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Abstract

We introduce HuTuMotion, an innovative approach for gen-
erating natural human motions that navigates latent motion
diffusion models by leveraging few-shot human feedback.
Unlike existing approaches that sample latent variables from
a standard normal prior distribution, our method adapts the
prior distribution to better suit the characteristics of the data,
as indicated by human feedback, thus enhancing the quality
of motion generation. Furthermore, our findings reveal that
utilizing few-shot feedback can yield performance levels on
par with those attained through extensive human feedback.
This discovery emphasizes the potential and efficiency of in-
corporating few-shot human-guided optimization within la-
tent diffusion models for personalized and style-aware hu-
man motion generation applications. The experimental results
show the significantly superior performance of our method
over existing state-of-the-art approaches.

Introduction
Human motion generation, a rapidly growing area of re-
search (Li et al. 2022; Raab et al. 2022; Guo et al. 2020;
Ling et al. 2020; Petrovich, Black, and Varol 2021; Guo et al.
2022a,c,b; Zhang et al. 2022a; Tevet et al. 2022) in com-
puter vision and artificial intelligence, has gained significant
attention due to its wide-ranging applications in animation,
gaming, and robotics. Recent techniques typically encom-
pass the process of sampling latent variables z from a stan-
dard normal prior distribution p(z), followed by generating
data x using the generative probability distribution p(x|z).
These approaches, often based on deep generative models
like Variational Autoencoders (VAEs) (Chen et al. 2023) or
Generative Adversarial Networks (GANs) (Lee et al. 2019),
have made significant strides in motion synthesis. However,
they often fall short of capturing the real data characteristics
and generating human motions that accurately reflect the in-
put semantics. For instance, consider generating a motion
from a textual input like “an old person walking at an av-
erage pace forward.” Existing methods (Chen et al. 2023;
Tevet et al. 2022; Guo et al. 2022a) may generate a generic
“walking at an average pace forward” motion but fail to cap-
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ture the specific nuance of “old”. This limitation has hin-
dered the advancement of more sophisticated applications,
such as personalized and editable motion generation, which
call for a deeper grasp of the underlying data distribution
and effective incorporation of human feedback.

In light of these challenges, we propose HuTuMotion, a
novel approach that seeks to improve the quality of mo-
tion generation by leveraging latent diffusion models and
incorporating few-shot human feedback. The central idea of
HuTuMotion is to adjust the prior distribution p(z) based on
human feedback rather than existing approaches of draw-
ing from a standard normal prior distribution. This adjust-
ment allows the latent space to capture the characteristics
of the data better, thereby improving the quality and real-
ism of the generated motions. Our method does not solely
rely on an arbitrary sampling of the latent space. Instead, we
carefully optimize the selection of regions in the latent space
that yield more realistic and semantically meaningful human
motions. To achieve this, we first strategically identify rep-
resentative and diverse motion descriptions. We then utilize
a unique feedback mechanism that incorporates a few-shot
learning approach. In this paradigm, minimal yet effective
human feedback guides the optimization process, refining
the link between the descriptions and their corresponding
latent distributions. Furthermore, to ensure semantic align-
ment between the input text and output motion, we employ
a text similarity measure. During testing, this measure as-
sesses the similarity between the input text and the repre-
sentative motion descriptions. The most similar representa-
tive prior distribution is then used to sample a latent, which
ultimately generates the corresponding human motion.

In addition to enhancing the general text-driven motion
generation, HuTuMotion also introduces a new capability
to support personalized and style-aware motion generation.
This functionality allows the users to provide their specific
motion style preferences, which are then incorporated into
the motion generation process. Through this mechanism,
our method can generate unique, individualized motions that
better reflect the users’ intentions and preferences, thereby
opening up new possibilities for applications in areas such
as interactive gaming and personalized animation. In our
quantitative experiments on both the HumanML3D and
KIT datasets, HuTuMotion significantly outperforms exist-
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ing state-of-the-art methods. Additionally, through quali-
tative experiments, we observe that our method generates
more natural and semantically correct motions. Importantly,
when comparing the effectiveness of few-shot and extensive
human feedback within our method, our results show that
using few-shot human feedback achieves comparable per-
formance to extensive feedback. This underscores the ef-
ficiency and potential of our few-shot human-guided opti-
mization approach in the field of human motion generation
applications.

