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Abstract

Controllable generation of 3D human motions becomes an
important topic as the world embraces digital transforma-
tion. Existing works, though making promising progress with
the advent of diffusion models, heavily rely on meticulously
captured and annotated (e.g., text) high-quality motion cor-
pus, a resource-intensive endeavor in the real world. This
motivates our proposed MotionMix, a simple yet effective
weakly-supervised diffusion model that leverages both noisy
and unannotated motion sequences. Specifically, we sepa-
rate the denoising objectives of a diffusion model into two
stages: obtaining conditional rough motion approximations
in the initial T − T ∗ steps by learning the noisy annotated
motions, followed by the unconditional refinement of these
preliminary motions during the last T ∗ steps using unanno-
tated motions. Notably, though learning from two sources of
imperfect data, our model does not compromise motion gen-
eration quality compared to fully supervised approaches that
access gold data. Extensive experiments on several bench-
marks demonstrate that our MotionMix, as a versatile frame-
work, consistently achieves state-of-the-art performances on
text-to-motion, action-to-motion, and music-to-dance tasks.

1 Introduction
The rapidly arising attention and interest in digital humans
bring up the great demand for human motion generation, in
a wide range of fields such as industrial game and movie ani-
mation (Ling et al. 2020), human-machine interaction (Kop-
pula and Saxena 2013), VR/AR and metaverse development
(Lee et al. 2021). Over the years, automated generation
of human motions that align with user preferences, span-
ning aspects such as prefix poses (Ruiz, Gall, and Moreno-
Noguer 2018; Guo et al. 2022c), action classes (Petrovich,
Black, and Varol 2021; Cervantes et al. 2022), textual de-
scriptions (Petrovich, Black, and Varol 2022; Ahuja and
Morency 2019; Tevet et al. 2022), or music (Aristidou et al.
2021; Siyao et al. 2022; Gong et al. 2023), has been a focal
point of research. Recently, building upon the advancement
of diffusion models, human motion generation has experi-
enced a notable improvement in quality and controllability.
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Figure 1: Example of applying MotionMix on text-to-
motion task. Unlike prior works, our training data are com-
prised of noisy annotated motions and unannotated motions.

However, these prior diffusion models are commonly trained
on well-crafted motions that come with explicit annotations
like textual descriptions. While capturing motions from the
real world is a laborious effort, annotating these motion se-
quences further urges the matter.

In contrast, motions with lower fidelity or fewer annota-
tions are more accessible in the real world. For example, 3D
human motions are readily extracted from monocular videos
through video-based pose estimation (Kanazawa et al. 2017;
Kocabas, Athanasiou, and Black 2019; Choutas et al. 2020).
Meanwhile, a wealth of unannotated motion sequences, such
as those from Mixamo (Inc. 2021) and AMASS (Mahmood
et al. 2019), remains largely untapped. This brings up the
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question we are investigating in this work, as illustrated in
Figure 1. Can we learn reliable diffusion models for control-
lable motion generation based on the supervision of noisy
and the unannotated motion sequences?

Fortunately, with the inherent denoising mechanism of
diffusion models, we can answer this question with a sim-
ple yet effective solution that applies separate diffusion steps
regarding the source of training motion data, referred to as
MotionMix. To demonstrate our application and approach,
we split each gold annotated motion dataset into two halves:
the first half of the motions are injected with random-scale
Gaussian noises (noisy half), and the second half is de-
prived of annotations (clean half). As in Figure 2, the diffu-
sion model bases on the clean samples for diffusion steps in
[1, T ∗], with condition input erased. Meanwhile, noisy mo-
tions supervise the model with explicit conditions for the
rest of steps [T ∗ + 1, T ]. Note T ∗ is an experimental hyper-
parameter, with its role analyzed in later ablation studies.
Our key insight is that, during sampling, starting from Gaus-
sian noises, the model first produces rough motion approxi-
mations with conditional guidance in the initial T−T ∗ steps;
afterward, these rough approximations are further refined
by unconditional sampling in the last T ∗ steps. Yet learn-
ing with weak supervision signals, our proposed MotionMix
empirically facilitates motion generation with higher qual-
ity than fully supervised models on multiple applications.
Benefiting from the conciseness of design, MotionMix finds
its place in many applications. In this work, we thoroughly
examine the effectiveness and flexibility of the proposed
approach through extensive experiments on benchmarks of
text-to-motion, music-to-dance, and action-to-motion tasks.

