selection of classic and cutting-edge works, spanning
the traditional method (Fischler and Bolles 1981) as well as
learning-based methods (Yi et al. 2018; Zhang et al. 2019;
Sun et al. 2020; Zhong et al. 2021; Zhao et al. 2021; Dai
et al. 2022; Zheng et al. 2022; Zhang and Ma 2023). Here,
we utilize a ratio test with a threshold of 0.8 in RANSAC to
proactively eliminate certain erroneous matches, preventing
a sharp decline.

Table 1 showcases the comparative results conducting the
task of correspondence classification on YFCC100M and
SUN3D. We can observe that our network achieves the best
performance, except in terms of the Recall metric. The rea-
son lies in our adoption of the progressive correspondence
pruning strategy, which, while removing a mass of outliers,
inevitably eliminates hidden inliers as well. Consequently,
our method and CLNet exhibit significant improvement in
the Precision metric, while the value of Recall is relative-
ly lower compared to other methods. However, considering
the overall metrics (i.e. F-score), we still gain the optimal
results which surpasses the second-best method by 2.27%
and 0.51% on the YFCC100M and SUN3D datasets, respec-
tively. Fig. 5 displays the visualization results of classifica-
tion, which further demonstrates the remarkable ability of
our network in removing outliers.

After correspondence classification, inliers are assigned
to weights to execute the relative pose estimation task. The
experimental results are shown in Table 2. Here, we also e-
valuate the compatibility of various feature matching meth-
ods with different feature extraction approaches. In contrast
to the hand-crafted method SIFT (Fischler and Bolles 1981),
we employ a learning-based feature extraction approach, Su-
perPoint (DeTone, Malisiewicz, and Rabinovich 2018) for
testing. In experiments, we select mAP5° and mAP20° to
comprehensively evaluate the performance of these method-
s under high-tolerance and low-tolerance scenarios. Besides,
to assess the generalization capability of models, we conduct
experiments in both known and unknown scenes.

1973

i
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(a) Original ~ (b) RANSAC (c) CLNet (d) GCT-Net

Figure 5: Visualization results of correspondence pruning
methods on outdoor datasets. From left to right: Original,
RANSAC, CLNet, and GCT-Net. Green lines denote the p-

reserved inliers and red lines indicate not removed outliers.

From Table 2, it is apparent that GCT-Net outperforms all
configurations under the SIFT-based condition. When com-
pared to CLNet, which also employs the progressive prun-
ing framework, our network demonstrates a significant lead
in unknown scenes, surpassing CLNet by 13% in mAP5°
and 7.1% in mAP20°. We also achieve 9.18% and 6.98%
improvements compared to ConvMatch on unknown and
known scenes under mAP5°. However, when adopting Su-
perPoint as the feature extraction method, our network only
slightly surpasses ConvMatch in mAP20°, while trailing be-
hind ConvMatch in mAP5°. This discrepancy might be at-
tributed to SuperPoint generating lots of high-quality corre-
spondences at the beginning. For our network, pruning such
high-quality correspondences could result in the loss of cru-
cial information and thus cause a decrease in estimation ac-
curacy. In contrast, ConvMatch can leverage convolutions to
capture additional information effectively.

Ablation Studies

We perform ablation experiments on GCT-Net to demon-
strate the effectiveness of individual components. Table 3
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Matcher Known Unknown

5° 20° 5° 20°
RANSAC 5.81 16.88 9.07 2292
LFGC 13.81 35.20 23.95 52.44
OANet++  32.57 56.89 38.95 66.85
ACNet 29.17 52.59 33.06 6291
SIFT T-Net 41.51 65.12 48.40 74.23
CLNet 38.27 6248 50.80 75.76
MS2DG-Net 38.36 64.04 49.13 76.04
MSA 39.53 61.75 50.65 77.99
ConvMatch 4348 66.14 54.62 77.24
Ours 49.05 71.32 63.80 82.86
RANSAC 12.85 31.22 1747 38.83
LFGC 12.18 3475 24.25 52.70
OA-Net++ 29.52 53.76 35.27 66.81
ACNet 26.72 49.29 3298 62.68
SuperPoint T-Net 34,97 57.50 40.65 70.36
CLNet 27.56 50.82 39.19 67.37
MS2DG-Net 31.15 55.16 39.19 70.36
MSA 30.63 53.74 38.53 68.56
ConvMatch 38.34 60.25 48.80 74.59
Ours 37.86 60.55 47.17 74.76

Table 2: Comparison results about GCT-Net and alternative
methods on known and unknown scenes in YFCC100M un-
der the mAP5° and mAP20° metrics for the relative pose
estimation task.