The key contributions of our work are:
• We introduce HuTuMotion, a novel approach to improve

the quality of motion generation using latent diffusion
models and few-shot human feedback. To the best of our
knowledge, this work is the first attempt to leverage few-
shot human feedback to enhance motion generation qual-
ity.

• HuTuMotion uniquely adjusts the prior distribution
based on human feedback, optimizing the selection of
regions in the latent space to yield more realistic and se-
mantically meaningful human motions.

• We propose a unique feedback mechanism that incorpo-
rates a few-shot learning approach and a text similarity
measure to refine the link between motion descriptions
and their corresponding latent distributions, enhancing
semantic alignment between the text and motion.

• HuTuMotion also supports personalized and style-aware
motion generation, enabling users to provide specific mo-
tion style preferences that are incorporated into the mo-
tion generation process.

Related Work
Human Motion Diffusion Model. The impressive perfor-
mance of diffusion models on text-to-image tasks (Ho and
Salimans 2021; Rombach et al. 2022a,b) has recently in-
spired the creation of diffusion-based human motion mod-
els (Tevet et al. 2022; Zhang et al. 2022a; Chen et al. 2023;
Zhang et al. 2023a) that are trained on the motion cap-
ture datasets using the human motion estimation methods
(Kanazawa et al. 2018; Yu et al. 2023; Cheng et al. 2023).
MotionDiffuse (Zhang et al. 2022a) pioneered this field as
the first text-based motion diffusion model with fine-grained
instructions on body parts. MDM (Tevet et al. 2022) and
MLD (Chen et al. 2023) followed suit, with the former
proposing a motion diffusion model on raw motion data to
understand the relationship between motion and input con-
ditions, and the latter performing the motion diffusion pro-
cess in the latent space to significantly reduce computational
overhead during training and inference stages. Unlike these
models, our approach guides initial latent generation on a
latent-based diffusion model, achieving state-of-the-art per-
formance in text-to-motion tasks with minimal cost.
Reinforcement Learning with Human Feedback. Rein-
forcement Learning with Human Feedback (RLHF) is an ex-
panding field demonstrating substantial potential in aligning
human references and model performance across language
tasks (Stiennon et al. 2020; Ouyang et al. 2022; OpenAI
2022). It typically involves using human-gathered ranking

data to train a reward model, which is then used to fine-tune
a Supervised Fine-Tuning (SFT) model via policy gradi-
ents. Recent applications of RLHF in the text-to-image field
(Zhang et al. 2023b; Lee et al. 2023; Tang, Rybin, and Chang
2023; Xu et al. 2023; Wu et al. 2023) have shown promising
text-image alignment performance. However, unlike previ-
ous works, our method uses a novel online human feedback
approach, avoiding the need for large-scale human-ranked
data to optimize the quality of generated human motion.
Few-Shot Learning and Generation. Most few-shot learn-
ing methods fall into three categories: meta-learning (Finn,
Abbeel, and Levine 2017; Oreshkin, López, and Lacoste
2018; Vinyals et al. 2016), transfer-learning (Yang, Wang,
and Zhu 2022; Zhang et al. 2022b; Hu et al. 2022), and fea-
ture augmentations (Lazarou, Stathaki, and Avrithis 2022;
Chen et al. 2018; Ye et al. 2020). These methods use textual
descriptions of novel classes to generate and align images,
promoting the effective use of synthetic images in training
few-shot learners. Recently, few-shot generation has been
employed in the text-to-image task using diffusion mod-
els (Gal et al. 2023; Ruiz et al. 2023; Samuel et al. 2023).
Specifically, (Gal et al. 2023; Ruiz et al. 2023) learn to
map a set of images to a corresponding ”word” in the low-
dimensional embedding space using a pre-trained model.
(Samuel et al. 2023) addresses long-tail learning in the pres-
ence of highly unbalanced training data by selecting optimal
generation seeds from the noise space.