Our main contributions can be summarized as follows:
•We present MotionMix, the first weakly-supervised ap-

proach for conditional diffusion models that utilizes both
noisy annotated and clean unannotated motion sequences
simultaneously.
•We demonstrate that by training with these two sources

of data simultaneously, MotionMix can improve upon prior
state-of-the-art motion diffusion models across various tasks
and benchmarks, without any conflict.
• Our approach opens new avenues for addressing the

scarcity of clean and annotated motion sequences, paving
the way for scaling up future research by effectively har-
nessing available motion resources.

2 Related Work
2.1 Weakly-Supervised Learning
To tackle the limited availability of annotated data, re-
searchers have been exploring the use of semi-supervised
generative models, using both annotated and unannotated
data (Kingma et al. 2014; Li et al. 2017; Lucic et al.
2019). However, the investigation of semi-supervised dif-
fusion models remains limited (You et al. 2023), possibly
due to the significant performance gap observed between
conditional and unconditional diffusion models (Bao et al.
2022; Dhariwal and Nichol 2021; Tevet et al. 2022). More-
over, many state-of-the-art models, such as Stable Diffusion
(Rombach et al. 2021), implicitly assume the availability of

abundant annotated data for training (Chang, Koulieris, and
Shum 2023; Kawar et al. 2023). This assumption poses a
challenge when acquiring high-quality annotated data is ex-
pensive, particularly in the case of 3D human motion data.

Recent interest has emerged in developing data-efficient
approaches for training conditional diffusion models with
low-quality data (Daras et al. 2023; Kawar et al. 2023),
or utilizing unsupervised (Tur et al. 2023), semi-supervised
(You et al. 2023), self-supervised methods (Miao et al.
2023). These approaches have exhibited promising results
across various domains and hold potential for future explo-
ration of diffusion models when handling limited annotated
data. However, in the domain of human motion generation,
efforts toward these approaches have been even more lim-
ited. One related work, Make-An-Animation (Azadi et al.
2023), trains a diffusion model utilizing unannotated mo-
tions in a semi-supervised setting. In contrast, our work in-
troduces a unique aspect by training with noisy annotated
motion and clean unannotated motion.

2.2 Conditional Motion Generation
Over the years, human motion generation has been exten-
sively studied using various signals, including prefix poses
(Ruiz, Gall, and Moreno-Noguer 2018; Guo et al. 2022c;
Petrovich, Black, and Varol 2021), action classes (Guo
et al. 2020; Petrovich, Black, and Varol 2021; Cervantes
et al. 2022), textual descriptions (Guo et al. 2022b; Petro-
vich, Black, and Varol 2022; Guo et al. 2022a; Ahuja and
Morency 2019; Bhattacharya et al. 2021), or music (Li et al.
2020, 2021; Siyao et al. 2022; Gong et al. 2023). However,
it is non-trivial for these methods to align the distributions of
motion sequences and conditions such as natural languages
or speech (Chen et al. 2022). Diffusion models resolve this
problem using a dedicated multi-step gradual diffuse and
denosing process(Ramesh et al. 2022a; Saharia et al. 2022;
Ho et al. 2022). Recent advancements, such as MDM (Tevet
et al. 2022), MotionDiffuse (Zhang et al. 2022), MLD (Chen
et al. 2022), have demonstrated the ability of diffusion-based
models to generate plausible human motion, guided by tex-
tual descriptions or action classes. In the music domain,
EDGE (Tseng, Castellon, and Liu 2022) showcased high-
quality dance generation in diverse music categories. Never-
theless, these works still rely on high-quality motion datasets
with annotated guidance.

