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Abstract

Recent advancements in single-stage Panoptic Narrative
Grounding (PNG) have demonstrated significant potential.
These methods predict pixel-level masks by directly match-
ing pixels and phrases. However, they often neglect the mod-
eling of semantic and visual relationships between phrase-
level instances, limiting their ability for complex multi-modal
reasoning in PNG. To tackle this issue, we propose XPNG, a
“differentiation-refinement-localization” reasoning paradigm
for accurately locating instances or regions. In XPNG, we in-
troduce a Semantic Context Convolution (SCC) module to
leverage semantic priors for generating distinctive features.
This well-crafted module employs a combination of dynamic
channel-wise convolution and pixel-wise convolution to em-
bed semantic information and establish inter-object relation-
ships guided by semantics. Subsequently, we propose a Vi-
sual Context Verification (VCV) module to provide visual
cues, eliminating potential space biases introduced by seman-
tics and further refining the visual features generated by the
previous module. Extensive experiments on PNG benchmark
datasets reveal that our approach achieves state-of-the-art per-
formance, significantly outperforming existing methods by a
considerable margin and yielding a 3.9-point improvement
in overall metrics. Our codes and results are available at our
project webpage: https://github.com/TianyuGoGO/XPNG.

1 Introduction
Recently, the growing interest in multimodal research (Fei
2022; Li et al. 2022a; Chen et al. 2022; Jing et al. 2020;
Ma et al. 2022, 2023; Ji et al. 2022; Huang et al. 2023;
Zhao et al. 2023; Wu et al. 2023) at the intersection of
computer vision and natural language processing has driven
the development of systems that can understand and de-
scribe the world as humans do. Panoptic Narrative Ground-
ing (PNG) (González et al. 2021) is an emerging visually-
grounded language understanding task that aims to locate
and segment all instances of objects and regions in an image,
corresponding to a given text description using binary pixel
masks. This task goes beyond conventional grounding tasks,
such as Referring Expression Segmentation (RES) (Cheng
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Figure 1: A comparison between the previously mentioned
one-stage method, PPMN (Ding et al. 2022), and our pro-
posed XPNG framework. PPMN overlooks modeling rela-
tionship, resulting in an inability to distinguish between two
“giraffes”. In contrast, our proposed XPNG achieves accu-
rate segmentation. Notably, it has only a slightly higher pa-
rameter count compared to PPMN, as shown in Tab. 1.

et al. 2021; Li, Bu, and Cai 2021; Liao et al. 2022; Liu et al.
2021; Luo et al. 2020a), by involving the joint understand-
ing of multi-modal information and necessitating many-to-
many language-vision alignment, which adds complexity to
the task.

Previous PNG research primarily involves a two-stage
paradigm. These models first use pre-trained panoptic seg-
mentation models (Kirillov et al. 2019) to generate a set of
candidate masks for a given image and then transform these
candidates into features, which are ranked via cross-modal
matching with language features. However, two-stage mod-
els (González et al. 2021) have limitations: they are less ef-
ficient due to the separated segmentation and matching pro-
cesses, and they interact with language in a matching way,
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which cannot rectify inaccurate segmentation. In contrast,
single-stage models (Wang et al. 2023b; Ding et al. 2022)
address these limitations by incorporating text as a condi-
tion and fusing visual features with textual information to
directly predict pixel-level masks, improving overall accu-
racy and efficiency.

Despite the success of single-stage models, challenges re-
main in the context of Panoptic Narrative Grounding (PNG).
Existing single-stage models primarily focus on cross-modal
relationships between phrases and pixels, calculating simi-
larity based on phrase representations and pixel values as bi-
nary mask results. However, they often overlook interactions
among instances referred to by phrases and their correspond-
ing regions. This limitation restricts the models’ reasoning
capabilities, leading to segmentation errors. As shown in
Fig. 1, for example, when an image contains two distinct
“giraffes” and is accompanied by a long text description, it
becomes difficult to accurately identify the correspondence
between phrases and image regions solely based on isolated
phrase features. Similar issues can arise in complex textual
or visual scenes. The key to solving this problem is to con-
sider relationships among different instances or regions.

