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Abstract

Human motion generation aims to produce plausible human
motion sequences according to various conditional inputs,
such as text or audio. Despite the feasibility of existing meth-
ods in generating motion based on short prompts and sim-
ple motion patterns, they encounter difficulties when dealing
with long prompts or complex motions. The challenges are
two-fold: 1) the scarcity of human motion-captured data for
long prompts and complex motions. 2) the high diversity of
human motions in the temporal domain and the substantial
divergence of distributions from conditional modalities, lead-
ing to a many-to-many mapping problem when generating
motion with complex and long texts. In this work, we address
these gaps by 1) elaborating the first dataset pairing long tex-
tual descriptions and 3D complex motions (HumanLong3D),
and 2) proposing an autoregressive motion diffusion model
(AMD). Specifically, AMD integrates the text prompt at the
current timestep with the text prompt and action sequences
at the previous timestep as conditional information to pre-
dict the current action sequences in an autoregressive iterative
manner. Furthermore, we present its generalization for X-to-
Motion with “No Modality Left Behind”, enabling the gen-
eration of high-definition and high-fidelity human motions
based on user-defined modality input.

Introduction
Human motion generation is a crucial task in computer
animation and has applications in various fields including
gaming, robots, and film. Traditionally, new motion is ac-
cessed through motion capture in the gaming industry, which
can be costly. As a result, automatically generating motion
from textual descriptions or audio signals can be more time-
efficient and cost-effective. Related research work is cur-
rently flourishing, exploring human motion generation from
different modalities (Tevet et al. 2022b; Zhang et al. 2022;
Tseng, Castellon, and Liu 2022; Li et al. 2021).

Current text-based conditional human motion synthesis
approaches have demonstrated plausible mapping from text
to motion (Petrovich, Black, and Varol 2022; Tevet et al.
2022b; Zhang et al. 2022; Guo et al. 2022; Zhang et al.
2023). They are mainly divided into three categories:
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Latent space strategy (Petrovich, Black, and Varol 2022;
Ahuja and Morency 2019; Tevet et al. 2022a): This is typi-
cally done by separately learning a motion Variational Au-
toEncoder (VAE) (Kingma and Welling 2013) and a text
encoder, and then constraining them to a compatible la-
tent space using the Kullback-Leibler (KL) divergence loss.
However, since the distributions of natural language and hu-
man motion are vastly different, forcibly aligning these two
simple Gaussian distributions can result in misalignments
and diminished generative diversity.

Diffusion-based approach (Tevet et al. 2022b; Zhang et al.
2022; Xin et al. 2023): diffusion models (Ho and Salimans
2022; Song et al. 2020) have recently attracted significant
attention and have shown remarkable breakthroughs in var-
ious areas such as video (Luo et al. 2023), image (Ramesh
et al. 2022), and 3D point cloud generation (Han, Liu, and
Shen 2023), etc. Current motion generation methods based
on diffusion models (Tevet et al. 2022b; Zhang et al. 2022;
Xin et al. 2023) have achieved exceptional results using dif-
ferent denoising strategies.

Typically, MDM (Tevet et al. 2022b) proposes a motion
diffusion model on raw motion data to learn the relationship
between motion and text conditions. However, these mod-
els tend to only generate single motions or contain several
motion sequences and are often inefficient for complex long
texts. Autoregressive method (Gopalakrishnan et al. 2019;
Pavllo et al. 2020; Athanasiou et al. 2022): they can process
varying motion lengths, tackling the issue of fixed motion
duration. However, their single-step generation methods of-
ten rely on traditional VAE models (Kingma and Welling
2013), which are less effective than diffusion models. De-
spite the progress made by existing methods, text-based con-
ditional human motion generation remains a challenging
task for several reasons:

• Lack of motion-captured data: At present, there are few
widely used text-to-motion datasets (Plappert, Mandery,
and Asfour 2016; Guo et al. 2022; Punnakkal et al. 2021),
which mostly contain simple motions and are deficient in
long text prompts, i,e., ”he is flying kick with his left leg”.