3 Method
3.1 Problem Formulation
Conditional motion generation involves generating high-
quality and diverse human motion sequences based on a de-
sired conditional input c. This input can take various forms,
such as a textual description w1:N of N words (Guo et al.
2022b), an action class a ∈ A (Guo et al. 2020), music audio
m (Li et al. 2021), or even an empty condition c = ∅ (uncon-
ditional input) (Raab et al. 2022). Our goal is to train a diffu-
sion model in a weakly-supervised manner, using both noisy
motion sequences with conditional inputs c = {∅, a, w, c}
(where ∅ is used when the classifier-free guidance (Ho and
Salimans 2022) is applied) and clean motion sequences with
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Figure 2: (Left) Training Process. The model is trained with a mixture of noisy and clean data. A noise timestep in ranges of
[1, T ∗] and [T ∗ + 1, T ] is sampled respectively for each clean and noisy data. Here, T ∗ is a denoising pivot that determines the
starting point from which the diffusion model refines the noisy motion sequences into clean ones without any guidance. (Right)
Sampling Process. The sampling process consists of two stages. In Stage-1 from timestep T to T ∗ + 1, the model generates
the rough motion approximations, guided by the conditional input c. In Stage-2 from timestep T ∗ to 1, the model refines these
approximations to high-quality motion sequences while the input c is masked.

unconditional input c = ∅. Despite being trained with noisy
motions, our model can consistently generate plausible mo-
tion sequences. To achieve this, we propose a two-stage re-
verse process, as illustrated in Figure 2.

3.2 Diffusion Probabilistic Model
The general idea of a diffusion model, as defined by the
denoising diffusion probabilistic model (DDPM) (Ho, Jain,
and Abbeel 2020), is to design a diffusion process that grad-
ually adds noise to a data sample and trains a neural model
to learn a reverse process of denoising it back to a clean
sample. Specifically, the diffusion process can be modeled
as a Markov noising process with {xt}Tt=0 where x0 ∼ p(x)
is the clean sample drawn from the data distribution. The
noised xt is obtained by applying Gaussian noise εt to x0

through the posterior:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

where ᾱt ∈ (0, 1) are constants which follow a monotoni-
cally decreasing scheduler. Thus, when ᾱt is small enough,
we can approximate xT ∼ N (0, I).

In the reverse process, given the condition c, a neural
model fθ is trained to estimate the clean sample x0 (Ramesh
et al. 2022b) or the added noise εt (Ho, Jain, and Abbeel
2020) for all t. The model parameters θ are optimized using
the “simple” objective introduced by Ho, Jain, and Abbeel:

Lsimple = Et∼[1,T ],st

[
‖st − fθ(xt, t, c)‖2

]
(2)

where the target objective st refers to either x0 or εt for ease
of notation.

3.3 Training
We propose a novel weakly-supervised learning approach
that enables a diffusion model to effectively utilize both
noisy and clean motion sequences. During the training
phase, we construct batches comprising both noisy and clean
samples, each coupled with a corresponding guidance condi-
tion c, as further detailed in Subsection 3.5. To learn the de-
noising process, we apply the diffusion process to this batch

using Equation 1 with varying noise timesteps. In contrary
to the conventional training, where both noisy and clean mo-
tion sequences are treated as the ground truth x0 with dif-
fusion steps spanning [1, T ], our approach adopts separate
ranges for different data types. For noisy samples, we ran-
domly select noise timesteps t ∈ [T ∗+1, T ], while for clean
samples, we confine them to t ∈ [1, T ∗]. Here, T ∗ serves
as a denoising pivot, determining when the diffusion model
starts refining noisy motion sequences into cleaner versions.
This pivot is especially crucial in real-world applications,
where motion capture data might be corrupted by noise due
to diverse factors. This denoising strategy for noisy motions
draws inspiration from (Nie et al. 2022), which purified ad-
versarial images by diffusing them up to a specific timestep
T ∗ before denoising to clean images. The determination of
T ∗ typically relies on empirical estimation, its impact on
generation quality is further analyzed in Table 4.

Through this training process, the model becomes adept
at generating initial rough motions from T to T ∗ + 1, and
subsequently refining these rough motions into high-quality
ones from T ∗ to 1. By dividing into two distinct time ranges,
the model can effectively learn from both noisy and clean
motion sequences as ground truth without any conflict.