In our approach, we generate natural human motions by
incorporating few-shot feedback and text similarity, requir-
ing only a few-shot human feedback for searching the prior
distribution of latent, thus achieving a network-free method
during the inference period.

Method
As depicted in Figure 1, our method, HuTuMotion, is char-
acterized by two principal steps: 1) Representative Distribu-
tion Optimization and 2) Semantic Alignment and Motion
Generation. We begin with a concise introduction to the La-
tent Diffusion Model, followed by an in-depth explanation
of these pivotal steps.

Overview of Latent Diffusion Models
Latent diffusion models (LDMs) has achieved great success
in text-to-motion task, such as Stable Diffusion (Rombach
et al. 2022b). Different from the diffusion model, LDMs
perform diffusion process in latent space using an extra de-
noising U-Net. Low-dimensional space is better suited for
likelihood-based generative models, as it allows them to
concentrate on the crucial semantic representation of the
data and trains in a lower-dimensional space that is com-
putationally more efficient. MLD (Chen et al. 2023) is the
first latent-based motion diffusion model for text-to-motion
synthesis. MLD design a transformer-based conditional de-
noiser ϵθ. Its conditional objective can be expressed as:

LMLD := Eϵ,t,c

[
∥ϵ− ϵθ (zt, t, τθ(c))∥22

]
, (1)

where ϵ ∼ N (0, I), zt is the latent in time step t and
τθ(c) denotes the CLIP (Radford et al. 2021) text encoder
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Figure 1: An overview of our framework. For simplicity, we omit the motion decoder. σ denotes the standard deviation. It
consists of two stages. In representative distribution optimization, we obtain the optimized latent distribution corresponding to
representative texts. In a semantically guided generation, we select one latent distribution by computing text similarity.

with embedded conditions c. MLD uses the DDIM (Song,
Meng, and Ermon 2020) as the sampler. It is worth noting
that the denoising diffusion process becomes deterministic
and solely on the latent embedding for ODE-based diffusion
samplers such as DDIM (Song, Meng, and Ermon 2020),
DPM-solver (Lu et al. 2022a) and DPM-solver++ (Lu et al.
2022b). We optimize the latent distribution based on MLD.

Representative Distribution Optimization
Our methodology starts by identifying a set of representative
and diverse motion descriptions. We then incorporate few-
shot human feedback to adjust the prior distribution through
a two-stage optimization process.

Representative Motion Descriptions. Representative
motion descriptions can be defined as descriptors that cap-
ture the wide range and diversity of human motions. A
straightforward approach for selecting these descriptions in-
volves employing a K-means clustering algorithm on the
training dataset. In this process, the number of clusters de-
noted as K, is predetermined based on the diversity present
in the data. Each cluster’s centroid is then considered a rep-
resentative motion description. However, our experimental
observations indicate that a representative motion descrip-
tion does not necessarily need to come from a specific train-
ing dataset. Asking a large language model (ChatGPT (Ope-
nAI 2022)) to generate representative texts can also yield
comparable results. The detailed process can be found in the
supplementary material ‡.

Latent Optimization via Human Feedback. The central
innovation of HuTuMotion lies in the optimization of the
latent variables from the prior distribution. Unlike conven-
tional methods that draw samples from a standard normal

‡The supplementary material is included in the arxiv version
https://arxiv.org/abs/2312.12227

prior distribution, we adjust the latent input from the prior
distribution based on few-shot human feedback in the form
of rankings.