Modeling these relationships is not a simple task, as it in-
volves a three-step reasoning process. First, the textual se-
mantic context and visual features must be fused and in-
teracted with to fully understand the textual meaning and
generate a distinctive representation, such as differentiating
between “a giraffe” and “another giraffe” in Fig. 1. Next, in-
stances should be used to further explore visual cues, refine
the instance representation and obtain a semantic represen-
tation kernel with sufficient discrimination to accurately lo-
cate the target. Finally, the semantic representation kernel is
utilized to complete target localization.

In this paper, we propose a novel approach called XPNG,
which constructs a “differentiation-refinement-localization”
reasoning paradigm to accurately locate instances or re-
gions. First, we introduce a Semantic Context Convolution
(SCC) module to create distinctive representation kernels.
Relying solely on the phrase’s semantic features are insuf-
ficient, so we need to leverage visual information to further
enhance this capability. To achieve this, following a dynamic
channel-wise convolution to embed visual information into
the text, a pixel-wise convolution models relationships be-
tween instances or regions, resulting in distinctive repre-
sentation kernels. Subsequently, we design a Visual Context
Verification (VCV) module to further refine the feature ker-
nel with visual clues, ultimately obtaining a comprehensive
semantic kernel. This modeling step creates a customized
representation, perfectly integrating an instance’s semantic
and appearance information. Finally, the obtained semantic
kernel can be used to match the target.

In summary, our contributions are three-fold as follows:

• We propose a three-step reasoning paradigm, XPNG,
which constructs a “differentiation-refinement-
localization” reasoning paradigm to enhance the
model’s cross-modal reasoning capabilities.

• We introduce the Semantic Context Convolution (SCC)
to leverage prior semantic information for improving fea-

ture discriminability, and the Visual Context Verification
(VCV) to incorporate geometric information, eliminating
biases and further refining features.

• Our experimental results demonstrate that XPNG
achieves a new state-of-the-art segmentation perfor-
mance with a score of 63.3%, surpassing the current
state-of-the-art method PPMN by 3.9%.

2 Related Work
2.1 Panoptic Segmentation
The field of panoptic segmentation (Kirillov et al. 2019; Hu
et al. 2021, 2023) has recently gained significant attention
due to its ability to assign a semantic label and instance ID
to each pixel. More recently, with the emergence of Trans-
former (Vaswani et al. 2017), some methods (Zhang et al.
2021; Cheng, Schwing, and Kirillov 2021; Li et al. 2022b;
Wang et al. 2021) have adopted an end-to-end set predic-
tion objective, using attention blocks to generate panoptic
masks. The proposal of these methods enables panoptic seg-
mentation to be used for various application tasks, including
autonomous navigation (Kiran et al. 2021; Moosavi et al.
2021), augmented reality (Alhaija et al. 2017), and virtual
reality (Giannitrapani, Trucco, and Murino 1999). In con-
trast to these methods, PNG (González et al. 2021) aims to
generate panoptic segmentation for an image using dense
narrative captions.

2.2 Referring Expression Segmentation
Referring Expression Segmentation (RES) involves predict-
ing foreground pixels for the object described by a given re-
ferring expression. One-stage frameworks (Suo et al. 2021;
Li and Sigal 2021; Hu, Rohrbach, and Darrell 2016) have
been proposed. To model semantic relationships between vi-
sion and language, recent methods (Ding et al. 2021; Feng
et al. 2021; Jiao et al. 2021; Li and Sigal 2021; Yang et al.
2022; Luo et al. 2020b)incorporate complex cross-attention
mechanisms inspired by the powerful abilities of Transform-
ers (Vaswani et al. 2017) for capturing long-range dependen-
cies.