3.4 Two-stage Sampling and Guidance
Our approach introduces a modification to the conventional
DDPM sampling procedure, which commonly relies on the
same explicit conditional input c to guide the denoising op-
eration at each time step t, initiating from T and denois-
ing back to the subsequent time step t − 1 until reaching
t = 0. However, it is important to note that our work specifi-
cally focuses on clean, unannotated samples. As discussed in
Subsection 3.3, these samples are trained using an identical
guidance condition c = ∅ confined within the time interval
[1, T ∗]. Consequently, if the conventional DDPM sampling
process is employed within this temporal range, it could po-
tentially lead to jittering or the generation of unrealistic mo-
tions. This occurs because the model is not trained to handle
varying conditions within this specific range. To tackle this
issue, we adopt a distinct strategy to align the sampling pro-
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cess accordingly. Specifically, when the model reaches the
denoising pivot T ∗ during the sampling, we substitute the
conditional input with c = ∅ starting from T ∗.

In the case of using classifier-free guidance (Ho and Sal-
imans 2022), guided inference is employed for all t, which
involves generating motion samples through a weighted sum
of unconditionally and conditionally generated samples:

ŝ(xt, t, c) = w · fθ(xt, t, c) + (1− w) · fθ(xt, t, ∅) (3)

where w is the guidance weight during sampling.

3.5 Data Preparation
To facilitate our setting, we randomly partition an existing
training dataset into two subsets. In one subset, we retain the
annotated condition and introduce noise to the motion se-
quences to approximate the real noisy samples. In the other
subset, we reserve the cleanliness of the data and discard the
annotated conditions by replacing them as c = ∅.

Motivated by the use of Gaussian noises in approximat-
ing noisy samples in prior works (Tiwari et al. 2022; Fiche
et al. 2023), we apply Equation 1 to gradually introduce
noise to the clean samples. Since the precise noise schedule
in real-world motion capture data is unknown, we address
this uncertainty by applying a random noising step sampled
from the range [T1, T2], where T1 and T2 are hyperparam-
eters simulating the level of disruption in real noisy mo-
tions. Interestingly, our experiments (Tab. 6) show that nei-
ther smaller value of T1, T2 nor small T2-T1 relates to better
performance. Due to page limit, examples of noisy motions
for training are presented in supplementary videos.

It is worth noting that the processes of dividing the train-
ing dataset and preparing noisy samples, and unannotated
samples only take place on the side of the training dataset.
The remaining evaluation dataset, diffusion models, and
training process are kept unchanged as in previous works.

4 Experiments
We thoroughly experiment our MotionMix in diverse tasks
using different conditional motion generation diffusion
models as backbones: (1) MDM (Tevet et al. 2022) for
text-to-motion task on HumanML3D (Guo et al. 2022b),
KIT-ML (Plappert, Mandery, and Asfour 2016), as well as
action-to-motion task on HumanAct12 (Guo et al. 2020) and
UESTC (Ji et al. 2018); (2) MotionDiffuse (Zhang et al.
2022) for text-to-motion task; and (3) EDGE (Tseng, Castel-
lon, and Liu 2022) for music-to-dance task on AIST++ (Li
et al. 2021). For details of each benchmark and model,
please refer to Appendices A and B, respectively.

4.1 Text-to-motion
• Implementation Details. On both datasets, we train the
MDM and MotionDiffuse models from scratch for 700K
and 200K steps, respectively. To approximate the noisy mo-
tion data x̃ from x ∈ RN×D, we use noisy ranges [20, 60]
and [20, 40] for HumanML3D and KIT-ML, respectively.

• Evaluation Metrics. As suggested by Guo et al., the met-
rics are based on a text feature extractor and a motion fea-
ture extractor jointly trained under contrastive loss to pro-
duce feature vectors for matched text-motion pairs. R Pre-
cision (top 3) measures the accuracy of the top 3 retrieved
descriptions for each generated motion, while the Frechet
Inception Distance (FID) is calculated using the motion ex-
tractor as the evaluator network. Multimodal Distance mea-
sures the average Euclidean distance between the motion
feature of each generated motion and the text feature of its
corresponding description in the test set. Diversity measures
the variance of the generated motions across all action cate-
gories, while MultiModality measures the diversity of gen-
erated motions within each condition.
• Quantitative Result. Table 1 presents quantitative results
of our weakly-supervised MotionMix using MDM and Mo-
tionDiffuse backbones, in comparison with their original
models that are trained with fully annotated and clean mo-
tion sequences. To our surprise, in most settings, Motion-
Mix even improves the motion quality (i.e., FID) and mul-
timodal consistency (i.e., R Precision) upon the fully super-
vised backbones. For example, on HumanML3D and KIT-
ML dataset, MDM (MotionMix) commonly reduces FID by
over 0.16 compare to MDM; this comes with the enhance-
ment of both R Precision and Multimodal Distance. We may
attribute this to the better generalizability and robustness by
involving noisy data in our MotionMix. On the specifical
setting of MotionDiffuse (MotionMix) on HumanML3D,
though being inferior to the original MotionDiffuse, our
MotionMix maintains competitive performance on par with
other fully supervised baselines, such as Language2Pose
(Ahuja and Morency 2019), Text2Gestures (Bhattacharya
et al. 2021), Guo et al. (Guo et al. 2022b).