Our goal is to ascertain an optimal value of z that yields
the minimum score for the function f(z, c, t), wherein c rep-
resents the text embedding and t signifies the diffusion steps.
Given that c and t remain constant throughout the optimiza-
tion process, we will omit them in the ensuing discussions.
Here, the score of f(z) should reflect the quality of the gen-
erated motion from the input z according to human judg-
ment. The lower the score, the better the generated motion.
The specific form of f(z) is not predefined and is implicitly
determined by human feedback. To formalize this, we can
express it as an optimization problem: min

z∈Rd
f(z).

Given that f(z) functions as a black box, we do not have
direct access to its internal workings. Instead, we can inter-
face with it through a ranking oracle. This oracle provides
insight into the function by sorting the scores of generated
outcomes, which can be thought of as motions in a particular
context.

Due to the constraints imposed by the ranking oracle, the
optimization problem at hand can be recast as an (m, k)-
ranking oracle optimization problem. This type of problem
involves determining an optimal ranking of a set of items
constrained by the limited information provided by the ora-
cle. Therefore, the challenge lies not only in optimizing f(z)
but also in intelligently querying the oracle to explore the
search space efficiently.

To solve this problem, we adopt the zeroth-order op-
timization algorithm (Tang, Rybin, and Chang 2023) that
obtains the descent direction using a rank-based random
estimator. The estimator converts the (m, k)-ranking or-
acles’ input and output into a directed acyclic graph
(DAG), G = (N , E), where N = {1, ...,m} and E =
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(i, j) | f(zi) < f(zj). With access to an (m, k)-ranking or-
acle O(m, k) and a starting point z, we query O(m, k) us-
ing xi = x+ µξi, where ξi ∼ N (0, I) for i = 1, ...,m. The
rank-based gradient estimator, constructed using the ranking
information from O(m, k), is:

g̃(z) =
1

|E|
∑

(i,j)∈E

ξj − ξi
µ

. (2)

Upon the completion of the initial optimization process,
we continue to refine the optimal latent variable z. The com-
prehensive steps for this procedure are outlined in Algo-
rithm 1.

Optimal Representative Prior Distribution. We have
noted a significant correlation in our observations: texts that
are closely aligned in the embedding space also demonstrate
similar proximity in their optimal latents. Detailed results
supporting this observation can be found in the accompany-
ing supplementary material ‡. Based on this, we propose a
method to construct an optimal prior distribution for texts
that are near a given representative text (RT ). We use the
optimal latent of a representative text as the mean and spec-
ify a relatively small standard deviation to construct a Gaus-
sian distribution. This Gaussian distribution then serves as
the optimal prior distribution for texts that are close to the
representative text in the embedding space.

Semantic Alignment and Motion Generation
By employing representative distribution optimization cou-
pled with human ranking information, we acquire pair sets
consisting of representative texts and their corresponding
latent distributions. Given an input text, we initially calcu-
late its cosine similarity with the representative texts. Sub-
sequently, we select the latent distribution that corresponds
to the representative text closest in similarity. This approach
serves as an efficient strategy to enhance overall motion
quality, as it does not necessitate significant resources to
fine-tune the model.

Semantically Guided Sampling. Contrary to the MLD
approach which samples latent from N (0, I), we instead
sample latent from N (z∗∗m , σ), where z∗∗m is the optimal
latent determined for the representative text RTm. When
given an input text, we compute the index m by measur-
ing the cosine similarity between cx and {c1, ..., ck} corre-
sponding to the input text Tx and the set of representative
texts {RT1, ..., RTk}, respectively. In this context, cx and
{c1, ..., ck} denote the text embeddings obtained from the
CLIP text encoder. The maximum indexm is then computed
using the following equation:

m = argmax
i

cx · ci
||cx|| · ||ci||

. for i ∈ 1, ..., k (3)

This allows us to select the representative text that aligns
most closely with the given input text, ensuring a more ef-
fective and relevant sampling of the latent variable.

Inference (Motion Generation). By sampling from the
optimal distribution N (z∗∗m , σ2), we obtain zx. Subse-
quently, we input zx and cx into the DDIM sampler (Song,
Meng, and Ermon 2020) to facilitate the denoising motion

Algorithm 1: Distribution optimization for representative
texts
Require: Objective function f (Evaluated by human), num-

ber of queries m, stepsize η, smoothing parameter µ1,
µ2, µ3, shrinking rate γ ∈ (0, 1).