2.3 Panoptic Narrative Grounding
PNG (González et al. 2021) proposed a two-stage paradigm
for handling the task at hand. In the first stage, a pre-trained
panoptic segmentation model (Kirillov et al. 2019; González
et al. 2023) is used to generate a large number of candi-
date panoptic masks. Subsequently, a scoring module is em-
ployed to assign plural masks to referred phrases. Although
this approach achieves impressive performance, the com-
putation and space costs incurred during the segmentation
stage pose a barrier to real-time implementation. The one-
stage models (Ding et al. 2022; Yang et al. 2023; Wang et al.
2023a,b; Hui et al. 2023; Lin et al. 2023) provide an im-
proved approach by overcoming the limitations of the tradi-
tional methods. They achieve this by incorporating the tex-
tual information as a condition and fusing it with visual fea-
tures to predict pixel-level masks directly. This integration
leads to a boost in accuracy and efficiency, thereby enhanc-
ing the performance of the overall system.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1986



 
 two elephants.
At the bottom 
there is grass. In 
the background 
we can see hills   
and sky

There are

.

Visual
Encoder

Text
Encoder

Linear

Linear

R

R
D-DW
Conv

Semantic Context Convolution Visual Context Vertification

Pool

D-PW
Conv

...

Semantic Kernel

Phrase-Pixel 
Match

Phrase-Pixel 
Match

N×

Visual Kernel

Output Mask

Text Kernel

Visual Feature

Linear

Geometric-
Aware

Attention

Geometric Size Geometric Relation

Linear

R

Element-wise 
Summation
Element-wise
Multiplication

Reshape

Sigmoid

Figure 2: Overview of our proposed XPNG. We employ a visual encoder to extract visual features map Fv . For the linguistic
modality, we use a text encoder to extract noun phrase features Fn. Our model consists of multiple iterative stages. First, we
utilize the Semantic Context Convolution (SCC) module to generate a discriminative kernel Kv . Next, we employ the Visual
Context Verification (VCV) module, which leverages the geometric information of masks, to eliminate semantic ambiguity
arising from context guidance.

3 Method
In Sec. 3.1, we first present a comprehensive overview of
the feature extraction process for both visual and linguistic
patterns. Following this, Sec. 3.2 introduces the Semantic
Context Convolution (SCC) module, which effectively con-
structs segmentation kernels using image features. Subse-
quently, in Sec. 3.3, we describe the Visual Context Verifi-
cation (VCV) module, which refines the kernels by incorpo-
rating the geometric information between objects and facil-
itating interactions between the visual and language modal-
ities through a control network. The entire pipeline of our
proposed model is illustrated in Fig. 2.

3.1 Features Extraction
Visual Encoder As illustrated in Fig. 2, given an image
I ∈ RH×W×3 with original dimensions H and W , we first
employ a Feature Pyramid Network (FPN) (Lin et al. 2017)
with a ResNet-101 backbone (He et al. 2016) to extract
multi-scale visual features. These features are represented as
Fv1 ∈ RH

4 ×W
4 ×C , Fv2 ∈ RH

8 ×W
8 ×C , Fv3 ∈ RH

16×
W
16×C ,

and Fv4 ∈ RH
32×

W
32×C . Given the significance of position

information, we incorporate pixel position encoding (Ding
et al. 2022) into the visual features. Following this step, we
employ an FPN neck (Kirillov et al. 2019) to aggregate fea-
tures from different layers, resulting in Fv , which contains
both multi-scale information and position information.

Text Encoder Given a sentence T, we adopt the approach
from (González et al. 2021) and use a pre-trained BERT
model (Devlin et al. 2018) to extract token embeddings
Ft = {fi}|T |

i=0, where fi denotes the embedding of the i-th
token. We then filter out noun phrases based on the anno-
tations provided by (González et al. 2021; Pont-Tuset et al.
2020) and generate phrase features by average-pooling the

token embeddings within each phrase. We employ a linear
layer to transform these phrase features, ensuring they have
the same dimensions as the visual features. The noun fea-
tures are represented as Fn = {fℓ}Lℓ=0 ∈ RL×C , where fℓ
corresponds to the ℓ-th noun phrase, and L indicates the total
number of phrases.

