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Abstract

RAW to sRGB mapping, which aims to convert RAW im-
ages from smartphones into RGB form equivalent to that
of Digital Single-Lens Reflex (DSLR) cameras, has become
an important area of research. However, current methods of-
ten ignore the difference between cell phone RAW images
and DSLR camera RGB images, a difference that goes be-
yond the color matrix and extends to spatial structure due to
resolution variations. Recent methods directly rebuild color
mapping and spatial structure via shared deep representation,
limiting optimal performance. Inspired by Image Signal Pro-
cessing (ISP) pipeline, which distinguishes image restoration
and enhancement, we present a novel Neural ISP framework,
named FourierISP. This approach breaks the image down
into style and structure within the frequency domain, allow-
ing for independent optimization. FourierISP is comprised of
three subnetworks: Phase Enhance Subnet for structural re-
finement, Amplitude Refine Subnet for color learning, and
Color Adaptation Subnet for blending them in a smooth man-
ner. This approach sharpens both color and structure, and ex-
tensive evaluations across varied datasets confirm that our ap-
proach realizes state-of-the-art results. Code will be available
at https://github.com/alexhe101/FourierISP.

Introduction
The Image Signal Processing (ISP) pipeline, responsible for
transforming RAW data captured by camera sensors into
sRGB images, involves a series of low-level vision tasks
including demosaicing, denoising, gamma correction, white
balance, and color correction (Ramanath et al. 2005). Tradi-
tionally, these individual subprocesses are executed via inde-
pendent algorithms, often requiring significant manual pa-
rameter adjustments (Zhou and Glotzbach 2007). With the
rise of mobile photography, smartphones have become the
preferred choice for image capture due to their portability.
However, the inherent limitations of sensor size and aper-
ture in comparison to DSLR cameras pose challenges for
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Figure 1: Results from the ZRR dataset. Our approach re-
sults in clear textures, surpassing other methods.

mobile devices in achieving DSLR-like image quality. To
bridge this gap, learning RAW-to-sRGB mapping through
deep ISP models holds great promise (Ignatov, Van Gool,
and Timofte 2020; Ignatov et al. 2020). These models hold
the potential to convert mobile RAW data into high-quality
sRGB images resembling those captured by DSLR cameras,
without the need for manual fine-tuning.

Recent deep learning-based ISP methods that utilize mo-
bile phone RAW images have shown promise in producing
RGB images comparable to those from DSLR cameras (Dai
et al. 2020; Ignatov et al. 2021). This innovation enables
cost-effective mobile sensors to deliver visually appealing
results. However, existing techniques often focus solely on
the Raw-to-RGB conversion as a color mapping task, over-
looking the crucial spatial relationship between different im-
age types. This oversight leads to outputs with reduced clar-
ity. In conventional ISP pipelines, processes like denoising,
demosaicing, white balance, and gamma correction serve
two interconnected yet distinct purposes: image restoration,
which preserves spatial structure, and image enhancement,
which involves color adjustments (Liang et al. 2021). The
effectiveness of enhancement relies heavily on successful

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2130



RAW Amplitude Representation Phase Representation
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Figure 2: Illustration of image amplitude and phase repre-
sentation.

restoration; any shortcomings in demosaicing or denoising
can hinder the learning of color information. Many widely-
used models adopt one-stage design strategies that merge
the learning of various ISP subtasks. Unfortunately, this ap-
proach limits the representation capability of CNN models
and results in images lacking clear details and suffering from
color distortions. Therefore, developing an efficient method
to separate style and structural information is essential for
unlocking enhanced performance within ISP frameworks.

However, achieving effective style-structure decoupling
in the spatial domain requires complex loss functions, which
can be challenging (Yang et al. 2023). As a result, we shift
our focus to the frequency domain, where the powerful prior
of Fourier transform offers a promising solution for style
and structure decoupling, as depicted in the Figure 2. The
Fourier transform of an image yields its amplitude, repre-
senting the style, and its phase, representing the structure.