• Weak correlation: Due to the differing distributions of lan-
guage and human motion, resulting in a multiple mapping
problem (Tevet et al. 2022b). This issue is further exacer-
bated when generating long text-based human motions.
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To address the aforementioned limitations and challenges,
we propose Autoregressive Motion Diffusion model (AMD)
that can generate motion sequences with complex long con-
tent, variable duration, and multiple modalities. It leverages
the generative capabilities of the diffusion model and the
temporal modeling strengths of the autoregressive model.
Considering the high dimensionality of complex long mo-
tion sequences, in order to better capture the dependencies
between texts and motions in long sequences, AMD com-
bines the text description at the current timestep with the text
description and motion information at the previous timestep
as conditional information to predict the motion sequence
at the current timestep. AMD continuously employs the dif-
fusion method to synthesize the corresponding motion se-
quence from the previous timestep and finally can gener-
ate the motion sequences of all texts. Besides, we explicitly
design several geometric constraints to encourage matching
physical realism in including height, joint position, joint ro-
tation, joint velocity, and sliding loss. To address the scarcity
of human motion-captured data for long prompts and com-
plex motions, we have developed HumanLong3D - the first
dataset to pair long textual descriptions with complex 3D
human motions, i.e., ”A person is doing martial art action
raising knees and stretching feet, and then the person per-
forms step forward with his right foot”. The dataset com-
prises 158,179 textual descriptions and 43,696 3D human
motions. It encompasses a broad spectrum of complex mo-
tion types. Importantly, it features annotations for motion
coherence. In addition, we have also developed the Human-
Music dataset to evaluate the generation effect across dif-
ferent modalities. This dataset pairs 137,136 motions with
corresponding audio data. They all follow the format of the
HumanML3D dataset (Guo et al. 2022). The codes for AMD
and demos can be found in the Supplementary Materials.

In summary, our contributions include:

• We propose a novel continuous autoregressive diffusion
model that combines state-of-the-art performance for gen-
erating complex and variable motions on long texts.

• We construct two large-scale cross-modal 3D human mo-
tion datasets HumanLong3D and HumanMusic, which
could serve as the benchmark datasets.

• Our proposed AMD achieves impressive performances on
the HumanML3D, HumanLong3D, AIST++, and Human-
Music datasets, which highlights its ability to generate
high-fidelity motion given different modality inputs.

Background
Human motion generation has been an active area of re-
search for many years (Badler, Phillips, and Webber 1993).
Early work in this field focused on unconditional motion
generation (Rose, Cohen, and Bodenheimer 1998; Mukai
and Kuriyama 2005; Ikemoto, Arikan, and Forsyth 2009),
with some studies attempting to predict future motion based
on an initial pose or starting motion sequence (O’rourke and
Badler 1980; Gavrila 1999). Statistical models such as Prin-
cipal Component Analysis (PCA) (Ormoneit et al. 2005) and
Motion Graphs (Min and Chai 2012) were commonly used

for these generative tasks. The development of deep learn-
ing has led to the emergence of an increasing number of
sophisticated generative architectures (Kingma and Welling
2013; Vaswani et al. 2017; Goodfellow et al. 2020; Kingma
and Dhariwal 2018; Ho, Jain, and Abbeel 2020). These ad-
vanced generative models have encouraged researchers to
explore conditional motion generation. Conditional human
motion generation can be modulated by a variety of sig-
nals that describe the motion, with high-level guidance pro-
vided through various means such as action classes (Petro-
vich, Black, and Varol 2022), audio (Aristidou et al. 2022),
and natural language (Ahuja and Morency 2019; Petrovich,
Black, and Varol 2022).