3.2 Semantic Context Convolution
Previous methods (González et al. 2021; Wang et al. 2023b)
incorporate text as a condition and fuse visual features with
textual information to directly predict pixel-level masks,
thereby enhancing overall accuracy and efficiency. However,
these noun phrases and their corresponding representations
are treated independently throughout the process, without
any interaction. Such interactions are crucial for understand-
ing semantics and relationships within a scene, as discussed
in Sec. 1. To model these relationships, we introduce a
module, called Semantic Context Convolution (SCC), which
leverages the prior information from the text modality to
construct internal relationships between phrases, thus facil-
itating the establishment of semantic relationships between
related regions. Inspired by (Zhang et al. 2021), the Seman-
tic Context Convolution (SCC) module in Sec. 3.2 and the
Visual Context Verification (VCV) module in Sec. 3.3 both
involve multiple stages.

Generation of Visual Kernels The core idea of our ap-
proach is to model the relationships between objects (re-
gions). First, we need to identify the visual representations
corresponding to each noun, referred to as visual kernels.
Directly using text (semantic) kernels is not suitable, as they
lack visual characteristics such as appearance and spatial lo-
cation, leading to information loss. For the stage s, we use
the segment kernels Ks−1 from the stage (s− 1) and visual
features Fv to obtain the visual kernels Ks

v .
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Ms−1 = sigmoid
(
Ks−1 ∗ Fv

)
, (1)

Ms−1 =

{
0, Ms−1 ≤ 0.5

1, Ms−1 > 0.5
, (2)

where ∗ denotes the convolution operation. After predict-
ing the results for each mask Ms−1 in the stage s− 1, the
threshold should be filtered to obtain the final mask graph
Ms−1, where Ms−1 ∈ RL×H×W . H and W are the resolu-
tions of masks. L is the number of masks. Specifically, the
segment kernels Ks of the 0-th stage are derived from Fn in
Sec. 3.1, e.g., K0 = Fn.

The subsequent step consists of performing element-wise
multiplication and summation between the masked result
Ms−1 and the visual features Fv , followed by averaging
the outcome to obtain the visual convolution kernels Ks

v ,
Ks

v ∈ RL×C , where L is the number of nouns. Each kernel
corresponds to an object.

Ks
v = Pool

(
Ms−1 ⊗ Fv

)
. (3)

Leveraging Semantic Priors for Visual Feature Inter-
action Our approach begins by using semantic priors to
guide the interaction of visual features in images. This helps
the model to understand the potential relationships between
objects in the image, such as a “person” and a “bicycle” is
likely to have a relationship. To achieve this, we enhance
the visual kernels Ks

v by incorporating language modality
across channels and pixels. Following (Hu et al. 2023), the
visual kernels are then passed through a channel-wise con-
volution block and a pixel-wise convolution block, with pa-
rameters derived from Ks−1. This can be expressed as:{

W s
Channel = reshape

(
Ks−1W s

c

)
,

W s
Point = reshape

(
Ks−1W s

p

)
,

(4)

where W s
c ∈ RC×K , W s

p ∈ RC×L, W s
Channel ∈ RL×1×K ,

W s
Point ∈ RL×L×1. Here, L represents the number of ob-

jects, K is the size of W s
Point, and C is the feature dimen-

sion of segment kernels Ks−1.
We employ the text-conditioned parameters of convolu-

tion W s
Channel and W s

Point for different purposes. W s
Point is

used to exchange information between different visual ker-
nels, while W s

Channel is used for self-interaction of each vi-
sual kernel. This operation embeds semantic features into
the visual kernels, enhancing the discriminability of each
feature. Through cross-object interaction with W s

Point, the
visual kernels Ks

v engage in semantic-level interaction, rein-
forcing themselves through related objects and further clar-
ifying instance relationships. Finally, a residual module (He
et al. 2016) is used to preserve sufficient visual semantics:

Ks
v = W s

Point ∗ (W s
Channel ∗Ks

v) +Ks
v . (5)