IPS GCET GCGT-P GCGT-W ‘ mAP5° mAP20°

v 46.63  71.06
v Y 60.60  81.33
Vv v 57.01  78.70
v v 5830 79.54
N, v 63.80  82.86

Table 3: Overall ablation studies on the YFCC100M dataset.

displays the experimental results about the network integra-
tion with various modules. IPS indicates that the network
composed of only ResNet blocks adopts the iterative prun-
ing strategy. GCET represents the application of Graph Con-
text Enhance Transformer. GCGT-P refers the partial Graph
Context Guidance Transformer, where we isolate the injec-
tion of OAFilter to assess the effectiveness of the process
of sampling to consensus guidance. GCGT-W signifies the
whole Graph Context Guidance Transformer.

From Table 3, it is evident that the integration of every
component causes a favorable impact on the network per-
formance, compared to single utilization of IPS. In specific,
the second row of table which incorporates GCET into IP-
S obatins 13.97% and 10.27% improvments under mAP5°
and mAP20°. This demonstrates that the significance of gen-
erating graph contexts and effectively leveraging them. The
third row (¢.e. IPS + GCGT-P) validates the effectiveness of
the sampling strategy and consensus guidance, which gain-
s a 11.67% improvement under mAP5°. Compare to partial
GCGT, utilizing complete GCGT (the fourth row) results in

1974

56 55.18 78 77.90
o a5 54.75 77.55
78 77.30,
54 53.35 77.00
o 77
52 77
005 0.1 0.2 0.5 005 0.1 0.2 05
(a) mAP5° (b) mAP20°

Figure 6: Ablation studies about the selection of different
sampling rates. The xz-azis and y-azis represent the sam-
pling rate and the evaluation metric, respectively.

improvements of 1.3% and 0.84% under mAP5° and 20°.
This highlights the injection of OAFilter, which enhances
the output of Transformer in a complementary manner. By
combining GCET and GCGT, the network achieves the op-
timal performance.

We also perform the ablation studies about different sam-
pling rates. When the sampling rate is excessively large, it
can lead to substantial computational load. Therefore, during
the implementation of experiments, we maintain the sam-
pling rate below 0.5. As shown in Fig. 6, opting for a low
sampling rate (i.e., 0.05) can limit the expressive capacity
of network, whereas selecting an excessively high sampling
rate (¢.e., 0.5) can make it susceptible to disruption by outli-
er information. Therefore, it’s necessary to choose an appro-
priate sampling rate (i.e., 0.2) to strike a balance between
the two aspects.

Conclusion

In this paper, we propose the effective Graph Context Trans-
formation Network (GCT-Net) for progressive correspon-
dence pruning. The graph network is served as an effec-
tive carrier of local context information. Therefore, we pro-
pose the Graph Context Enhance Transformer to convert the
graph network into multi-branch graph contexts and enhance
the individual characteristic and shared significant informa-
tion of graph contexts. This allows the advantages of differ-
ent graph contexts to be effectively combined and fully uti-
lized. For extending the enhanced graph context to the glob-
al domain, we further design the Graph Context Guidance
Transformer. This module adopts a score-based sampling s-
trategy to select candidates as the guiding source and regards
the unsampled vertices as the guiding target for the execu-
tion of consensus guidance which seeks the hidden inliers
by consensus similarities. Numerous experiments conducted
on tasks related to correspondence classification and relative
pose estimation demonstrate the superior ability of GCT-
Net, surpassing the performance of state-of-the-art methods.
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