
Collaborative Weakly Supervised Video Correlation Learning
for Procedure-Aware Instructional Video Analysis

Tianyao He1, Huabin Liu1, Yuxi Li1, Xiao Ma2, Cheng Zhong2, Yang Zhang2, Weiyao Lin1*

1Shanghai Jiao Tong University, Shanghai, China
2AI Lab, Lenovo Research, Beijing, China
{hetianyao,huabinliu,lyxok1}@sjtu.edu.cn,

{maxiao3, zhongcheng3, zhangyang20}@lenovo.com, wylin@sjtu.edu.cn

Abstract
Video Correlation Learning (VCL), which aims to analyze the
relationships between videos, has been widely studied and ap-
plied in various general video tasks. However, applying VCL
to instructional videos is still quite challenging due to their in-
trinsic procedural temporal structure. Specifically, procedural
knowledge is critical for accurate correlation analyses on in-
structional videos. Nevertheless, current procedure-learning
methods heavily rely on step-level annotations, which are
costly and not scalable. To address this problem, we intro-
duce a weakly supervised framework called Collaborative
Procedure Alignment (CPA) for procedure-aware correlation
learning on instructional videos. Our framework comprises
two core modules: collaborative step mining and frame-to-
step alignment. The collaborative step mining module enables
simultaneous and consistent step segmentation for paired
videos, leveraging the semantic and temporal similarity be-
tween frames. Based on the identified steps, the frame-to-step
alignment module performs alignment between the frames
and steps across videos. The alignment result serves as a
measurement of the correlation distance between two videos.
We instantiate our framework in two distinct instructional
video tasks: sequence verification and action quality assess-
ment. Extensive experiments validate the effectiveness of our
approach in providing accurate and interpretable correlation
analyses for instructional videos.

Introduction
Video Correlation Learning (VCL) focuses on examining
and quantifying the relationships between videos through
a comparative paradigm. It empowers researchers to dis-
cover temporal and conceptual knowledge from the intrin-
sic associations between videos. Numerous previous studies
have explored VCL in general videos. For example, some
methods adopt VCL to grasp the similarities and differences
between videos, including video contrastive learning (Qian
et al. 2021; Park et al. 2022), and video retrieval (Zhou et al.
2018; Wang, Jabri, and Efros 2019). Other studies utilize
VCL to analyze individual videos referring to given exem-
plars (or called support videos), such as video quality as-
sessment (Mozhaeva et al. 2021; Xu et al. 2020), and few-
shot action recognition (Zhu and Yang 2018; Ben-Ari et al.
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Figure 1: (a)(b) VCL on general videos and instructional
videos; (c) Our Collaborative Procedure Alignment frame-
work, which conducts a procedural alignment between
frames and collaboratively mined steps.

2021). As depicted in Fig. 1(a), VCL in general videos pri-
marily centers on the video and frame-level comparison.

However, applying traditional VCL approaches to in-
structional videos encounters significant challenges. Specif-
ically, instructional videos comprise multiple fine-grained
steps with varying durations and temporal locations. This
results in more complex procedural structures compared to
general videos (see Fig. 1(b)). Therefore, to achieve pre-
cise and interpretable correlation learning for instructional
videos, the crux lies in capturing procedural knowledge.

Currently, many procedure-learning methods for instruc-
tional videos are emerging (Behrmann et al. 2022; Han, Xie,
and Zisserman 2022; Xu et al. 2022). However, they heav-
ily rely on step-level annotations. These annotations require
step semantic labels and their temporal boundaries, incur-
ring substantial costs and lacking scalability. This naturally
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raises a pivotal question: How can we learn the intrinsic pro-
cedural knowledge of instructional videos without step-level
annotations? In this paper, we present an insight into this
question for VCL: Two instructional videos that share the
same procedure often exhibit a strong internal correlation
between steps, which can serve as a valuable reference for
mutual procedure learning.