3.3 Visual Context Vertification
In the previous section, we established preliminary relation-
ships between objects using semantic priors and strength-
ened the visual features accordingly. However, relying solely

on such semantic priors can easily introduce biases, a com-
mon phenomenon in deep learning. For instance, when pre-
sented with an image of “a person standing next to a horse”,
merely using text-based priors to link “person” and “horse”
may lead the model to mistakenly assume that “the person
is riding the horse”, even though they do not have a strong
relationship. To overcome such issues, we need to search
for visual cues within the image to correct relationships ac-
quired solely through semantics. This necessitates the in-
tegration of visual information to guide instance relation-
ship modeling. Furthermore, incorporating visual informa-
tion provides strong signals, such as attributes and spatial
relationships, which facilitate the model’s understanding of
the scene. To achieve this, we propose the Visual Context
Verification (VCV) module, which includes new geomet-
ric attributes for each object corresponding to the mask. In
addition to the attribute features inherent in the visual fea-
tures, we need to incorporate geometric information, such
as size and location, into relationship modeling, as it has
been proven to be crucial for relationship modeling (Her-
dade et al. 2019).

Obtaining Geometric Information The geometric infor-
mation of each visual kernel corresponds to the geomet-
ric information of the instance mask it represents. First, we
calculate the scale of the mask. The conventional approach
would be to find the maximum differences in horizontal and
vertical coordinates as the width and height, respectively.
However, we found that the presence of outliers within the
mask is particularly severe, causing the calculated width and
height to significantly exceed expectations. To avoid this
phenomenon, we innovatively adopt the following method
to calculate the scale of the k-th mask:

Hs
n =

h∑
i=1

Max (Ms
i1,M

s
i2, . . .M

s
iw) , (6)

W s
n =

w∑
i=1

Max (Ms
1i,M

s
2i, . . .M

s
hi) , (7)

where Ms is the mask of the n-th object, and h and w are
the dimensions of the mask. Hs

n and W s
n represent the height

and width of the n-th instance. When outliers are present,
the distances between outliers and instances are disregarded,
allowing the calculation of the effective scale of the mask.

Various approaches can be employed to determine the lo-
cation of the mask. In this paper, we use the centroid as its
location. The centroid (Xs

n, Y
s
n ) of the n-th object is defined

as follows:

Xs
n =

∫∫
Mℓ x

nMs (xn, yn) dxdy∑w,h
xn,yn Ms (xn, yn)

, (8)

Y s
n =

∫∫
Ms y

nMs (xn, yn) dxdy∑w,h
xn,yn Ms (xn, yn)

, (9)

where (xn, yn) is the coordinates of each point on the n -th
mask. Ms (xn, yn) is the mask value corresponding to point
(xn, yn), h and w are the scale of Ms.
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Geometric Relationship Reasoning Inspired by (Her-
dade et al. 2019), we transform the aforementioned geomet-
ric information into geometric relationships between objects
and use them as prior knowledge to guide the inter-object
relationships. A common approach to model visual object
relationships is self-attention (Vaswani et al. 2017). The def-
inition of an attention weight matrix based on appearance is
as follows:

ωs =
(Ks

vW
s
Q) · (Ks

vW
s
K)T

√
dk

, (10)

where WQ and WK are learned projection matrices, dk is
the features dimension of Ks, and ω is the attention weights
for the appearance features.

In this paper, we need to incorporate size and position in-
formation as prior knowledge into attention modeling. For
a given instance m and instance n, we calculate the dis-
placement vector λ(m,n), which represents their geometric
relationship. We calculate λ(m,n) based on m-th object’s
geometric features (Xs

m, Y s
m, W s

m, Hs
m) and n-th object’s

geometric features (Xs
n, Y

s
n ,W

s
n, H

s
n) as:

λ(m,n) = log

(
|Xs

m −Xs
n|

W s
m

,
|Y s

m − Y s
n |

Hs
m

,
W s

n

W s
m

,
Hs

n

Hs
m

)
, (11)

where Xs
m, Y s

m, W s
m, and Hs

m correspond respectively to
the centroid coordinates, width, and height of the m-th ob-
ject. The geometric attention weights are then calculated as:

ωs
g = ReLU

(
Emb(λ)W s

g

)
, (12)

where Emb(·) is a sinusoid function to calculate a high-
dimensional embedding for the scalar λ. The combining ge-
ometry and appearance attention weights of the m-th and
n-th objects ωs

ga(m,n) are normalized as:

ωs
ga(m,n) =

ωs
g(m,n) exp (ωs(m,n))∑L

l=1 ω
s
g(m, l) exp (ωs(m, l))

, (13)

where ωs are the appearance-based attention weights from
Eq. 10, ωs(m,n) represents the appearance-based attention
weights between the n-th and m-th objects. ωs

g are the new
combined attention weights. ωs

ga(m,n) represents the com-
bining geometry and appearance attention weights between
the n-th and m-th objectives.