4.2 Action-to-motion
• Implementation Details. Following the experimental
setup by Tevet et al., we train the MDM (MotionMix) from
scratch on the HumanAct12 and UESTC datasets for 750K
and 2M steps, respectively. In our approximation prepro-
cess, we determine the amount of noise to be injected into
both the pose sequence p and the root translation r by ran-
domly sampling from range [10, 30]. The resulting p̃ and r̃
are then concatenated to obtain noisy motion x̃.
• Evaluation Metrics. Four metrics are used to assess the
quality of generated motions. The FID is commonly used to
evaluates the overall quality of generated motions. Accuracy
(Acc.) measures the correlation between the generated mo-
tion and its action class. Diversity (Div.) and MultiModality
(MM) are similar to the text-to-motion metrics.
• Quantitative Result. Table 2 presents the performance
outcomes of MDM (MotionMix) and several baseline mod-
els, including Action2Motion (A2M) (Guo et al. 2020),
ACTOR (Petrovich, Black, and Varol 2021), INR (Cer-
vantes et al. 2022), MLD (Chen et al. 2022), and MDM
(Tevet et al. 2022), on both the HumanAct12 and UESTC
datasets. Following the methodology of Tevet et al., we per-
form 20 evaluations, each comprising 1000 samples, and
present average scores with a confidence interval of 95%.
The results highlight that our MotionMix achieves compet-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2160



Real MDM MDM(MotionMix) MotionDiffuse MotionDiffuse (MotionMix)

“a man mimics a throwing motion with his left hand.”

“person appears to be holding some thing with both hands and then throws it forward with their right hand.”

“the person climbs up something for few steps. ”

Figure 3: Qualitative performance of baseline MDM and MotionDiffuse models, trained exclusively on high-quality annotated
data, with our MotionMix approach, which learns from imperfect data sources. Their visualized motion results are presented
alongside real references for three distinct text prompts. Please refer to supplementary files for more animations.

itive performance with significantly fewer high-quality an-
notated data instances. In particular, the improvement seen
on the UESTC dataset underscores its efficacy in training
with noisy motion data from the real-world scenario. On
the other hand, the deterioration in performance on Hu-
manAct12 suggests that our approach is better suited for
larger datasets, given that the size of HumanAct12 is re-
markably smaller than that of UESTC. Nevertheless, our
supplementary videos demonstrate that the model trained on
HumanAct12 remains capable of generating quality motion
sequences based on the provided action classes.

4.3 Music-to-dance
• Implementation Details. Similar to the action-to-motion
task, we inject noise into both p and r using the same noise
timestep sampled from [20, 80]. Since the contact label b is
obtained from both p and r, it is not necessary to inject noise
into b. Following the setup of Tseng, Castellon, and Liu, we
train both the EDGE model and our EDGE (MotionMix)
from scratch on AIST++ for 2000 epochs.
• Evaluation Metrics. We adopt the evaluation settings
from the paper EDGE, including Physical Foot Contact
(PFC), Beat Alignment, and Diversity metrics. PFC gauges
physical plausibility by capturing realistic foot-ground con-
tact, without explicit modeling or static contact assumptions.
Beat Alignment assesses the synchronization of dances with
music beats, following prior works (Li et al. 2021; Siyao
et al. 2022). Diversity is measured in both kinetic (Distk)
and geometric (Distg) feature spaces.
• Quantitative Result. In contrary to prior works, which
typically reported only a single evaluation result, we have
observed that the metrics can be inconsistent. Thus, to of-

fer a more comprehensive evaluation, we run the evaluation
20 times similar to the previous two tasks for our retrained
EDGE model and our EDGE (MotionMix) variant. For Bai-
lando (Siyao et al. 2022) and FACT (Li et al. 2021), we di-
rectly fetched results from the paper EDGE (Tseng, Castel-
lon, and Liu 2022). The results in Table 3 vividly demon-
strate that, our EDGE (MotionMix) significantly outper-
forms the baseline across all metrics, showcasing improve-
ments of up to 43.1% in PFC and 95.0% in Distk. This fur-
ther reinforces the generalizability prowess of MotionMix,
consistent with the outcomes observed in text-to-motion ex-
periments.