Text-to-Motion
Due to the language descriptors are the most user-friendly
and convenient. Text-to-motion has been driving and dom-
inating research frontiers. In recent years, the leading ap-
proach for the Text-to-Motion task is to learn a shared latent
space for language and motion. JL2P (Ahuja and Morency
2019) learns from the KIT-ML dataset (Plappert, Mandery,
and Asfour 2016) with an auto-encoder, limiting one-to-one
mapping from text to motion. TEMOS (Ahuja and Morency
2019) and T2M (Guo et al. 2022) propose using a VAE
(Kingma and Welling 2013) to map a text prompt into a
normal distribution in latent space. Recently, MotionCLIP
(Tevet et al. 2022a) has leveraged the shared text-image la-
tent space learned by CLIP to expand text-to-motion be-
yond data limitations and enable latent space editing. How-
ever, due to the inconsistency of the two data distributions
of natural language and human motion, it is very difficult
to align them in the shared latent space. Diffusion Gener-
ative Models (Sohl-Dickstein et al. 2015) achieve signifi-
cant success in the image synthesis domain, such as Ima-
gen (Saharia et al. 2022), DALL2 (Ramesh et al. 2022) and
Stable Diffusion (Rombach et al. 2022). Inspired by their
works, most recent methods (Tevet et al. 2022b; Zhang et al.
2022; Xin et al. 2023) leverage diffusion models for human
motion synthesis. MotionDiffuse (Zhang et al. 2022) is the
first work to generate human motion that corresponds to text
utilizing a diffusion model. Recently, MDM (Tevet et al.
2022b) has been proposed, which operates on raw motion
data to learn the relationship between motion and input con-
ditions. Inspired by Stable Diffusion (Rombach et al. 2022),
MLD (Xin et al. 2023) implements the human motion dif-
fusion process in the latent space. Despite their ability to
produce exceptional results, these models are typically lim-
ited to short text descriptions and simple motions. Addition-
ally, several works (Gopalakrishnan et al. 2019; Pavllo et al.
2020; Athanasiou et al. 2022) have been developed based on
the concept of autoregression, which can generate human ac-
tions of any length. ARDMs (Hoogeboom et al. 2022) com-
bines the order-agnostic autoregressive model and the dis-
crete diffusion model, which eliminates the need for causal
masking of model representations and enables fast training,
allowing it to scale favorably to high-dimensional data. Con-
sequently, for long text prompts, we combine the advantages
of the diffusion model in generating motion for short text
descriptions with the concept of autoregression to achieve
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superior human motion results for continuous long text.

Motion Datasets
Common forms of description for human motion data are
2D keypoints, 3D keypoints, and statistical model parame-
ters (Yu et al. 2020; Cai et al. 2022). For the text-conditioned
motion generation task, KIT (Plappert, Mandery, and Asfour
2016) is the first 3D human motion dataset with matching
text annotations for each motion sequence. HumanML3D
(Guo et al. 2022) provides more textual annotation for some
motions of AMASS (Mahmood et al. 2019). They are also
our focus in the text-to-motion task. Babel (Punnakkal et al.
2021) also collects motions from AMASS (Mahmood et al.
2019) and provides action and behavior annotations, it an-
notates each frame of the action sequence, thereby dividing
compound actions into simple action groups. In this paper,
we use the HumanML3D dataset to evaluate the proposed
methods for simple motions and short prompts. In addi-
tion, we collected and labeled pairs of complex motion data
and text prompts (HumanLong3D). More importantly, we
provided temporal motion-coherence information to support
long text-to-motion generation tasks.