We use ωs
ga instead of the appearance attention weight

matrix ωs for self-attention operations and name it Geomet-
ric Aware Attention. We use Geometric Aware Attention to
enhance visual kernels. The final segment kernels Ks are
obtained by fusing the segment kernels Ks−1 and visual ker-
nels Ks

v using a residual structure:

Ks = ωs
ga · (Ks

vW
s
K)W s

2 +Ks−1W s
1 . (14)

Assuming a total of s iterations. After the last iteration, we
use the final segmentation kernels Ks and visual features Fv

to obtain masks Ms similar to Eq. 1 and Eq. 2.

3.4 Training loss
The employed loss function is a composite of Dice loss (Mil-
letari, Navab, and Ahmadi 2016) and BCE loss (Milletari,
Navab, and Ahmadi 2016). Specifically, the two types of
losses are defined as follows:

Lbce = − 1

NHW

N∑
n=1

H×W∑
i=1

Lbce

(
Mn,i, Y n,i

)
, (15)

where M is the generated masks and G is the ground truth,
N is the number of masks, H ×W is the number of points.

LDice = 1− 2|M
⋂
G|

|M |+ |G|
, (16)

where M is the generated masks and G is the ground truth,
the value of which all belongs to {0, 1}.

During the training, we use the summation of Dice loss
(Milletari, Navab, and Ahmadi 2016) and BCE loss (Mil-
letari, Navab, and Ahmadi 2016).

L = λ1Lbce + λ2LDice, (17)

where λ1 and λ2 are the hyper-parameters. λ1 = 1, λ2 = 1.

4 Experiment
4.1 Datasets
We trained and evaluated our model on the Panoptic Narra-
tive Grounding (PNG) dataset (González et al. 2021), which
contains images and their corresponding narratives with
pixel-level segmentation annotations for related phrases.
Unlike datasets that have only one target corresponding to
each short phrase, such as RefCOCO (Milletari, Navab, and
Ahmadi 2016), the narratives in PNG often contain hun-
dreds of words and more complex semantics. Each descrip-
tion consists of an average of 5.1 objects. In total, the PNG
dataset comprises 133,103 training images and 8,380 test
images, accompanied by 875,073 and 56,531 segmentation
annotations, respectively.

4.2 Implementation Details
In our experiment, we employ the FPN (Lin et al. 2017) with
ResNet101 (He et al. 2016) as the backbone, pre-trained on
the Panoptic segmentation task using the MS COCO (Lin
et al. 2014) dataset. We utilize the official implementation
to ensure consistency with previous works. During training,
the FPN parameters are frozen. Images are resized so that
the short side is 800 pixels while maintaining the aspect ra-
tio, and the long side is 1333 pixels. For language input, we
use the BERT (Devlin et al. 2018) model to convert descrip-
tive captions into tokens with 768-dimensional vectors. The
maximum token length is set to 230. We employ the Adam
optimizer with an initial learning rate of 1e − 4, which is
halved every two epochs after the tenth epoch. The learning
rate for BERT is set to 1e−5. The number of iteration update
stages is set to 3. During inference, we average the masks of
all tokens in each noun phrase to obtain the final results. All
experiments are conducted on an A100 GPU with a batch
size of 11.
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(a) Overall performance  (b) Things and stuff categories (c) Singulars and plurals

Figure 3: Average Recall Curve for our XPNG method performance (a) compared to the state-of-the-art methods, and (b) things
and stuff categories, as well as (c) singular and plural noun phrases.