Based on this insight, we present a weakly supervised
collaborative procedure alignment (CPA) framework to
achieve procedure-aware correlation learning for instruc-
tional videos. Here, “weakly supervised” refers to access-
ing only video-level classes while step-level annotations are
unknown. Videos belonging to the same video-level class
present identical procedures. As illustrated in Fig. 1(b), our
framework harnesses the internal correlation between paired
videos, allowing for the collaborative extraction of step-
level information and quantifying the step-level correlation
between instructional videos. Specifically, our framework
consists of two core components: collaborative step min-
ing and frame-to-step alignment. Collaborative step min-
ing exploits both semantic and temporal similarities among
video frames, enabling the simultaneous extraction of steps
for paired instructional videos. It empowers us to extract a
video’s steps with guidance from the other, and vice versa.
Built upon the step-level features, we then design a frame-
to-step alignment module to quantify the procedure consis-
tency between the two videos. The alignment is performed
between the step-level features of one video and the frame-
level features of the other. A higher alignment probability
signifies a higher likelihood of step-level consistency. This
probability serves as a distance quantifying the procedure
correlation between these two instructional videos.

We validate our framework by performing video corre-
lation learning on two instructional video tasks, including
sequence verification and action quality assessment. Exten-
sive experiments show the effectiveness of our framework
in providing more precise and interpretable predictions of
correlation.

Overall, our contributions can be summarized as follows:

• We propose a weakly supervised collaborative procedure
alignment framework for instructional video correlation
learning, which collaboratively extracts consistent steps in
paired videos and then measures their distance through a
procedure alignment process.

• Under this framework, we devise a collaborative step min-
ing approach accounting for the semantic and temporal re-
lationships between videos, which enables concurrent step
segmentation in paired videos. In addition, we introduce a
frame-to-step alignment module to furnish a precise mea-
sure of video distance.

• We apply our framework to two instructional video tasks,
including sequence verification and action quality assess-
ment. Extensive experiments showcase the superiority of
our framework, demonstrating its capacity to deliver more
accurate and explainable results over existing competitors.

Related Work
Video Correlation Learning Video correlation learning
is a technology adopted by a wide range of work, which
can be roughly divided into two streams. The first stream of
work aims to learn the similarities and differences between
two videos based on the given criteria. For example, in video
retrieval, the method should find videos highly related to the
query video. (Han, Xie, and Zisserman 2020; Zhang et al.
2020) solve the task through video representation learning
by comparing the video-level features. (Jo et al. 2023b,a)
adopt frame-level and temporal information for more accu-
rate predictions. Another stream analyzes the query video
with reference to the exemplar videos. For example, few-
shot action recognition aims to classify the query video
based on only a few support videos. Some studies (Cao et al.
2020; Hadji, Derpanis, and Jepson 2021) adopt temporal
alignment between videos, while other works have explored
more flexible alignment strategies based on attention mech-
anisms (Li et al. 2022; Liu et al. 2022a, 2023), and distribu-
tion distance (Wu et al. 2022; Wang et al. 2022a). Another
example is video quality assessment. (Mozhaeva et al. 2021;
Xu et al. 2020) assess the query video based on an exemplar
whose quality score is given. Currently, the majority of the
exploration on VCL focuses on general videos, while studies
on instructional videos remain inadequate.

Instructional Video Learning Instructional videos are
created to convey skills, knowledge, or procedural infor-
mation, which find extensive usage in education, train-
ing, and demonstrations. Therefore, tasks related to in-
structional videos are gaining increasing attention. Related
datasets including COIN (Tang et al. 2019), Diving (Li,
Li, and Vasconcelos 2018), CSV (Qian et al. 2022), EPIC-
KITCHENS (Damen et al. 2018), Assembly101 (Sener et al.
2022), and HiEve (Lin et al. 2023) have provided instruc-
tional videos in different scenarios. A prominent task for in-
structional videos is action segmentation, which aims to di-
vide a video into successive steps. In this field, (Richard and
Gall 2016; Singh et al. 2016; Lea et al. 2017; Lei and Todor-
ovic 2018; Farha and Gall 2019) necessitates step bound-
ary annotations for segmentation, while (Aakur and Sarkar
2019; Sarfraz et al. 2021; Du et al. 2022; Wang et al. 2022b)
achieves unsupervised segmentation based on the semantic
similarity and temporal continuity of frames within a step.
Recently, novel instructional video tasks have been devel-
oped. (Qian et al. 2022) proposed the sequence verification
task, aiming at verifying whether two instructional videos
have the same procedure. Additionally, (Xu et al. 2022) pro-
posed the procedure-aware action quality assessment task to
score the diving sports videos based on a standard exem-
plar video. This paper focuses on correlation learning for in-
structional videos without relying on step-level annotations,
which can be applied to various specific tasks.