Audio-to-Motion
Generating natural and realistic human motion from audio
is also a challenging problem. Many early approaches fol-
low a motion retrieval paradigm (Fan, Xu, and Geng 2011;
Lee, Lee, and Park 2013). A traditional approach to motion
synthesis involves constructing motion maps. New motions
are synthesized by combining different motion segments
and optimizing transition costs along graph paths (Safonova
and Hodgins 2007). More recent approaches employ RNN
(Tang, Jia, and Mao 2018; Alemi, Françoise, and Pasquier
2017; Huang et al. 2020), GANs (Lee et al. 2019; Sun et al.
2020), Transformer (Li et al. 2022, 2021; Siyao et al. 2022),
and CNN (Holden, Saito, and Komura 2016) models to map
the given music to a joint sequence of the continuous human
pose space directly. Such methods would regress to nonstan-
dard poses that are beyond the dancing subspace during in-
ference. In contrast, our proposed method does not produce
the phenomenon of limb drift.

Our Approach
In this section, we first introduce the problem formulation
for long text-to-motion. To enable adaptive motion gener-
ation for different text descriptions, we propose the inclu-
sion of a motion duration prediction network to approximate
the duration. To generate human motions that correspond to
continuous long text descriptions, we establish an autore-
gressive motion diffusion model.

Problem Description
To generate complex motion sequences with long-term text
prompts, we propose to feed multiple text prompts in or-
der. Given N text prompts S1:N =

{
S1, S2, . . . , SN

}
, the

model is required to generate N motion segments X1:N ={
X1, X2, . . . , XN

}
consistent with the text descriptions,

where N denotes the number of motion segments involved

in the entire motion sequence. Each motion segment is de-
fined as Xi =

{
x1, x2, . . . , xF i

}
, where F i is the total

number of frames of the motion segment Xi and xj denotes
the 3D human body pose representation of the j-th frame.
It is imperative that each generated motion segment and the
corresponding number of motion frames adhere to the spec-
ifications outlined in the text prompt. Additionally, a seam-
less transition from Xi−1 to Xi is crucial for the generation
of high-fidelity motion.

Overall Framework
It is important to note that daily human motions encom-
pass not only simple, single motions but also complex, pro-
longed motions that more accurately reflect real-life scenar-
ios. Specifically, given a series of semantic prompts S1:N ,
a series of randomly sampled temporal motion sequences
X1:N

T ∼ N (0, I) obeying the standard normal distribution,
and a maximum noise scale T ∈ N where each semantic
prompt Si describes a single and distinct motion. Our goal
is to generate noise-free temporal motion sequences X1:N

0 ,
which are guided by the semantic prompts, with smooth
transitions between adjacent motions Xi−1

0 and Xi
0. The

overall process is illustrated in Figure 1, and each pair of
blue and green blocks represents each step of the AMD
model. S1:N employs the model iteratively to synthesize
motion X1:N

0 . The blue block represents the context encoder
and the green block is the motion diffusion module.

Motion Duration Prediction Network Given a semantic
prompt Si, the duration of Xi may vary. For instance, in the
HumanML3D dataset, the prompt ”a man kicks something
or someone with his left leg” corresponds to 116 frames,
while the prompt ”a person squats down then jumps” corre-
sponds to 35 frames. Consequently, we propose predicting
the motion duration in order to generate motions with adap-
tive length. Similar to T2M, we use probability density es-
timation to determine the number of frames required for the
motion synthesis based on text prompts. Due to the diversity
of the motion duration, it is more reasonable to model the
mapping problem as a density estimation problem than di-
rectly regressing the specific value. By utilizing the seman-
tic prompt Si as input for the motion duration prediction
network, a probability density estimation is conducted on
the discrete group encompassing all possible motion dura-
tions L = {Lmin, Lmin + 1, . . . , Lmax}. The loss function
of the network is designed as the cross-entropy loss of multi-
classification.