1: Initialize the reference point z∗ with all-zero vectors.
2: Initialize the gradient memory ḡ with all-zero vectors.
3: Set τ = 0.
4: Choose one sample from the representative texts pro-

vided by ChatGPT.
5: Sample m i.i.d. starting point input X1 = {ξ1, · · · , ξm}

from N (0, µ1I).
6: while not select the best motion by human do
7: Query O(m,k)

f with input X1 for 2 ≤ k ≤ m. Denote
I1 as the output.

8: Set z∗ to be the weighted X1 using the ranking infor-
mation I1.

9: Compute the gradient g̃ using the ranking information
I1 according to the equation 2.

10: ḡ = (τ ḡ + g̃)/(τ + 1)
11: τ = τ + 1
12: Sample m i.i.d. direction {ψ1, · · · , ψm} from

N (0, µ2I).
13: X1 = {z∗−ηḡ+ψ1, z

∗−ηγḡ+ψ2, ..., z
∗−ηγm−1ḡ+

ψm}
14: end while
15: Set z∗∗ to be the best point in X1 with minimal objective

value using the ranking information I1.
16: while not exit by human do
17: Sample m i.i.d. direction {ψ1, · · · , ψm} from

N (0, µ3I).
18: Query O

(m,1)
f with input X2 = {z∗∗ + ψ1, z

∗∗ +

ψ2, ..., z
∗∗ + ψm}. Denote I2 as the output.

19: Set z∗∗ to be the best point in X2 with minimal objec-
tive value using the ranking information I2.

20: end while

diffusion process. It’s important to note that the standard de-
viation σ acts as our hyper-parameter. We further examine
and discuss its impact in the Ablation Studies section.

Expanding the Scope: Personalized and
Style-Aware Generation
Our method is primarily designed to enhance the genera-
tion quality of general human motions. However, its versa-
tility allows for straightforward extensions to accommodate
new tasks. These include but are not limited to, personal-
ized and style-aware motion generation, further demonstrat-
ing the adaptability and potential of our approach.

Personalized Motion Generation. Personalized Motion
Generation is a task in human motion generation that fo-
cuses on generalizing motions that align with user pref-
erences. In this context, suppose we have an output set
{(RT1, z∗∗1 ), ..., (RTk, z

∗∗
k )} derived from our method and

a user-provided text set T 1
U , ..., T

l
U that reflects a specific

preference for a desired motion style. To implement Person-
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Methods R Precision (top3) ↑ FID↓ MM Dist↓ Diversity↑ MModality

Real 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Seq2Seq (Plappert, Mandery, and Asfour 2018) 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
LJ2P (Ahuja and Morency 2019) 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
T2G(Bhattacharya et al. 2021) 0.345±.002 7.664±.030 6.030±.008 6.409±.071 -
Hier (Ghosh et al. 2021) 0.552±.004 6.532±.024 5.012±.018 8.332±.042 -
TEMOS (Petrovich, Black, and Varol 2022) 0.722±.002 3.734±.028 3.703±.008 8.973±.071 0.368±.018
T2M (Guo et al. 2022a) 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083
MDM (Tevet et al. 2022) 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072
MLD (Chen et al. 2023) 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079
Ours∗ 0.782±.002 0.224±.006 3.058±.009 9.745±.073 0.966±.046
Ours 0.785±.002 0.295±.006 3.093±.007 9.828±.091 1.019±.054

Table 1: Comparison of text-to-motion synthesis on HumanML3D (Guo et al. 2022b) dataset. ∗ means using the texts of cluster’s
centroid of K-means. These metrics are evaluated by the motion encoder from (Guo et al. 2022a). For each metric, we repeat
the evaluation 20 times and report the average with a 95% confidence interval. We employ real motion as a reference and sort
all approaches by descending FIDs. Bold and underline indicate the best and the second best result. The complete R Precision
metric is in the supplementary material‡.