Based on the aforementioned insights, we introduce a
novel Neural ISP framework named Fourier-ISP. Unlike pre-
vious methods, our approach utilizes the Fourier prior to de-
couple and optimize color knowledge and structure repre-
sentation. The network consists of three crucial subnets: the
Phase Enhance Subnet (PES) for enhancing spatial structure
and fine textures, the Amplitude Refine Subnet (ARS) for
learning precise color information, and the Color Adaptation
Subnet (CAS) responsible for transmitting color information
to the phase-enhanced feature, thereby obtaining rich spatial
details and ensuring precise color output. Through exten-
sive evaluations on multiple datasets, our method showcases
state-of-the-art results in qualitative and quantitative assess-
ments, while also demonstrating robust transferability.

Our contribution can be summarized as follows: 1) In this
work, we present a novel approach utilizing the Fourier prior
to decouple style and structure in the Raw-to-RGB map-
ping process. By separately optimizing the style and spa-
tial structure of RAW images, we achieve highly accurate
raw-to-RGB mapping results. 2) We propose the Fourier-ISP
framework, consisting of three specialized sub-networks:
PES, ARS, and CAS. This well-crafted architecture en-

ables distinct subnets to acquire specific expertise, resulting
in superior raw-to-RGB performance. 3) The proposed ap-
proach outperforms the state-of-the-art on multiple datasets,
as shown in extensive quantitative and qualitative experi-
ments.

Related Work
Deep Learning for ISP
In recent years, the integration of deep learning into ISP
pipelines has gained significant attention due to the com-
plexity manual adjustments in traditional pipelines. Some
approaches target specific ISP modules, like image denois-
ing (Cheng et al. 2021), demosaicing (Liu et al. 2020), and
tone mapping (Hu, Chen, and Allebach 2022), while oth-
ers aim to overhaul the entire pipeline using neural net-
work models. In prior works, both RGB and RAW images
were acquired using the same device, as shown by Deep-
ISP’s (Schwartz, Giryes, and Bronstein 2018) end-to-end
structure and CameraNet’s (Liang et al. 2021) division of
the task into restoration and enhancement stages, guided by
software-generated ground truth. Among recent endeavors,
the Pynet and ZRRdataset (Ignatov, Van Gool, and Tim-
ofte 2020) raise the challenging task of mapping mobile
RAW images to DSLR camera RGB images, complicated
by resolution discrepancies and spatial misalignment due
to dual-device capture. Notable contributions include MW-
ISPNet (Ignatov et al. 2020) leveraging MWCNN (Liu et al.
2018) for utilizing multi-scale features, AWNet (Dai et al.
2020) employing attention mechanisms for refined color
learning and misalignment handling, and LiteISP’s (Zhang
et al. 2021) lightweight design with optical flow align-
ment for fine texture output. LWISP (Chen and Ma 2022)
adopt distillation for efficiency, achieving a parameter-
effectiveness balance. However, prevailing approaches treat
RAW-to-RGB mapping as straightforward regression tasks,
often ignoring disparities in structural and color informa-
tion. While CameraNet recognizes these disparities, it re-
quests intermediate result supervision from manual labeling.
Our method stands apart by explicitly promoting style and
color learning through frequency domain style-structure de-
coupling.

Fourier Transform in Computer Vision
In the realm of deep learning, the Fourier transform has at-
tracted significant interest due to its distinctive attributes.
Leveraging its global properties, FFC (Chi, Jiang, and Mu
2020) devised convolutional modules, effectively utilizing
global information processing while maintaining minimal
computational overhead. LAMA (Suvorov et al. 2022) em-
ployed FFC to construct an UHD image inpainting net-
work by utilizing its global feature. In low-level vision, fre-
quency domain attributes elevate high-frequency image de-
tails in super-resolution tasks (Zhou et al. 2022), while im-
age restoration tasks dissociate degradation features using
Fourier transform (Zhou et al. 2023). However, its style-
structure decoupling attributes have not been fully explored
in the low level vision community and its application within
the RAW-to-RGB remains uncharted.
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Figure 3: Our Model Framework. We employ separate processing for RAW images through packing and demosaicing. These
processed images are subsequently fed into PES and ARS to learn the spatial details and style information of the image,
respectively. Finally, we integrate the style information into the spatial features using the CAS and produce the final output.