Context Encoder It includes the motion duration predic-
tion network ED, the semantic conditional encoder ES , and
the motion linear layer. The CLIP model (Radford et al.
2021) is utilized as the semantic conditional encoder. Given
that our primary focus is on long text-to-motion generation,
it is necessary to consider timing-related information associ-
ated with long texts. To this end, we encode the previous mo-
tion Xi−1

0 by the motion linear layer to obtain zi−1
m and en-

code semantic information Si−1 by the semantic conditional
encoder ES to obtain zi−1

c . These are then concatenated to
form the final prior condition feature zi−1

past. Simultaneously,
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Figure 1: Overview of the Autoregressive Motion Diffusion model. Given the current text prompt Si, the last text prompt Si−1,
and motion Xi−1

0 (green arrow), we first encode the context information (blue block). Then, we feed the input conditions and
corrupted motion Xi

T to AMD Mudule (Figure 2) to generate the original cleaned motion Xi
0. Afterward, we send the current

text prompt Si and motion Xi
0 to the next time step. Iteratively, we can obtain motion sequences for long text prompts.

the current semantic information is input into the motion du-
ration prediction network and semantic conditional encoder
to obtain F i and zic, respectively. In order to avoid overfit-
ting, we perform a random mask on the semantic conditional
information zic. For the corrupted motion Xi

t , the same mo-
tion linear layer is utilized to obtain the encoded information
zim. We feed the diffusion time scale t to a Multi-layer Per-
ceptron (MLP) to obtain the time embedding zt. The final
condition information z is defined as follows:

z = C(C(C(zi−1
m , zi−1

c ) +RM(zic), zt), z
i
m, PE(F i))

(1)
where C represents the concatenation operation, RM de-
notes random mask, and position embedding refers to po-
tion embedding. It is important to note that during training,
we utilize the actual motion duration present in the dataset,
whereas, during the inference phase, the predicted duration
information is used.

AMD Module The network architecture of the AMD
module is depicted in Figure 2. The denoising process
(gray) and the diffusion process (yellow) span a total of
T timesteps, where T represents the pre-defined maximum
time scale. We directly predict the original cleaning motion
clips during the denoising process, while the diffusion pro-
cess operates in the opposite direction. The single step of
the diffusion process is essentially the transfer process from
Xi

t−1 to Xi
t , as defined in the following:

q(Xi
t |Xi

t−1) = N (Xi
t ;
√

1− βtX
i
t−1, βtI), (2)

Where βt is pre-defined to regulate the magnitude of noise
addition. The transition probability, denoted as Equation 3,
from Xi

0 to Xi
t can be derived using Equation 2 in conjunc-

tion with the multiplication formula for Gaussian distribu-
tion, where αt = 1− βt and ᾱt =

∏t
s=1 αs.

q(Xi
t |Xi

0) =
t∏

t=1

q(Xi
t |Xi

t−1) = N (Xi
t ;
√
ᾱtX̂

i
0, (1−ᾱt)I).

(3)

The single step of the denoising process is essentially the
transfer process from Xi

t to Xi
t−1, the transfer strategy re-

quires a network with parameters θ to learn the sampling
distribution as:

pθ(X
i
t−1|Xi

t , z) = q(Xi
t−1|X̂θ

0 (X
i
t , t, z))

= N (Xi
t ;
√
ᾱtX̂

θ
0 (X

i
t , t, z), (1− ᾱt)I),

(4)
where X̂θ

0 (X
i
t , t, z) represents the neural network with pa-

rameter θ, which takes in Xi
t , t, and conditional information

z as input.
After predicting X̂0 through Xt using the inverse diffu-

sion network, it is necessary to perform the forward diffu-
sion process according to the calculation method outlined in
Equation 3 to obtain the noise motion clips Xt−1 of the sub-
sequent noise scale, thus completing the single-step inverse
diffusion process. In summary, the algorithm randomly sam-
ples the noise motion segment XT with the largest noise
scale from the standard normal distribution N (0, I) and it-
eratively executes the single-step inverse diffusion model.
Each prediction approximately coarse cleaned action se-
quence X̂0 before forward diffusion is performed to obtain
the action segment of the next noise scale. This process con-
tinues until the noise scale reaches 0 and returns to the orig-
inal cleaned action sequence X0.