                                               XPNImage G                                              PPMN                                         Ground Truth

This image consists of a beach.  In the front,  there are   sleeping on the mat,  in the sand.  To the right,  there  is 
umbrella along with  .  In the middle,  a  and a are walking.  In the background,  there is water.  At  the 
top,  there is 's blue color.  At the bottom,  there is sand.  And there is a wave in the .

×× × ×

Figure 4: Visualizations of XPNG’s predictions. We use the same color to mark the masks with their corresponding phrases. In
particular, we use white dashed boxes to highlight the areas where XPNG performs well, and use blue dashed boxes to highlight
the areas where Ground Truth and PPMN exhibit poor performance.

4.3 Comparison with State-of-the-Art Methods
To evaluate the performance of our XPNG, we conduct ex-
periments on the PNG benchmark (González et al. 2021)
as shown in Tab. 1. XPNG achieved a 3.9% improvement,
which sets a new SOTA on the benchmark. The results of
our study demonstrate the effectiveness of our one-stage
approach XPNG. Specifically, when compared to the one-
stage SOTA method, i.e., PPMN (Ding et al. 2022), XPNG
achieved significant improvements in average recall evalu-
ation metrics for overall, things, stuff, singular, and plural
segmentation by 3.9%, 3.9%, 3.7%, 4.0%, 2.4%, Fig. 3 il-
lustrates their recall performance in detail. The proposed
XPNG with SCC and VCV shows a more powerful abil-
ity in the grounding of multi phrases. At the same time, it
can be observed that EPNG (Wang et al. 2023b) utilizes a
lightweight encoder, which results in fewer parameters com-
pared to PPMN and XPNG. However, this comes at the cost
of a significant performance gap.

4.4 Ablation
In order to validate the potential benefits of our proposed
SCC and VCV, we performed ablation studies on the PNG
benchmark with various designs.

SCC kernels vs. other kernels To investigate the effect
of the SCC, we conduct experiments to examine the perfor-

Method Segmentation Average Recall ParamsAll Thing Stuff Single Plural
MCN 54.2 48.6 61.4 56.6 38.8 40.19M
PNG 55.4 56.2 54.3 56.2 48.8 261.3M
EPNG 49.7 45.6 55.5 50.2 45.1 76.5M
PPMN 59.4 57.2 62.5 60.0 54.0 94.4M
XPNG† 62.3 59.6 66.0 63.0 56.7 95.57M
XPNG 63.3 61.1 66.2 64.0 56.4 95.57M

Table 1: The comparison of XPNG with the state-of-the-art
methods. XPNG† results from frozen training of bert net-
work parameters and FPN network parameters. XPNG re-
sults from FPN network parameter freezing and bert encoder
participating in training.

Method Segmentation Average Recall
Overall Thing Stuff Single Plural

Text Kernel 59.4 57.2 62.5 60.0 54.0
Visual Kernel 60.1 57.3 64.1 60.6 55.7
SCC Kernel 62.3 59.6 66.0 63.0 56.7

Table 2: The ablation study of the influence of semantic con-
text on the performance.
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mance of SCC kernels, visual kernels, and text kernels. SCC
kernels represent kernels output by the SCC, visual kernels
represent kernels without Pixel-wise and Channel-wise con-
volution, and text kernels correspond to kernels processed
directly from the BERT output. In Tab. 2, we assess the im-
pact of different types of segmentation kernels on the model.
SCC yields a 2.9% and 2.2% improvement compared to text-
only kernels and visual-only kernels, respectively. This can
be attributed to the inherent differences between modalities
and the lack of interaction between visual targets. The inde-
pendent information of a single modality is insufficient for
addressing the challenging PNG task. In contrast, SCC fuses
cross-modal information at the object level, connecting the
two modalities within related instances.

VCV SA Overall Thing Stuff Single Plural
✗ ✗ 58.2 55.1 65.2 58.8 52.5
✗ ✓ 61.3 58.5 65.3 62.0 55.5
✓ ✗ 62.3 59.6 66.0 63.0 56.7

Table 3: The ablation study of the influence of geometry
guided relations on the performance.