Method
We leverage Fourier transform to decouple style and struc-
ture, enabling separate optimization of these two compo-
nents. This section begins with an overview of the basic
knowledge of Fourier transform, followed by an introduc-
tion of the network architecture and the loss functions.

Fourier Transform of Image
The Fourier Transform, widely employed in image process-
ing, enables the conversion of signals into the frequency do-
main. The Fourier transform of an input image x ∈ Rh×w

can be defined as follows:

F(x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v)

(1)
The amplitude and phase components are described as:

A(x)(u, v) = [R2(x)(u, v) + I2(x)(u, v)]
1
2 , (2)

P(x)(u, v) = arctan[
I(x)(u, v)

R(x)(u, v)
] (3)

where I(x) and R(x) indicate imaginary and real parts of the
image’s frequency representation F(x), correspondingly.

The Fourier transform offers two distinctive attributes.
Firstly, its global nature arises from the weighted summation
of spatial domain values, thus inherently containing global
information. By leveraging this, we go beyond the limita-
tions of local receptive fields in convolutional neural net-
works, acquiring pivotal global context for effective color

mapping. Furthermore, the Fourier transform yields ampli-
tude and phase in the frequency domain. The former signi-
fies style, while the latter encapsulates structure. Noise in
raw images commonly resides in the phase component (Li
et al. 2023), thus preliminary denoising aids the network in
grasping color details more effectively. Fourier transform’s
decoupling facet enabling us separate processing of these
distinct information.

Network Framework
The network architecture, depicted in Figure 3, processes
the RAW image RH×W×1. R undergoes packing and de-
mosaicing to yield Rpack

H
2 ×W

2 ×4 and Rdem
H×W×3, re-

spectively. PES, ARS, and CAS form the core components.
PES processes Rpack for spatial structure enhancement,

yielding refined feature FP
H×W×C . The projection of Fp

into RGB space involves convolutional steps, supervised
with phase from the ground truth (GT) image. Simultane-
ously, Rdem is directed to ARS, optimizing amplitude to
generate FA

H×W×C . This amplitude-focused information
is then projected back into RGB space through convolutional
projection, with supervision from GT image amplitudes.

Next, FP is fed into CAS, leveraging FA’s amplitude to
adjust color information via color adaptation blocks, as am-
plitude encodes image style. CAS generates the output im-
age. Spatial loss and frequency domain loss govern final re-
sult supervision.

Key Components
Phase Enhance Subnet. The PES is specifically designed to
enhance the spatial structure of the input images. Its primary
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Figure 4: The left portion of the figure illustrates the Color
Adaptation Block, while the right side showcases the Fourier
Amplitude Refine Block.

function is to align the image phase with the ground truth,
which facilitates fine-grained spatial structure learning. By
optimizing the spatial structure, we can effectively reduce
noise in the final output and generate finer image textures
since image noise predominantly resides within the phase
components. We start by packing the RAW image into four
channels, a preprocessing step that enhances the image’s
suitability for spatial structure learning (Dai et al. 2020). The
input to PES, denoted as Rpack, undergoes processing, and
we perform upsampling through PixelShuffle at the end. The
process of PES can be described as follows:

Fp = ϕ(Rpack), (4)
Yp = Proj(Fp) (5)

Here, Proj(.) represents the 1×1 convolution operator that
projects Fp back to the RGB domain, and ϕ(.) corresponds
to the PES.

The core component of PES is the Fourier Phase Refine
Block (FPRB), depicted in Figure 4. It’s worth noting that
the main distinction between FPRB and the Fourier Am-
plitude Refine Block (FARB) is that FPRB deals with the
phase, while FARB focuses on the amplitude. This module
utilize the interaction between image phase information and
spatial features, leading to efficient extraction of complex
image details.