Method
Overview
The overall pipeline of our CPA framework is illustrated in
Fig. 2. The input paired sample is {X1, X2;Y1, Y2}, where
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Figure 2: The pipeline of CPA. Based on the frame-level features, we utilize the collaborative step mining module (CSM) to
produce the step segmentation of two videos simultaneously. Then, we can sample step-level features according to the step
boundaries. Finally, we design a frame-to-step alignment (FSA) between two videos to get their correlation distance.

X1, X2 are two videos’ frame/clip sets, and Y1, Y2 are their
video-level labels. It is important to note that we do not use
any step-level annotation under this setting. To begin with,
the video data are fed into the frame encoder Ψ(·) to gener-
ate frame-level features: F1 = Ψ(X1) = {f1

1 , f
1
2 , . . . , f

1
T }

and F2 = Ψ(X2) = {f2
1 , f

2
2 , . . . , f

2
T }. Based on the frame-

level features, we initially employ our collaborative step
mining module to obtain a coherent step segmentation of
the paired videos. For each step segment, we can sample
corresponding step-level representation from frame features.
Then, we apply the frame-to-step alignment between one
video’s frame-level features and another video’s step-level
features to produce the video distance.

Collaborative Step Mining

In instructional videos, we have the observation (Sarfraz
et al. 2021; Du et al. 2022) that frames within the same step
should have: (1) high semantic similarity and (2) continu-
ous temporal order. Therefore, for two videos sharing the
same procedure, their corresponding steps should also ex-
hibit high semantic similarity and temporal continuity. As
shown in Fig. 3(a), we can observe block-diagonal struc-
tures in the relational matrix of two consistent instructional
videos, where each block represents a coherent step seg-
ment. Consequently, we can achieve a consistent step seg-
mentation for paired videos based on the block-diagonal
structure. We propose a dynamic programming-based Col-
laborative Step Mining (CSM) module to extract the block-
diagonal structure from the relational matrix so that we can
produce step segments for paired videos simultaneously.
Collaboratively extracting steps from paired videos can en-
sure the consistency of the step-level information from two
videos, which takes advantage of their internal correlation.
In this section, we will elaborate on how it works.

�

�

current stepprevious steps

�

�

�

block2update

(a) Block-diagonal structures (b) Illustration of DPM algorithm
block1 block1

Figure 3: The illustration of: (a) the block-diagonal struc-
ture; (b) the DPM algorithm.

Relational Matrix Calculation First, we calculate two
videos’ relational matrixM by their frame-wise similarity:
M = Softmax

[
(F1 · FT

2 )/
√
d
]
, where d denotes their fea-

ture dimension number.Mij means the similarity between
the ith frames of video-1 and the jth frame of video-2.

Dynamic Procedure Matching Then, we design the dy-
namic procedure matching (DPM) to seek the best step seg-
mentation between two videos by adopting the idea of dy-
namic programming. Since it remains uncertain how many
steps (blocks) should be divided, we set the step number to
K, which indicates we expect to partition the relational ma-
trix into K blocks (i.e., K steps). We define the K blocks
as: B = {block1, block2, . . . , blockK}. Here, blocki =
(ai, bi, xi, yi) where (ai, bi) and (xi, yi) are the top-left and
bottom-right coordinates of blocki on the relational matrix.
Consequently, we can calculate a consistency score for each
block as the average of all similarity values within it:

Ci = C(ai, bi, xi, yi) =

∑xi

m=ai

∑yi

n=bi
Mmn

(xi − ai)(yi − bi)
. (1)

Eq. 1 measures the step consistency between two videos
within the period covered by the i-th block. A higher Ci in-
dicates that these two videos are more step-wise consistent.
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Algorithm 1: Step segmentation backtracing

Input: The dynamic index table Did; The required step
number K.