Stages Segmentation Average Recall
Overall Thing Stuff Single Plural

1 60.1 57.2 64.1 60.6 55.3
2 62.0 59.3 65.7 62.6 56.5
3 62.3 59.6 66.0 63.0 56.7
4 62.2 59.4 66.0 62.8 56.4

Table 4: The ablation the number of stages.

Dataset Type p@0.3 p@0.4 p@0.5

RefCOCO
testA PPMN 25.7 19.1 13.3

XPNG 30.6 27.0 23.0

testB PPMN 22.7 16.3 10.7
XPNG 33.9 27.3 20.7

RefCOCO+
testA PPMN 25.9 19.4 13.4

XPNG 27.1 23.3 19.9

testB PPMN 24.6 18.1 12.2
XPNG 28.7 23.0 18.0

RefCOCOg test PPMN 19.2 14.7 10.8
XPNG 25.0 21.0 17.3

Table 5: Zero-shot results of XPNG on RES. XPNG is not
trained with RES data. We average the IoU of every case as
the mIoU.

With vs. without geometric guidance In Tab. 3, we con-
duct an evaluation of the influence of geometry-guided re-
lations on the performance of the PNG task. The interac-
tion is necessary, even if the traditional self-attention brings
3.1% improvement. Meanwhile, with more space informa-
tion, VCV achieves better performance, which outperforms
SA 1.0% and baseline 4.1% on “Overall” sets. From this, it
can be concluded that the information exchange of the vi-
sual kernels is of great significance for understanding the

objects’ relationship and adding geometric relationships can
better guide the establishment of objects’ relationships.

The number of stages We employ cascaded iteration
stages for XPNG. Hence, we investigate the impact of vary-
ing the number of stages on XPNG’s performance in Tab. 4.
It can be observed that as the number of stages increases, the
performance of XPNG also improves. XPNG achieves its
best performance with an average recall of 62.3% on “Over-
all” when the number of stages is set to 3. However, as the
number of stages further increases to 4, more interactions re-
sult in overfitting, leading to a decline in performance. Con-
sequently, we ultimately adopt a 3-stage configuration for
the final model.

4.5 Zero-Shot Study for RES
Simultaneously, we evaluate our model’s generalization ca-
pability by conducting zero-shot experiments on the datasets
of the RES task, such as RefCOCO (Yu et al. 2016), Ref-
COCO+ (Yu et al. 2016), and RefCOCOg (Mao et al. 2016;
Nagaraja, Morariu, and Davis 2016). We utilize the feature
of the entire phrase as the text feature. The results are pre-
sented in Tab. 5. By comparing with the SOTA, PPMN, we
observe that the zero-shot performance of XPNG is signifi-
cantly enhanced.

4.6 Qualitative Analysis
Visualization In Fig. 4, We present the qualitative results
of our proposed XPNG. We generated corresponding masks
for each phrase marked in each text of each image and vi-
sualized them on a single image. Surprisingly, our proposed
XPNG outperforms ground truth in terms of producing more
accurate segmentation results. We demonstrate the visual-
ization results of XPNG and PPMN in complex contexts and
visual environments.

In Fig. 4, there are complex representations of multiple
similar objects in the scene. The white dashed box on the
right indicates the targets of “boy” and “man”. XPNG in-
fers that there might be someone near the seaside based on
the information of “water” and “two chairs”, and uses the
geometric position relationship between “boy” and “man”
to perform a clearer boundary segmentation for them. How-
ever, PPMN performs poorly in scenarios involving complex
references due to the lack of interaction between objects.

5 Conclusion
In this paper, we propose a novel one-stage frame-
work, XPNG, which effectively models object relationships
through contextual semantic information and object geom-
etry properties. Our approach includes a Semantic Context
Convolution (SCC) module that models the relationships be-
tween nouns and aggregates visual features. This module
provides rich semantic prior information, which enhances
the model’s ability to comprehend the various elements of
a scene. Moreover, our Visual Context Verification (VCV)
module combines the geometric information of target ob-
jects or regions to minimize bias and precisely focus on the
correct targets. Empirical results demonstrate that XPNG
surpasses current state-of-the-art methods by 3.9% in terms
of performance.
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