The operations within the FARB can be defined as fol-
lows, given the input features Ff and Fs:

F1
f = Conv(Ff ), (6)

A(F1
f ),P(F1

f ) = F(F1
f ), (7)

F2
f = F−1(Conv(A(F1

f )),P(F1
f )), (8)

Fout = F2
f + Conv(Fs) + Fs. (9)

Amplitude Refine Subnet. The architecture of the ARS
closely resembles that of PES. ARS uses Rdem as input,
ensuring that images of the same size are better suited for

learning color mapping. In ARS, the primary objective is
to optimize the image’s amplitude to align it with the GT
image. This amplitude component encodes the style of the
image and encompasses global information, making color
learning more robust to dataset misalignment. The utiliza-
tion of global information is crucial for effective color learn-
ing, as images color are influenced by both local details and
global features. Optimizing amplitude for color learning al-
lows us to leverage the global attributes of the Fourier trans-
form, enabling the capture of essential global information.
. The FARB, as depicted in Figure 4, plays a central role
in ARS for optimizing image amplitude. Its core structure
is similar to the FPRB, with the key distinction being that
FARB focuses on optimizing amplitude instead of phase.

The ARS process can be concisely expressed as follows:

FA = γ(Rdem), (10)
YA = Proj(FA) (11)

Here, Proj(.) symbolizes a 1×1 convolution operator, pro-
jecting FA back into the RGB domain and γ(.) is ARS.
Color Adaptation SubNet. CAS serves as a pivotal com-
ponent with the primary aim of fusing the refined spatial
structures with accurate color information, thereby enabling
precise adjustments to the color attributes within the fea-
ture maps. This sub-network adopts a multi-scale approach,
injecting color features into the feature maps at different
scales, resulting in targeted enhancement of both the overall
color information and spatial structure across the entire im-
age. Within CAS, a straightforward Unet architecture is em-
ployed, complemented by a custom-designed Color Adap-
tation Block (CAB), depicted in Figure 4, to modulate the
feature map. We utilize amplitude features to modulate the
style information within the feature map for color informa-
tion is predominantly encoded by amplitude.

In CAB, the feature map is split into two branches. In the
frequency branch, we apply Fourier transform to FA and Sf

independently. The amplitude of FA is used to modulate the
amplitude of Sf using the SFT (Wang et al. 2018) mecha-
nism, and the phase components from both features are sim-
ply fused. After performing inverse Fourier transform, we
obtain the frequency features. In the spatial domain branch,
we employ the HINBlock (Chen et al. 2021) for efficient
feature extraction, and subsequently, sum up the spatial and
frequency features to complete the color adaptation process.
The adapted feature map is then downsampled, serving as
the FA for the next scale.

Loss Function
Our comprehensive loss function comprises three essential
components: Phase loss for PES, Amplitude loss for ARS,
and the combined spatial and frequency loss for the final
output.

PES and ARS are supervised using Phase Loss and Am-
plitude Loss. The Phase Loss Lpha is computed as the L1
norm between the phase P(YP) of the YP and the ref-
erence image GT’s phase P(G). Similarly, the Amplitude
Loss Lamp is calculated as the L1 norm between the ampli-
tude A(YA) of YA and the reference image GT’s amplitude
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A(G).

Lpha = ||P(YP)− P(G)||1, (12)
Lamp = ||A(YA)−A(G)||1. (13)

The final network output, denoted as Y, is constrained by
Lspa (spatial loss) and Lfre (frequency domain loss). Re-
garding the spatial loss, we utilize a combined approach in-
volving VGG (Johnson, Alahi, and Fei-Fei 2016), SSIM,
and L1 losses. In the context of the frequency domain loss,
we optimize the real and imaginary components of both Y
and the reference image G after performing Fourier trans-
form, which we represent as R(Y ), R(G), I(Y ), and I(G).
The formulation of this loss component can be briefly ex-
pressed as follows:

Lspa = Lvgg + 0.5 ∗ Lssim + L1, (14)
Lfre = ||R(Y )−R(G)||1 + ||I(Y )− I(G)||1 (15)

Our comprehensive loss function is a weighted summation
of the components outlined above:

Ltotal = Lspa + α ∗ Lfre + β ∗ Lpha + γ ∗ Lamp (16)

In our implementation, we set the weights α, β, and γ to
0.1 based on experience. Due to our incorporation of global
information within the losses, our approach demonstrates re-
duced sensitivity to dataset misalignment issues.