Explicit Constraints In the AMD Module, the original
motion sequence is explicitly predicted. To enhance phys-
ical realism, we design multiple geometric constraints, in-
cluding Lh, Lp, Lr, Lv , and Lf . The loss function of each
part of human motion is defined as the L2 loss between the
predicted values and the ground truth.

Among them, Lh represents the height loss. Lp represents
the joint position loss. Lr represents the joint rotation loss.
Lv represents the joint velocity loss. Lf represents the slid-
ing foot loss. Finally, the loss function is defined as:

Ltrain = λhLh + λpLp + λrLr + λvLv + λfLf (5)

where λ denotes the coefficients to balance the loss terms.
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Figure 2: AMD Module. The gray blocks denote the denoising process, while the yellow blocks represent the diffusion process.
Within the AMD module, they appear in pairs T times (with the exception of the last one).

With the proposed AMD, we are able to generate mo-
tion sequences according to ordered text prompts iteratively.
Specifically, we commence from the first prompt S1 and uti-
lize the AMD to synthesize the corresponding clean motion
sequence X1

0 . The remaining high-fidelity motion sequences
X2:N

0 can be synthesized using prior condition information
as well as S2:N . Ultimately, a coherent motion sequence of
any length can be synthesized.

Experiments
Datasets and Evaluation Metrics
HumanLong3D We collected motion data using motion
capture equipment and online sources and annotated each
motion sequence with various semantic labels to create the
HumanLong3D dataset. The data format of the Human-
Long3D dataset is consistent with that of HumanML3D, and
it additionally includes coherence information for motion se-
quences to support temporal motion generation tasks.
HumanML3D The dataset involves the textual re-
annotation of motion capture data from the AMASS (Mah-
mood et al. 2019) and HumanAct12 (Guo et al. 2020), com-
prising 14,616 motions annotated with 44,970 textual de-
scriptions. The comparison of datasets is shown in Table 1.
HumanMusic We collected dance videos from online
sources and extracted the pose parameters of the dancers
in the videos, converting the motion data into the Hu-
manML3D format. The frame rate of each video was nor-
malized to 20 FPS and the sampling rate of the accompa-
nying music was standardized to 10240Hz. In total, we ob-
tained 137,136 paired dance and music data samples, with
each dance sample consisting of 200 frames. Music features
were extracted using the publicly available audio processing
toolbox Librosa (Jin et al. 2017).
AIST++ This dataset (Li et al. 2021) comprises 992 high-
quality 3D pose sequences in SMPL format (Loper et al.
2015), captured at 60 FPS, with 952 sequences designated
for training and 40 for evaluation. We followed the approach
of Bailando (Siyao et al. 2022) to partition the dataset.
Evaluation Metrics For text-to-motion evaluation, we
employ metrics consistent with existing methods (Tevet

Dataset Motion Textual descriptions Duration

KIT-ML 3911 6248 10.33h
HumanML3D 14616 44970 28.59h

HumanLong3D 43696 158179 85.87h

Table 1: Text-to-motion dataset description

et al. 2022b; Zhang et al. 2022). Specifically, (a) Frechet In-
ception Distance (FID) is used as the primary metric to eval-
uate the feature distributions between generated and real mo-
tions in feature space (Guo et al. 2022), and (b) R-Precision
(top 3) calculates the top 3 matching accuracy between text
and motion in feature space. (c) MultiModal Dist calcu-
lates the distance between motions and texts. (d) Diversity
measures variance through features. (e) MultiModality as-
sesses the diversity of generated motions for the same text.
For music-to-dance evaluation, we employ metrics consis-
tent with existing methods (Siyao et al. 2022).