5 Ablation Studies
MotionMix is introduced as a potential solution that enables
the diffusion model to effectively leverage both noisy mo-
tion sequences and unannotated data. To demonstrate the ef-
ficacy of this approach, we approximate noisy samples from
existing datasets and train the model on them, which incor-
porate several essential hyperparameters: (1) the denoising
pivot T ∗; (2) the ratio of noisy and clean data for training;
(3) the noisy range [T1, T2] to approximate noisy data. In
this section, we thoroughly assess the impact of each hy-
perparameters within MotionMix. All ablation experiments
are carried out on the HumanML3D dataset using the MDM
model with the same settings described in Subsection 4.1.

5.1 Effect of The Denoising Pivot T ∗

We begin our ablation studies by examining the impact of
the denoising pivot T ∗. To evaluate its impact, we conduct
experiments with a fixed noisy range of [T1, T2] = [20, 60],
a noisy ratio of 50%, and evaluate various T ∗ values, encom-
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Method R Precision
(top 3)↑ FID↓ Multimodal

Dist.↓ Diversity→ Multimodality↑
H

um
an

M
L

3D
Real Motion 0.797 0.002 2.974 9.503 -

Language2Pose 0.486 11.02 5.296 7.676 -
Text2Gestures 0.345 7.664 6.030 6.409 -
Guo et al. 0.740 1.067 3.340 9.188 2.090
MLD 0.772 0.473 3.196 9.724 2.413

MDM 0.611 0.544 5.566 9.559 2.799
MDM† 0.632 (↑3.4%) 0.381 (↑30.0%) 5.325 (↑4.3%) 9.520 (↑69.6%) 2.718 (↓2.9%)

MotionDiffuse 0.782 0.630 3.113 9.410 1.553
MotionDiffuse† 0.738 (↓5.6%) 1.021 (↓62.1%) 3.310 (↓6.3%) 9.297 (↓121.5%) 1.523 (↓1.9%)

K
IT

-M
L

Real Motion 0.779 0.031 2.788 11.080 -

Language2Pose 0.483 6.545 5.147 9.073 -
Text2Gestures 0.338 12.12 6.964 9.334 -
Guo et al. 0.693 2.770 3.401 10.910 1.482
MLD 0.734 0.404 3.204 10.800 2.192

MDM 0.396 0.497 9.191 10.847 1.907
MDM† 0.404 (↑2.0%) 0.322 (↑35.2%) 9.068 (↑1.3%) 10.781 (↓28.3%) 1.946 (↑2.0%)

MotionDiffuse 0.739 1.954 2.958 11.100 0.730
MotionDiffuse† 0.742 (↑0.4%) 1.192 (↑39.0%) 3.066 (↓3.6%) 10.998 (↓310%) 1.391 (↑90.5%)

Table 1: Quantitative results of text-to-motion on the test set of HumanML3D and KIT-ML. Note all baselines are trained
with gold data. † means the <model> is trained in our weakly-supervised setting. We run all the evaluation 20 times (except
Multimodality runs 5 times) and reports only the mean score due to limited space. ↑ means higher is better, ↓ means lower is
better,→ means closer to the real distribution is better. The ↑ x% and ↓ x% indicate the percentage difference in performance
improvement or deterioration when comparing our approach to its correspond baseline.