Experiment
Datasets and Benchmark
We conducted evaluations on two distinct datasets: the ZRR
dataset and the MAI dataset (Ignatov et al. 2021). The ZRR
dataset involves mapping RAW images from the Huawei
P20 camera to RGB images from a Canon camera. Mean-
while, the MAI dataset focuses on mapping Sony IMX586
Quad Bayer RAW images to Fuji camera RGB images. No-
tably, the RAW images in the ZRR dataset possess a bit
width of 10 bits, whereas the MAI dataset RAW images have
a bit width of 12 bits. The selection of the latter dataset al-
lows us to assess the model’s transferability. Given the sub-
stantial dissimilarity between the RAW images in these two
datasets, we initially train the model on the ZRRdataset.
To evaluate the model’s transferability, we perform a one-
epoch fine-tuning process on the MAI dataset. This approach
serves to gauge how well the model can adapt to the differ-
ences in RAW image characteristics.

In our comparative analysis, we include state-of-the-art
methods such as Pynet, AWNet, MWISP, MWISPGAN,
LiteISP, and LWISP. We utilize reference evaluation met-
rics, including PSNR, SSIM, MS-SSIM (Wang, Simoncelli,
and Bovik 2003), and LPIPS (Zhang et al. 2018). For more
experiments results, please refer to the supplementary mate-
rial

Implementation Details
We conducted our experiments utilizing the PyTorch frame-
work on four Titan XP GPUs, encompassing a total of 3∗104
training iterations. Employing the Adam optimizer, we ini-
tially set the learning rate at 2 ∗ 10−4, progressively halving

Ground Truth LiteISP

MWISP(GAN)

Ours GT

AWISPRAW

Figure 5: Experimental results from the ZRRdataset. our ap-
proach excels in capturing intricate texture details. RAW im-
ages are difficult to visualize due to dark local areas.

it at every 1 ∗ 104 iterations to fine-tune the training pro-
cess. Notably, for the ZRRdataset, we utilized a patch size
of 448x488 for both training and testing. In contrast, for the
MAI dataset, the patch size was set to 224x224 for the same
purposes.

Comparison with State-of-the-Art Methods
Evaluation on Quantitative Metric. We conducted a com-
prehensive comparison of our proposed method against the
SOTA approaches on both the ZRR and MAI datasets, as
illustrated in the Table 1. For the MAI dataset, we em-
ployed a pre-trained model on the ZRR dataset and per-
formed one epoch of fine-tuning for direct comparison. Ad-
ditionaly,acknowledging the partial misalignment between
the ground truth and input in the ZRR dataset, we employed
the optical flow network (Sun et al. 2018) from LiteISP to
align the test set and calculate the evaluation metrics. Due
to unavailability of pretrained weights of Pynet and source
code of LWISP, we based our evaluation of both methods
solely on the metrics provided in their respective publica-
tion.

Our method achieved PSNR improvement of 0.08dB
compared to the SOTA method on the ZRR dataset. Ad-
ditionally, our method exhibited advancements in SSIM
and LPIPS metrics. Remarkably, on the aligned dataset,
our method achieved a noteworthy PSNR improvement of
0.17dB. This further reinforces the effectiveness of our style
and structure decoupling approach and demonstrates the ro-
bustness of the global loss in handling data misalignment.