Output: Two videos’ step boundaries B1 and B2.
1: Initialization: B1 ← {}, B2 ← {}, k ← K, i ← T ,

j ← T
2: repeat
3: a, b← Did[i, j, k]
4: append a to B1

5: append b to B2

6: k ← k − 1; i← a; j ← b
7: until x==0

Given a relational matrix M, our objective is to find a K-
block partition of the matrix that maximizes the cumulative
sum of the step consistency scores. This way, the partition
is regarded as the optimal step segmentation of these two
videos. Specifically, the objective can be expressed as:

maximize
B

K∑
i=1

C(ai, bi, xi, yi). (2)

Eq. 2 involves many variables to be optimized, making it dif-
ficult to be solved directly. Fortunately, resorting to dynamic
programming allows us to address it efficiently. Specifically,
we devise a three-dimensional dynamic step mining algo-
rithm equipped with a dynamic table Dcsm to find an opti-
mal solution for Eq. 2. Dcsm(i, j, k) represents the sum of
k consistency scores composed of the first i frames f1

1:i of
video-1 and the first j frames f2

1:j of video-2.
For the boundary condition k = 1, we can easily get the

dynamic table’s value by:

Dcsm(i, j, 1) = C(1, 1, i, j). (3)

The cumulative sum of consistency scores at step k can be
calculated by adding the consistency score in kth step to the
cumulative sum of C at step k − 1. Therefore, we can cal-
culate Dcsm(·, ·, k) from Dcsm(·, ·, k − 1), as illustrated in
Fig. 3(b). The update function of Dcsm(i, j, k) is:

Dcsm(i, j, k) = max
a≤i,b≤j

[Dcsm(a, b, k − 1) + C(a, b, i, j)]
(4)

The value Dcsm(T, T,K) means the maximal consistency
score of partitioning video-1 and video-2 into K steps.

Step Segmentation Backtracing Upon obtaining the op-
timal score, we need to retrace the alignment decisions to
achieve a coherent step segmentation. Therefore, during the
forward phase, we also need to record the selected indices
of each update in the dynamic index table Did:

Did(i, j, k) = argmax
a,b; a≤i,b≤j

[Dcsm(a, b, k − 1) + C(a, b, i, j)]

(5)
Then, starting from the end Did(T, T,K), we trace back to
get each step’s boundary, which is presented in Algorithm 1.

Through backtracing, we can get two videos’ step bound-
aries. Within each step, we randomly sample one frame-
level feature to act as the representation of the step. Then

we can get the step-level features S1 = {s11, s12, . . . , s1K}
and S2 = {s21, s22, . . . , s2K}, which is used in the following
frame-to-step alignment stage.

Frame-to-Step Alignment
Based on the collaboratively mined steps of paired videos,
we further propose a frame-to-step alignment (FSA) mod-
ule. It calculates the probability of aligning the step-level
features of one video with the frame-level features of an-
other. A larger alignment probability indicates they are more
likely to be step-wise consistent. The motivation behind this
cross-verification design is: if two videos are step-level con-
sistent, then we can achieve a good alignment between the
frames of video-1 and the steps of video-2, as video-2’s step
is extracted under the guidance of video-1. Experiments in
Sec. also prove this argument.

Given the frame-level features F = {f1, . . . fT } of one
video and the step-level features S = {s1, . . . sK} of an-
other video, the alignment between them is a dense-to-sparse
(T > K) mapping that includes many possibilities. We de-
note one possible alignment as π = (π1, π2, . . . , πT ), which
represents the frame-to-step assignments. The probability of
alignment π is calculated as:

p(π|F ) =
T∏

t=1

ptπt
, πt ∈ {1, 2, . . . ,K} (6)

where ptπt
means the probability of assigning frame t to step

πt. Here πt is one of the K steps. For a given step-level
features S, we can calculate the cumulative probability of
all possible alignments with:

P (S|F ) =
∑

π∈Ω(F,S)

p(π|F ) (7)

where Ω(F, S) is the set of all possible frame-to-step align-
ments given F and S. It is hard to compute all possible align-
ments, but we can also resort to dynamic programming to
make the computation tractable. We first compute the frame-
to-step probability matrix W = Softmax

[
(F · ST)/

√
d
]
.

From W , we can get the frame-to-step assignment proba-
bility ptLk

= Wtk. Then, we design a two-dimensional dy-
namic table Dfsa with shape T ×K to record the alignment
probabilities. Dfsa(t, k) means the probability of aligning
frames F1:t to steps S1:k.