Implement Details
Motion Representation Our motion representation
adopts the same format as HumanML3D, i.e., X ∈ R263×F .
Each frame of motion is 263-dimensional data, including the
position, linear velocity, angular velocity, joint space rota-
tion of three-dimensional human joints, and label informa-
tion for judging whether the foot joints are still. Since im-
ages are often represented as I ∈ RW×H×C .
Motion Duration Prediction Network Lmin is set to 10
and Lmax is 50, each unit increment corresponds to 4 motion
frames, i.e., 0.2s motion duration, so the duration prediction
range covers the lower bound of 2s and the upper bound
of 9.8s of the data samples. The motion duration prediction
network is pretrained, with the motion duration prediction
network being used only during inference.
AMD Module We set the maximum noise scale T to be
1000, the coefficient β1:T is set to a linear increment from
10−4 to 0.02, latent vector dimensions are 512, the num-
ber of layers of the motion encoder is 6, and the number of
heads of the multi-head attention mechanism is set to 6, the
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Figure 3: Result for compound motion synthesis (blue: ”there is a man doing left smash right cover.” yellow: “then he steps
forward and turn around”). The part (red line) indicates a discrepancy between the generated motion and the ground truth.

learning rate is fixed at 10−4, the number of training steps is
200000, and we use AdamW optimizer.
Other Settings The output dimension of the motion linear
layer and the latent vector dimension of the AMD module
are both 512. The semantic conditional encoder adopts the
CLIP-ViT-B/32 checkpoint. During inference, the semantic
prompt Si is input into the motion duration prediction net-
work ED to obtain the estimated value F i of the motion
sequence duration, which is used to determine the timing di-
mension for motion sequence sampling.

Comparisons on Compound Motion
We compare compound motion generation with SOTA
methods. Since the HumanML3D dataset does not contain
motion coherence information, we conducted this experi-
ment only on the HumanLong3D dataset, and we divided the
dataset into training, test, and validation sets using a ratio of
0.85:0.10:0.05. Additionally, we designed three benchmarks
based on TEACH (Athanasiou et al. 2022): 1) Joint predic-
tion (ours-J): The long semantic prompt Si−1:i formed by
the combination of two coherent prompts are used as the
input of the diffusion model, and a coherent time-series mo-
tion sequence Xi−1:i

0 is obtained by direct joint prediction.
2) Linear interpolation (ours-I): This method interpolates the

results of two independent motion synthesis. 3) Motion fill-
ing (ours-F): Similar to linear interpolation, two independent
motion synthesis are required to obtain Xi−1

0 and Xi
0, and

the time window is set to 10% of the motion sequence du-
ration. All frame data except for the time window are fixed,
and the frame data within the time window are filled with
random normal distribution noise. The coherent motion se-
quence is then restored through the denoising process.

As shown in Table 2, Among the five evaluation metrics,
AMD achieved top 3 performance in four of them, with
FID and Diversity, the primary metrics for motion gener-
ation quality, ranking first, demonstrating its superiority in
the long text-to-compound motion generation task. Notably,
AMD outperformed other methods by a significant margin
in the FID metric. While the “Ours-J” scheme, despite hav-
ing the highest Multimodality index, performed poorly in
terms of FID, indicating its inability to generate reasonable
human movements. In cases where synthesis quality is ex-
tremely low, high diversity in Multimodality may indicate
that the synthesized actions are chaotic and irregular.

As illustrated in Figure 3, compared to the ground truth,
AMD keeps with the highest degree of similarity, while
MDM, MotionDiffuse, and MLD all exhibited varying de-
grees of limb stiffness. Although T2M-GPT achieves results
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Method R-Precision(Top3)↑ FID↓ MultiModal Dist↓ Diversity→ MultiModality↑

Ours-J 0.120±.006 12.679±.063 9.991±.047 4.683±.117 3.646±.285♢

Ours-I 0.142±.003 0.827±.036∗ 7.989±.056 4.329±.065 2.249±.206

Ours-F 0.132±.008 0.576±.042† 7.937±.023 4.312±.052 2.257±.269

MDM (Tevet et al. 2022b) 0.096±.005 27.348±.349 8.203±.039 0.781±.040 0.547±.037

MotionDiffuse (Zhang et al. 2022) 0.156±.002∗ 6.860±.113 8.783±.028 4.529±.076† 2.409±.204