Moreover, our model exhibits strong transferability, sur-
passing the performance metrics of other methods on the
MAI dataset. It is notable that the requirement for an addi-
tional optical flow estimation network during LiteISP train-
ing limits the transferability of the model, leading to bad
result on the MAI dataset.
Evaluation on Qualitative Metric. In our qualitative exper-
iments, we select three typical images from two datasets to
comprehensively showcase the effectiveness of our method
across three crucial aspects: image texture, color fidelity,
and model transfer capability. As illustrated in Figure 5, we
magnified local textures from the ground truth to empha-
size the detail-capturing capabilities of various models. The
visual comparison clearly indicates that our method, lever-
aging fine processing of spatial structures and the capacity
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Methods
ZRR ZRR(Align GT with RAW) MAI

PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓
PyNet 21.19 0.7471 0.8620 0.1930 22.73 0.8451 / 0.1520 / / / /

AWNET(raw) 21.42 0.7478 0.8609 0.1980 23.27 0.8542 0.9312 0.1510 23.95 0.8583 0.9508 0.1640
AWNET(demosaic) 21.53 0.7488 0.8614 0.2120 23.38 0.8497 0.9297 0.1640 24.03 0.8670 0.9525 0.1340

MWISP 21.42 0.7544 0.8654 0.2130 23.07 0.8479 0.9255 0.1650 24.24 0.8558 0.9491 0.1280
MWISP-GAN 21.16 0.7317 0.8578 0.1580 22.80 0.8285 0.9234 0.1340 24.34 0.8568 0.9234 0.1150

LiteISP 21.55 0.7487 0.8596 0.1870 23.76 0.8730 0.9450 0.1330 23.11 0.7941 0.9250 0.1990
LWISP 21.57 / 0.8622 / / / / / / / / /
Ours 21.65 0.7546 0.8660 0.1820 23.93 0.8744 0.9461 0.1240 24.99 0.8820 0.9594 0.0850

Table 1: Quantitative comparison on three datasets. Best results are highlighted by bold. ↑ indicates that the larger the value,
the better the performance, and ↓ indicates that the smaller the value, the better the performance.

(a) RAW

(f) LiteISP(e) MWISP(GAN) (g) Ours (h) GT

(d) MWISP(b) AWISP(RAW) (c) AWISP(demosaic)

(a) RAW (b) AWISP(RAW) (c) AWISP(demosaic) (d) MWISP (e) MWISP(GAN) (f) LiteISP (g) Ours (h) GT

Figure 6: The results image from ZRRdataset. The last row showcase the color histogram of the image. Our method has the
closest color to GT image.

Figure 7: The Amplitude and Phase feature map of our methods.

to capture high-frequency information in the frequency do-
main, consistently generates more refined results, in contrast
to other methods that struggle to capture such textures, even
leading to artifacts.

In Figure 6, we present a comprehensive comparison of
color fidelity, along with accompanying color histograms
for each image. Analyzing the histograms reveals that our

method’s results closely align with the ground truth, signi-
fying our superior color reproduction. Finally, we demon-
strate the model’s transferability by comparing images from
the MAI dataset in Figure 8. The comparison highlights that
alternative methods exhibit incorrect color mappings or spa-
tial structures, while our method consistently aligns more
closely with the ground truth in terms of both color and spa-
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(a) RAW (b) AWISP(RAW) (c) AWISP(demosaic) (d) MWISP

(e) MWISP(GAN) (f) LiteISP (g) Ours (h) GT

Figure 8: MAI dataset result image. Our method showcases
the superiortransferability, closely aligned with the Ground
Truth.

tial information.