Methods R Precision (top3) ↑ FID↓ MM Dist↓ Diversity↑ MModality

Real 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

Seq2Seq(Plappert, Mandery, and Asfour 2018) 0.241±.006 24.86±.348 7.960±.031 6.744±.106 -
T2G(Bhattacharya et al. 2021) 0.338±.005 12.12±.183 6.964±.029 9.334±.079 -
LJ2P (Ahuja and Morency 2019) 0.483±.005 6.545±.072 5.147±.030 9.073±.100 -
Hier (Ghosh et al. 2021) 0.531±.007 5.203±.107 4.986±.027 9.563±.072 2.090±.083
TEMOS (Petrovich, Black, and Varol 2022) 0.687±.005 3.717±.051 3.417±.019 10.84±.100 0.532±.034
T2M (Guo et al. 2022a) 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065
MDM (Tevet et al. 2022) 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214
MLD (Chen et al. 2023) 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071
Ours∗ 0.766±.005 0.201±.064 3.082±.025 10.88±.086 0.901±.035
Ours 0.768±.006 0.224±.045 3.098±.025 10.96±.090 0.914±.039

Table 2: Comparison of text-to-motion synthesis on KIT (Plappert, Mandery, and Asfour 2016) dataset. ∗ means using the texts
of cluster’s centroid of K-means. Reported metrics are the same as Table 1. Bold and underline indicate the best and the second
best result. The complete R Precision metric is in the supplementary material‡.

alized Motion Generation, we begin by identifying the clos-
est RTi for each text T j

U and use z∗∗i as the starting point
in Algorithm 1 to conduct feedback optimization. The final
optimized result z∗∗Ui will then replace the original z∗∗i . By
processing all the user sets in this manner, we generate the
final output set {(RT1, z∗∗U1 ), ..., (RTk, z

∗∗U
k )} which can

be used to generate motions that align with the user’s pref-
erences.

Style-Aware Motion Generation. Style-aware Motion
Generation pertains to the task of producing motions that
embody a specified style, given input text containing style
descriptions. Different from personalization, the stylized
prompt presents a long-tail distribution in the HumanML3D
and KIT datasets. We observe that using the stylized prompt
as input, the MLD model fails to generate motion consis-
tent with the stylistic semantics, as shown in Fig. 3. This
differs from Personalized Motion Generation in that it need
to feedback the text with style Words. Initially, it identi-
fies diverse texts corresponding to the same style descrip-
tor STi. Following this, it carries out optimization from

scratch to secure the optimal latent. In this context, we can
amass a variety of styles and establish a comprehensive set
{(ST1, z∗∗1 ), ..., (STM , z

∗∗
M )} by employing the previously

mentioned optimization process. This approach allows us to
generate a broad spectrum of stylized motions.

Experiments
In this section, we provide extensive experimental results.
Firstly, we introduce the datasets, implementation details,
and evaluation metrics. Secondly, we show the qualita-
tive and quantitative results compared with the state-of-the-
art approaches. Finally, we perform ablation studies. More
qualitative results are provided in the supplementary mate-
rial ‡.

Datasets and Evaluation Metrics
We experiment with two text-to-motion synthesis datasets:
HumanML3D (Guo et al. 2022b) and KIT (Plappert, Man-
dery, and Asfour 2016).
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KIT comprises 3,911 motion sequences and 6,278 text
annotations, with each motion linked to one to four descrip-
tions. The dataset downsampled to 12.5 FPS, is partitioned
into 80% training, 5% validation, and 15% test sets.

HumanML3D is the largest 3D human motion-language
dataset, containing 14,616 human motions and 44,970 text
descriptions. Each motion pairs with at least three descrip-
tions. Motions, re-scaled to 20 FPS and spanning between 2
and 10 seconds, are divided similarly to KIT.