Method FID ↓ Acc. ↑ Div.→ MM→

H
um

an
A

ct
12

Real Motion 0.053 0.995 6.835 2.604

A2M 0.338 0.917 6.850 2.511
ACTOR 0.120 0.955 6.840 2.530
INR 0.088 0.973 6.881 2.569
MLD 0.077 0.964 6.831 2.824

MDM 0.100 0.990 6.860 2.520
MDM† 0.196

(↓96%)
0.930

(↓6.1%)
6.836

(↑96%)
3.043

(↓423%)

U
E

ST
C

Real Motion 2.790 0.988 33.349 14.160

ACTOR 23.430 0.911 31.960 14.520
INR 15.000 0.941 31.590 14.680
MLD 15.790 0.954 33.520 13.570

MDM 12.810 0.950 33.100 14.260
MDM† 11.400

(↑11%)
0.960

(↑1.1%)
32.806
(↓118%)

14.277
(↓17%)

Table 2: Quantitative results of action-to-motion on the Hu-
manAct12 dataset and UESTC test set. We run the evalua-
tion 20 times, the metric details and † are similar to Table 1.

passing 20, 40, 60, and 80. The results, detailed in Table 4,
reveal a notable observation: a roughly estimated denois-
ing pivot is sufficient for real-world scenarios, as evidenced
by the competitive outcomes across various T ∗ values. This
robustness underlines the versatility of our MotionMix ap-

Method PFC ↓ Beat
Align. ↑

Distk → Distg →

Real Motion 1.380 0.314 9.545 7.766
Bailando 1.754 0.23 10.58 7.72
FACT 2.2543 0.22 10.85 6.14

EDGE‡ 3.494 0.226 20.684 9.145
EDGE† 1.988

(↑43.1%)
0.256

(↑13.3%)
10.103

(↑95.0%)
6.595

(↑15.1%)

Table 3: Quantitative results of music-to-dance on the
AIST++ test set. We run the evaluation 20 times, the met-
ric details and † are similar to Table 1. ‡ denotes the EDGE
model that is re-trained by us.

proach. Additionally, selecting a very small denoising pivot
(e.g., T ∗ = 0 or 20) enables conditions to steer the model
toward diverse rough motion sequences before the refining
phase, as reflected in the MModality score trend. However,
this small value may potentially compromise motion qual-
ity, leading to subpar results in other metrics. In contrast, the
choice of T ∗ = 60, which is well aligned with our prede-
fined noisy range, yields superior results in multiple eval-
uation metrics. This sheds light on the need of tuning the
denoising pivot to optimize the results, as this hyperparam-
eter determines the starting point for the diffusion model to
transform initial noisy motion into high-quality sequences.
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Method R Prec.
(top 3)↑FID↓ Multi.

Dist.↓ Div.→MM↑

Real Motion 0.797 0.00 2.97 9.50 -
MDM 0.611 0.54 5.57 9.56 2.79

50% noisy,T1=20,T2=60
MDM† (T ∗=0) 0.598 0.71 5.50 9.75 3.04
MDM† (T ∗=20) 0.601 0.50 5.56 9.41 2.94
MDM† (T ∗=40) 0.604 0.40 5.52 9.40 2.75
MDM† (T ∗=60) 0.632 0.38 5.33 9.52 2.72
MDM† (T ∗=80) 0.594 0.59 5.67 9.24 2.60

Table 4: We evaluate MDM (MotionMix) on HumanML3D
test set using different values of the denoising pivot T ∗. The
metrics details are similar to Table 1. The best and the sec-
ond best result are bold and underlined respectively.

Method R Prec.
(top 3)↑FID↓ Multi.

Dist.↓ Div.→MM↑

Real Motion 0.797 0.00 2.97 9.50 -
MDM 0.611 0.54 5.57 9.56 2.79

T1=20,T2=60,T ∗=60
MDM† (30% noisy) 0.601 0.90 5.58 9.08 2.86
MDM† (50% noisy) 0.632 0.38 5.33 9.52 2.72
MDM† (70% noisy) 0.615 0.36 5.55 9.46 2.87

Table 5: We evaluate MDM (MotionMix) on HumanML3D
test set using different ratios for noisy and clean data. The
metrics details are similar to Table 1. The best and the sec-
ond best result are bold and underlined respectively.