First, we define the boundary conditions: Dfsa(t, 1) = 1.
Then, we need to define the update function for Dfsa(t, k).
At each timestamp t, we have two choices. If frame t does
not switch steps, then the probability comes from Dfsa(t −
1, k). If frame t switch step compared with the previous step,
then the probability comes from Dfsa(t − 1, k − 1). There-
fore, we can update the dynamic table with Eq. 8:

Dfsa(t, k) =Wtk [Dfsa(t− 1, k) +Dfsa(t− 1, k − 1)]
(8)

Our goal is to get the probability of aligning frame features
F to step features S, which is:

p(S|F ) = Dfsa(T,K) (9)
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where Dfsa(T,K) represents the complete frame-to-step
alignment probability.

We use the negative log-likelihood value as the proce-
dure correlation distance. For two videos’ frame-level fea-
tures F1, F2 and step-level features S1, S2, we compute the
alignment scores from two directions to maintain symmetry.
The final distance dalign is:

dalign = −1

2
[logP (S2|F1) + logP (S1|F2)] (10)

Optimization
During training, we adopt three loss functions for optimiza-
tion. First, from the CSM, we can get the cumulative sum
of consistency score: Dcsm(T, T,K). We design a step-
enhancing loss Lstep to maximize the consistency scores
of positive pairs to enhance the frame similarity within the
same step. It can be formulated as:

Lstep = −Dcsm(T, T,K) (11)

Second, from the FSA, we can get the procedure correlation
distance dalign between two videos. We design a aligning
loss Lalign to minimize the dalign of positive pairs:

Lalign = dalign (12)

The third loss Ltask changes with the tasks. For sequence
verification, we follow (Qian et al. 2022) to adopt procedure
classification as an auxiliary task and its loss is:

Ltask = Cross-Entropy (pred, Y ) (13)

where pred and Y are the procedure predictions and labels.
For action quality assessment, we follow (Xu et al. 2022) to
optimize the mean squared error between the ground truth
yX and predicted action score ŷX :

Ltask = ∥ŷX − yX∥2 (14)

Hence, the overall loss L for optimization is:

L = Ltask + Lstep + Lalign (15)

Experiments
Implementation Details
We implement our method on two instructional video tasks,
including sequence verification and action quality assess-
ment. For sequence verification, our implementation adheres
to (Qian et al. 2022) for a fair comparison. Besides ResNet-
50, we additionally utilize X3D-m pretrained on Kinetics-
400 (Kay et al. 2017) as our backbone for experiments. For
action quality assessment, our implementation sticks to the
method described in (Xu et al. 2022) for a fair comparison.
For all tasks, we trained our model on 2 NVIDIA TITAN
RTX GPUs with batch size 8.

Sequence Verification
Goal Sequence verification (SV) aims to verify whether
two instructional videos have identical procedures. Two
videos executing the same steps in the same order form a
positive pair, otherwise negative. The method should give a

Method Text
anno.

AUC
CSV DivingSV COINSV

TRN 80.32 80.69 57.19
Video-Swin 54.06 73.10 43.70

CAT 83.02 83.11 51.13
OTAM 69.03 77.86 50.55

TAP 73.29 75.47 47.45
Drop-DTW 84.86 74.12 53.33

CLIP+TE+MLP ✓ 79.38 83.48 48.50
WeakSVR ✓ 86.92 86.09 59.57

CPA+R50 (ours) 88.14 84.29 57.57
CPA+X3D (ours) 86.06 88.11 57.55

Table 1: Results of sequence verification.

verification distance between each video pair and give the
prediction by thresholding the distance. We conduct experi-
ments on three sequence verification datasets (CSV, Diving-
SV, and COIN-SV) proposed by (Qian et al. 2022). We adopt
Area Under ROC Curve (AUC) for evaluation. A higher
AUC indicates better performance.

Competitors We compare our method with various ap-
proaches, including (1) video methods: TRN (Zhou et al.
2018), TSM (Lin, Gan, and Han 2019), Video-swin (Liu
et al. 2022b), CAT (Qian et al. 2022); (2) sequence
alignment methods: OTAM (Cao et al. 2020), TAP (Pan
et al. 2021), Drop-DTW (Dvornik et al. 2021); (3) visual-
language methods: CLIP+TE+MLP (Radford et al. 2021),
WeakSVR (Dong et al. 2023). Visual-language methods
are pretrained on CLIP (Radford et al. 2021), while other
methods are pretrained on Kinetics-400 (K-400) (Kay et al.
2017). For video and visual-language methods, we fol-
low (Dong et al. 2023)’s setting to calculate the normalized
L2 distance between two videos’ representations as their
verification distance. For sequence alignment methods, we
use their alignment distance dalign as the verification dis-
tance, which is the same as our method.