Ablation Experiments
We conducted multiple ablation experiments on the ZRR
dataset to validate our method, and conducted experiments
on multiple dimensions such as model structure, loss func-
tion, and model parameter quantity.
Model Structure. Our model is thoughtfully designed to
capture both spatial structures and style features, with dedi-
cated modules in PES and ARS, respectively. In this ablation
experiments, we removed certain components from the net-
work’s architecture. Specifically, in the PES configuration,
we omitted the frequency branch of FPRB and the corre-
sponding phase loss, and similarly, in ARS, we excluded
the frequency branch of FARB, the CAB, and the Ampli-
tude Loss. We directly concatenate FA with FP into CAS.
The results of ablation experiments are presented in the first
and second rows of the Table 2. Removal of any module
leads to a significant drop in both evaluation metrics. Specif-
ically, when Phase information is omitted, SSIM indicators
decrease notably, indicating severe damage to the result im-
age spatial structure. Conversely, the removal of Amplitude
information primarily affects the PSNR indicator.
Loss Function. In the examination of the loss function,
we conducted empirical investigations by substituting the
AmplitudeLoss in AmplitudeNet with ColorHistLoss to as-
sess its influence on the final results. Prior research (Afifi,
Brubaker, and Brown 2021) has utilized ColorHistLoss to
approximate the color distribution of an image towards a ref-
erence image. Our findings shown in the third row of Talbe 2
indicate that when replacing AmplitudeLoss with ColorHist-
Loss, the model’s performance indicators exhibited a de-
cline, emphasizing that the coarse-grained histogram parti-
tioning approach is not well-suited for the Raw to RGB task.
Model Parameters. In addition, we conducted a compre-
hensive investigation into the influence of parameter quanti-
ties on model performance. Our initial experiment employed
a base channel count of 24, while in the ablation study, we
explored channel counts of 16 and 48 to assess their im-
pact on model effectiveness. As depicted in the results ta-
ble 3, a direct correlation is observed between the number

Configuration
ZRR

PSNR SSIM MS-SSIM LPIPS
FourierISP w/o Phase 21.47 0.7413 0.8581 0.199

FourierISP w/o Amplitude 21.37 0.7488 0.8592 0.187
FourierISP w/ ColorHist 21.13 0.7476 0.8581 0.193

FourierISP 21.65 0.7546 0.8660 0.182

Table 2: The results of the ablation experiments conducted
on the ZRRdataset

Config Params(M) ZRR
PSNR SSIM MS-SSIM LPIPS

16 channels 2.75 21.64 0.7534 0.8609 0.186
48 channels 24.6 21.67 0.7548 0.8669 0.180
24 channels 6.17 21.65 0.7546 0.8660 0.182

Table 3: The results of the ablation experiments conducted
on the ZRRdataset

of parameters and the model’s performance, with larger pa-
rameter counts leading to improved outcomes. While con-
straining the channel count to 16 effectively reduces the
model’s parameter count, and the achieved PSNR index re-
mains comparable to our existing methods, the visual results
fall short of the quality attained with our current settings. our
model possesses half the number of parameters compared to
LiteISP and only one-sixth of MWISP, placing it on par with
LWISP. This highlights our model’s equilibrium between the
quantity of model parameters and evaluation metrics.

Visualization of Feature Maps
To demonstrate the distinctive capabilities of our subnet-
works, we conducted feature map visualizations shown in
Figure 7. Specifically, we projected FA and FP into the
RGB space, yielding YA and YP, respectively. The visual
analysis reveals that PES adeptly captured the spatial struc-
ture, while ARS faithfully preserved the image’s style at-
tributes.

Remarkably, YA captures the overall style of the image.
However, it tends to lack granularity in representing local
details. On the other hand, YP focuses on preserving the
structural details and finer local information of the image
but lacks color information.

This visualization underscores the effectiveness of our
method in handling both structural and style information.

Conclusion
This paper introduces a novel approach for RAW to RGB
mapping, leveraging the power of Fourier transform to dis-
entangle image style and structure. By processing these two
aspects independently, our method achieves remarkable ac-
curacy in color reproduction and texture preservation. Our
proposed Fourier ISP framework features Phase Enhance
Networks, Amplitude Refine Networks, and Color Adapta-
tion Networks, enabling separate learning of style and struc-
ture, followed by a coherent integration for the final output.
Extensive quantitative and qualitative experiments on mul-
tiple datasets demonstrate the superiority of our approach
over state-of-the-art methods.
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