5.2 Effect of Noisy/Clean Data Ratio
We evaluate how the noisy/clean data ratio affects Motion-
Mix by keeping T ∗ = 60 and [T1, T2] = [20, 60] constant. We
experiment with various noisy ratios of 30%, 50%, and 70%.
The results in Table 5 show interesting trends across the
evaluation metrics. Notably, higher noisy ratios (i.e., 50%
and 70%) consistently outperform the lower ratio (i.e., 30%).
Note that a higher noisy ratio allows the model to access
more annotated text conditions, yielding better R Precision
and Multimodal Distance. On the other hand, the 30% ra-
tio, despite being trained with a greater amount of clean
data, exhibits suboptimal motion quality (scoring 0.90 in
FID) in comparison to other supervised baselines in Table 1,
such as Language2Pose (FID of 11.02), Text2Gestures (FID
of 7.66), Guo et al. (FID of 1.067). Nevertheless, it still
achieves results on par with the supervised MDM baseline in
terms of multimodal consistency (i.e. Multimodal Distance).
These observations underscore the resilience of our Motion-
Mix approach to variations in the noisy/clean data ratio.

5.3 Effect of The Noisy Range
The purpose of the noisy range in our work is to approxi-
mate the noise schedule found in real-world motion capture
data. Thus, for different datasets in Section 4, we choose
noisy ranges based on the visualization of motion from each
dataset. For example, UESTC (Ji et al. 2018) contains noisy

Method R Prec.
(top 3)↑ FID↓ Multi.

Dist.↓ Div.→MM↑

50% noisy, T ∗ = T2

MDM† (T1=20,T2=40) 0.616 0.45 5.46 9.59 2.59
MDM† (T1=20,T2=60) 0.632 0.38 5.33 9.52 2.72
MDM† (T1=20,T2=80) 0.604 0.61 5.54 9.55 2.77

50% noisy, T ∗ = T2

MDM† (T1=10,T2=30) 0.592 0.71 5.63 9.57 2.78
MDM† (T1=20,T2=40) 0.616 0.45 5.46 9.59 2.59
MDM† (T1=40,T2=60) 0.598 0.55 5.60 9.48 2.82
MDM† (T1=60,T2=80) 0.597 0.44 5.55 9.45 2.90

Table 6: We evaluate MDM (MotionMix) on HumanML3D
test set using different noisy ranges [T1, T2] to approximate
the noisy motion sequences. The table presents two dis-
tinct scenarios: the upper block ablates how much the range
spans, while the lower block examines the impact of the cor-
ruption level of noisy motions. The metrics details are simi-
lar to Table 1. For each setting, the best and the second best
result are bold and underlined respectively.

mocap data, while HumanML3D (Guo et al. 2022b), de-
rived from AMASS (Mahmood et al. 2019), consists of
clean motion sequences. This ablation, therefore, compre-
hensively evaluates the effectiveness of our MotionMix ap-
proach when handling different noisy levels of motion se-
quences. We categorize the evaluations into two groups: nar-
row/wide ranges of noise and low/high schedules of noise.
All experiments are conducted with a noisy ratio of 50%,
and the denoising pivot T ∗ is equal to the chosen T2. The
results are presented in Table 6.
• Narrow/Wide Noisy Range. Three noisy ranges
[T1, T2] ∈ {[20, 40], [20, 60], [20, 80]} are set to analyze the
effect of how much the range spans. Counterintuitively, a
smaller noisy range does not equal better performance. For
example, noisy range [20, 60] leads to overall the best per-
formance, compared to [20, 40]. Though, larger noisy range
(i.e., [20, 80]) unevitably deteriotate the model capacity.
• Low/High Noisy Schedule. Four contrast ranges
[T1, T2] ∈ {[10, 30], [20, 40], [40, 60], [60, 80]} are set to
evaluate the robustness of MotionMix regarding corruption
level of noisy motions. Notably, MotionMix performs rea-
sonably stable on different levels of corrupted motions.

6 Conclusion
This work addresses the training challenge of a conditional
human motion generation model with both noisy annotated
and clean unannotated motion sequences. Our proposed ap-
proach, MotionMix, pioneers the utilization of a weakly-
supervised diffusion model to tackle this challenge. Mo-
tionMix effectively overcomes constraints posed by limited
high-quality annotated data, demonstrating competitive re-
sults against fully-supervised models. The versatility of Mo-
tionMix is evident across various tasks/benchmarks and fun-
damental diffusion model designs. Comprehensive ablation
studies further bolster its resilience in diverse noisy sched-
ules and the strategic selection of the denoising pivot.
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