We evaluate text-to-motion models based on metrics as
described in (Guo et al. 2022b): R Precision: This measures
the accuracy of the top-1, top-2, and top-3 ranked Euclidean
distances between one motion sequence and 32 text descrip-
tions. Frechet Inception Distance (FID): This assesses the
feature distribution distance between generated and real mo-
tions using a feature extractor. Multimodal Distance (MM-
Dist): This metric calculates the average Euclidean distance
between the generated motion feature and each text fea-
ture. Diversity: We measure the diversity within a motion
set by calculating the average Euclidean distance between
features of randomly selected motion pairs. Multimodality
(MModality): This evaluates the diversity of motion gen-
erated for one text description by averaging the Euclidean
distances between features of generated motion pairs.

Implementation Details
We implement our method using the state-of-the-art latent
human diffusion model, MLD (Chen et al. 2023). Our repre-
sentative distribution optimization and semantically guided
generation are conducted on a single NVIDIA GeForce RTX
2080 Ti GPU, with text embedding and latent dimensions
set to 768 and 256, respectively. We set σ to 0.2 for latent
sampling and use DDIM (Song, Meng, and Ermon 2020) as
the denoising motion diffusion sampler. All other settings
are consistent with MLD (Chen et al. 2023). We obtain five
representative textual descriptions using ChatGPT (OpenAI
2022) (refer to supplementary material ‡) and optimize the
representative distribution with human feedback according
to Algorithm 1. The experimental details considering Algo-
rithm 1 are provided in the supplementary material ‡.

Comparison with State-of-the-art Methods
In this section, we present the quantitative and qualitative re-
sults compare to existing state-of-the-art methods (Plappert,
Mandery, and Asfour 2018; Ahuja and Morency 2019; Bhat-
tacharya et al. 2021; Ghosh et al. 2021; Petrovich, Black, and
Varol 2022; Guo et al. 2022a; Tevet et al. 2022; Chen et al.
2023) on the test set of HumanML3D (Guo et al. 2022b) and
KIT (Plappert, Mandery, and Asfour 2016). Our method is
implemented based on MLD (Chen et al. 2023).

Quantitative Results Comparison. The comparison re-
sults presented in Table 2 and Table 1 on the HumanML3D
(Guo et al. 2022b) and KIT (Plappert, Mandery, and As-
four 2016) test sets illustrate the superior performance of
our approach. It significantly outperforms other state-of-the-
art methods, achieving the best scores in R Precision, FID,
MM Dist, and Diversity metrics. This performance consis-
tency across both datasets underlines the robustness of our
proposed method. Although we didn’t observe a consistent

MLD Ours
The person 
places his left 
hand on a seat 
and sits down.

A person loses 
their balance 
while walking.

MDM

A person walks 
forward, arms 
unmoving then 
they run back.

Figure 2: Qualitative results on HumanML3D (Guo et al.
2022b) dataset. The darker colors indicate the later frame in
time.

MLD

The person is 
running 
backwards 
quickly.

The person takes 
4 steps forward 
starting with his 
right foot.

An old man walks 
forward while upper 
body is leaning to the 
left and steps are 
unbalanced and slow.

An old person 
walking at a 
average pace 
forward.

Ours

 User preference: Exaggerated

Figure 3: Personalized (left) and style-aware (right) motion
generation. The darker colors indicate the later frame in
time.

improvement in MModality, a higher MModality doesn’t
necessarily denote superior algorithm performance, as it can
lead to semantically incorrect motions. Also, our MModal-
ity metric is significantly influenced by the hyperparameter
σ, which we explore further in Ablation Studies section.