Results The results are presented in Tab. 1. For CSV,
our method achieves the best performance (88.14%). For
Diving-SV, our method gets the best performance among
methods with a 2D backbone. Furthermore, applying the
3D backbone X3D further boosts our performance to the
new state-of-the-art result (88.11%). For COIN-SV, our ap-
proach achieves the best among visual-based methods. It is
worth noticing that our method remains competitive even
among visual-language methods, despite these methods be-
ing equipped with extra text narrations on procedures.

Action Quality Assessment
Goal In action quality assessment (AQA), we adopt (Xu
et al. 2022)’s setting, where an exemplar video and its score
are given. Then for a query video with the same procedure,
the method should predict its score based on the exemplar.
We conduct experiments on the FineDiving dataset. We use
Spearman’s rank correlation (ρ) and relative ℓ2-distance (R-
ℓ2) for evaluation. A Higher ρ and lower R-ℓ2 indicate bet-
ter performance. Average Intersection over Union (AIoU) is
adopted to evaluate the procedure segmentation.
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Method Step
anno.

AIoU@
ρ

R-ℓ2
(×100)0.5 0.75

USDL / / 0.8913 0.3822
MUSDL / / 0.8978 0.3704

CoRe / / 0.9061 0.3615
Lian et al. / / 0.9222 0.3304

PECoP ✓ - - 0.9315 -
TSA ✓ 82.51 34.31 0.9203 0.3420
TSA∗ ✓ 93.23 53.39 0.9302 0.3154

CPA (ours) 94.28 21.14 0.9364 0.2909

Table 2: Results of action quality assessment on FineDiving.
/ indicates “without procedure segmentation”. ∗ means our
implementation.

Competitors We compare our approach with various ad-
vanced AQA methods, including (1) non-procedure meth-
ods: USDL, MUSDL (Tang et al. 2020), CoRe (Yu et al.
2021), Lian et al. (Lian and Shao 2023); (2) procedure-aware
method: TSA (Xu et al. 2022), PECoP (Dadashzadeh et al.
2023). Vanilla TSA’s procedure segmentation module is su-
pervised by step-level annotations. Here we replace TSA’s
procedure segmentation module with our CPA to achieve
segmentation without the help of step-level annotations.

Results The results are presented in Tab. 2. Our method
achieves new state-of-the-art results. Note that our method
outperforms TSA without step-level annotations. The reason
is that TSA strictly divides the procedure into three steps:
take-off, flight, and entry, which might not be the most suit-
able division for assessment. In contrast, our CPA can flex-
ibly adjust the procedure segmentation through optimiza-
tion to get better assessments. Furthermore, by observing the
AIoU, our CPA can get satisfying coarse-grain procedure
segmentation (AIoU@0.5=94.28). Note that we uniformly
divide CPA’s segments into three steps for calculating AIoU.
Finally, we can find that procedure-aware methods generally
outperform non-procedure methods, which further empha-
sizes the importance of procedural knowledge for accurate
predictions on instructional videos.

In-Depth Analysis
Ablations on Main Components We conduct an ablation
analysis of the proposed modules on SV and AQA. Results
summarized in Tab. 3 demonstrate the effectiveness of each
module. Note that using FSA individually means we just
uniformly sample K frame features as the step-level fea-
tures. In the first row of SV, we use the video-level features
to calculate the verification distance. In the first two rows
of AQA, we uniformly divide the video into K segments.
According to the results, using FSA enable the method to
learn more distinctive frame-level features and improve per-
formance on both tasks. Moreover, introducing CSM con-
tributes significantly to improvements, highlighting the im-
portance of step information in this task and the effective-
ness of our CSM on step mining.

Analysis on Step Number In real-world videos, the def-
inition of a step is flexible and ambiguous, where several

CSM FSA SV on CSV AQA on FineDiving
AUC ρ R-ℓ2
81.65 0.9221 0.3456

✓ 86.23 0.9275 0.3288
✓ ✓ 88.14 0.9364 0.2909

Table 3: Ablation study of the proposed modules. CSM: Col-
laborative Step Mining; FSA: Frame-to-Step Alignment.