T2M-GPT (Zhang et al. 2023) 0.159±.005♢ 1.249±.026 7.653±.019♢ 4.895±.047 3.093±.104†

MLD (Xin et al. 2023) 0.144±.002 3.843±.058 7.847±.011∗ 4.365±.033∗ 2.831±.072∗

Ours 0.158±.006† 0.225±.013♢ 7.745±.029† 4.515±.135♢ 1.242±.118

GT 0.162±.005 0.003±.001 7.119±.013 4.456±.073 -

Table 2: Compound motion generation evaluation on HumanLong3D Dataset. For each metric, we repeat the evaluation 20
times (except MultiModality runs 5 times). ♢, †, and ∗ indicate the first, the second, and the third best result.

Motion Quality Motion Diversity

Method FIDk FID†
g Divk Div†

g BAS ↑
DanceNet 69.18 25.59 2.86 2.85 0.1430

FACT 35.35 22.11 5.94 6.18 0.2209
Bailando 28.16 9.62 7.83 6.34 0.2332

Ours 30.28 16.11 6.75 6.29 0.2302

Table 3: Music-to-dance evaluation on AIST++ Dataset.

comparable to the ground truth in the first half of motion
generation, its performance deteriorates in longer text-to-
motion generation tasks. This is due to its premature predic-
tion of the terminator, resulting in a lack of corresponding
motion sequences for the second half of the text. For T2M-
GPT, we also tried to separate the long texts into short texts
and generated single motion on the short texts individually.
T2M-GPT performs well in single motion generation tasks
but struggles with compound motion generation tasks. Ad-
ditionally, when generating long text-to-compound motion,
dividing the long text and generating it separately often re-
sults in unnatural transitional motion clips.
Comparisons on Single Motion We also single mo-
tion generation experiments on HumanML3D and Human-
Long3D Dataset. For single motion generation, our condi-
tional information includes the estimated motion duration
and semantic information but excludes prior motion and se-
mantic information. The visualization results are shown in
Figure 4. It can be seen that AMD is capable of generating
corresponding motion in response to text prompts contain-
ing a single motion while achieving smooth transitions.
Comparisons on Music-to-Dance We conducted com-
parative experiments with SOTA methods, including
DanceNet (Zhuang et al. 2022), Dancerevolution (Huang
et al. 2020), FACT (Li et al. 2021), and Bailando (Siyao et al.
2022), on the public dataset AIST++. We employed the same
data partitioning strategy as the aforementioned prior works,
and we converted the data in AIST++ into HumanML3D
format. The quantitative results are presented in Table 3.
As can be observed from the table, our method is second
only to Bailando in various performance metrics, particu-
larly in the measurement of music and dance consistency

(a) the person picks an object up off the floor with their left hand

(b) a person throws an object with his right hand.

Figure 4: Visualization on HumanML3D Dataset.

indicators BAS. Bailando employs a customized reinforce-
ment learning module to enhance the BAS index. In contrast,
our method does not incorporate any enhancements yet still
achieves comparable performance to Bailando. These results
demonstrate that our method not only excels in the text-to-
motion task but also exhibits strong generalization capabili-
ties to other human motion generation tasks.

Conclusion
In this paper, we present the HumanLong3D - the first
dataset that pairs complex motions with long textual descrip-
tions to address the scarcity of such data. Given the subop-
timal performance of current motion generation methods on
long text descriptions, we introduce a novel network archi-
tecture AMD, which combines autoregressive and diffusion
models to effectively capture the information contained in
long texts. Furthermore, we extend our approach to incor-
porate audio conditional input and construct a large-scale
music-dance dataset - HumanMusic can serve as a bench-
mark in the field of music-to-dance.
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