Qualitative Results Comparison. Figure 2 displays
qualitative results on the HumanML3D dataset (Guo et al.
2022b). The examples clearly demonstrate that our method
generates more natural and semantically accurate motions
compared to the lower-quality motions produced by MLD
and MDM. For instance, given the text “a person loses their
balance while walking.” MLD and MDM fail to capture the
“losing balance” action. Similarly, with the input, “the per-
son places his left hand on a seat and sits down.” MLD gen-
erates a static motion while MDM exhibits distorted move-
ments. And for the phrase “a person walks forward, arms
unmoving, then they run back.” MLD and MDM cannot pro-
duce the “run back” motion sequence.
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Methods R Precision ↑ FID↓ MM Dist↓ Diversity↑ MModality
Top 1 Top 2 Top 3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Ours (σ = 0.1) 0.496±.002 0.687±.002 0.784±.001 0.258±.005 3.091±.006 9.780±.089 0.637±.038
Ours (σ = 0.2) 0.497±.002 0.689±.002 0.785±.002 0.295±.006 3.093±.007 9.828±.091 1.019±.054
Ours (σ = 0.3) 0.494±.001 0.688±.001 0.785±.002 0.356±.007 3.103±.006 9.867±.092 1.276±.062
Ours (σ = 0.4) 0.491±.002 0.685±.001 0.781±.002 0.437±.006 3.130±.007 9.882±.087 1.480±.070
Ours (σ = 0.5) 0.481±.002 0.674±.001 0.772±.001 0.554±.010 3.190±.009 9.822±.085 1.680±.076

Table 3: Effect of σ on HumanML3D (Guo et al. 2022b) dataset. Reported metrics are the same as Table 1. Bold and underline
indicate the best and the second best result.
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Figure 4: Effect of varying the number of representative texts on R Precision Top 1, FID and MM Dist.

Personalized and Style-aware Generation. Figure 3
showcases the personalized and style-aware motion genera-
tion capabilities of our method. In personalization, given the
same text input, MLD produces standard motions, whereas
our method can generate exaggerated actions in line with
human preferences. Regarding text-guided stylization, MLD
fails to generate style-aware motion. For instance, given the
input “an old man walks forward while the upper body is
leaning to the left and steps are unbalanced and slow”, MLD
fails to generate a sequence exhibiting the desired “leaning
to the left” and “old” characteristics. In contrast, our method
can generate semantically consistent motions while also re-
flecting an elderly style.

Ablation Studies
In this section, we first examine the influence of the number
of human feedback samples. Following that, we investigate
the optimal hyper-parameters for σ.

Effect of The Number of Representative Texts. Fig. 4
examines the impact of varying the number of representa-
tive texts on semantically guided generation using the Hu-
manML3D dataset. The metrics of R Precision Top 1, FID,
and MM Dist are reported for a range of 1 to 50 represen-
tative texts. We found that increasing the text count does
not guarantee performance enhancement. To balance perfor-
mance and distribution optimization, we opted for 5 repre-
sentative texts as our default implementation setting.

Effect of The Standard Deviation σ. Table 3 reveals
the effects of varying σ between 0.1 and 0.5. Our findings
showed optimal R Precision Top 1 at σ = 0.2, best FID at
σ = 0.1, and peak diversity at σ = 0.4. While increasing
σ did enhance MModality, it also resulted in some semanti-
cally incorrect motions at higher values. Balancing all fac-
tors, we opted for σ = 0.2 in our experimental setup.

Conclusion and Limitation
In conclusion, our research advances human motion genera-
tion with HuTuMotion, an innovative method that utilizes la-
tent diffusion models and few-shot human feedback. Unlike
traditional methods, HuTuMotion uniquely adjusts the prior
distribution based on human feedback, enhancing data real-
ism. We have also established a feedback mechanism that
ensures semantic alignment between motion descriptions
and corresponding latent distributions. Importantly, HuTu-
Motion accommodates personalized and style-aware motion
generation, broadening its potential applications. Quantita-
tive and qualitative experiments affirm HuTuMotion’s su-
periority over existing methods. Due to the higher dimen-
sionality of an explicit diffusion model (e.g., MDM) is hard
to optimize, the proposed method is limited to latent mo-
tion diffusion (i.e. MLD). In additiion, when processing long
prompts with numerous action descriptions, MLD tends to
miss some actions. Our method to improve this issue is rel-
atively limited.
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