Sequence Verification

Metric Step number K
11 12 13 14 15

AUC 84.91 87.00 88.14 87.94 84.67
Action Quality Assessment

Metric Step number K
3 4 5 6 7

ρ 0.9302 0.9309 0.9316 0.9364 0.9340
R-ℓ2 0.3098 0.3202 0.3119 0.2909 0.2943

Table 4: Sensitivity analysis on step number K.

adjacent steps can be reorganized as one step at a coarser
level. Our CSM can provide step-mining results across dif-
ferent step granularity. Fig. 7 illustrates the results of CSM
under different step numbers K, where each block signifies
a step. Our method degrades to frame-to-frame comparison
when K = T . We further conduct sensitivity analysis on SV
and AQA by adjusting K. From Tab. 4, we can observe that
the performances first rise and then drop as the step number
increases. The performances peak at K = 13 for CSV and
K = 6 for FineDiving, whose trend corresponds with the
maximum step number in CSV (16 steps) and FineDiving (5
steps). Therefore, choosing the proper step number depend-
ing on the dataset can lead to better performance.

Collaborative Step Mining Visualization We visualize
step segmentation produced by CSM in Fig. 4(a) on “div-
ing” and “changing watch battery”. We set T = 16, K = 6,
and manually name the text descriptions of steps for better
visualization. By observation, some steps (e.g., “35som” and
“install back cover”) are further divided into more steps in
our six-step segmentation. The reason is that step segmenta-
tion can sometimes be flexible and multi-grained. CSM can
well identify consistent steps, thereby providing dependable
guidance for subsequent frame-to-step alignment.

Frame-to-Step Alignment Visualization As depicted in
Fig. 6, we show the frame-to-step assignment probabilities
for both positive and negative pairs on SV. By observa-
tion, the positive pairs can form continuous probability paths
from the top-left corner to the bottom-right corner, while
negative pairs will exhibit obvious discontinuities. Conse-
quently, paired videos adhering to a chronological procedu-
ral alignment can achieve minimal distance using our pro-
posed method, which validates our motivation for the cross-
verification design in frame-to-step alignment.

Multi-Level Feature Visualization We demonstrate our
method’s feature learning ability by using t-SNE to visu-
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check back cover open back cover replace battery install back cover

Inward 35SOM NoTwis TUCK

Figure 4: Visualization of collaborative step segmentation with T = 16 and K = 6.

Positive pairs Negative pairs

Frame-to-step probability matrix Figure 5: The block-diagonal structures representing the
multi-grained step segmentation, experimented on CSV.

Positive pairs Negative pairs

Frame-to-step probability matrix 

Figure 6: The frame-to-step aligning probability on CSV,
with three positive and negative pairs. The vertical and hor-
izontal axes represent T frames and K steps respectively.

alize both the video-level and frame-level features trained
on CSV, which is shown in Fig. 4(b). For video-level fea-
tures, the color represents its video-level class. For frame-
level features, the color represents its step, which is manu-
ally annotated for visualization. Besides qualitative visual-
ization, we also adopt the Silhouette score S to quantify the
clustering effect. A higher Silhouette score indicates a better
clustering outcome. From Fig. 4(b), compared with baseline,
our method improves the feature clustering effects on both
the video-level features (0.2261 → 0.3523) and the frame-
level features (0.3012→ 0.3711). This result indicates that
our method can learn more distinctive multi-level features,
which is beneficial for instructional video analysis.

Baseline Ours

푆 = 0.3523 푆 = 0.2261

푆 = 0.3012 푆 = 0.3711

Video-level features

Frame-level features
OursBaseline

Figure 7: The t-SNE visualization of multi-level features
and their respective Silhouette scores S. top: the video-level
features with colors indicating video classes. Bottom: the
frame-level features with colors indicating step classes.

Conclusion
In this paper, we propose a weakly supervised frame-
work for procedure-aware correlation learning on instruc-
tional videos, named the Collaborative Procedure Alignment
(CPA). Under this framework, we first design the collabora-
tive step mining (CSM) module to simultaneously produce
step segmentation for paired videos and get the representa-
tive step-level features. Furthermore, we propose the frame-
to-step alignment (FSA) module to calculate the correla-
tion distance between videos. Extensive and in-depth exper-
iments on two instructional video tasks showcase the superi-
ority of our framework, demonstrating its capacity to deliver
more explainable and accurate understandings on complex
instructional videos.
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