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Abstract

Vision Language Models (VLMs), which extend Large Lan-
guage Models (LLM) by incorporating visual understanding
capability, have demonstrated significant advancements in ad-
dressing open-ended visual question-answering (VQA) tasks.
However, these models cannot accurately interpret images
infused with text, a common occurrence in real-world sce-
narios. Standard procedures for extracting information from
images often involve learning a fixed set of query embed-
dings. These embeddings are designed to encapsulate im-
age contexts and are later used as soft prompt inputs in
LLMs. Yet, this process is limited to the token count, po-
tentially curtailing the recognition of scenes with text-rich
context. To improve upon them, the present study introduces
BLIVA: an augmented version of InstructBLIP with Visual
Assistant. BLIVA incorporates the query embeddings from
InstructBLIP and also directly projects encoded patch em-
beddings into the LLM, a technique inspired by LLaVA. This
approach assists the model to capture intricate details po-
tentially missed during the query decoding process. Empir-
ical evidence demonstrates that our model, BLIVA, signif-
icantly enhances performance in processing text-rich VQA
benchmarks (up to 17.76% in OCR-VQA benchmark) and in
undertaking general (not particularly text-rich) VQA bench-
marks (up to 7.9% in Visual Spatial Reasoning benchmark),
and achieved 17.72% overall improvement in a comprehen-
sive multimodal LLM benchmark (MME), comparing to our
baseline InstructBLIP. BLIVA demonstrates significant capa-
bility in decoding real-world images, irrespective of text pres-
ence. To demonstrate the broad industry applications enabled
by BLIVA, we evaluate the model using a new dataset com-
prising YouTube thumbnails paired with question-answer sets
across 11 diverse categories. For researchers interested in fur-
ther exploration, our code and models are freely accessible at
https://github.com/mlpc-ucsd/BLIVA.

Introduction
Recently, Large Language Models (LLMs) have trans-
formed the field of natural language understanding, exhibit-
ing impressive capabilities in generalizing across a broad ar-
ray of tasks, both in zero-shot and few-shot settings. This
success is mainly contributed by instruction tuning (Wu
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et al. 2023) which improves generalization to unseen tasks
by framing various tasks into instructions. Vision Lan-
guage Models (VLMs) such as OpenAI’s GPT-4 (OpenAI
2023), which incorporates LLM with visual understanding
capability, have demonstrated significant advancements in
addressing open-ended visual question-answering (VQA)
tasks. Several approaches have been proposed for employ-
ing LLMs on vision-related tasks by directly aligning with
a visual encoder’s patch feature (Liu et al. 2023a) or ex-
tracting image information through a fixed number of query
embeddings. (Li et al. 2023b; Zhu et al. 2023).

However, despite exhibiting considerable abilities for
image-based human-agent interactions, these models strug-
gle with interpreting text within images. Images with text are
pervasive in our daily lives, and comprehending such content
is essential for human visual perception. Previous works uti-
lized an abstraction module with queried embeddings, lim-
iting their capabilities in textual details within images (Li
et al. 2023b; Awadalla et al. 2023; Ye et al. 2023).

In our work, we employ learned query embeddings with
additional visual assistant branches, utilizing encoded patch
embeddings. This approach addresses the constraint image
information typically provided to language models, leading
to improved text-image visual perception and understand-
ing. Empirically, we report the results of our model in gen-
eral (not particularly text-rich) VQA benchmarks following
the evaluation datasets of (Dai et al. 2023) and text-rich im-
age evaluation protocol from (Liu et al. 2023b). Our model
is initialized from a pre-trained InstructBLIP and an en-
coded patch projection layer trained from scratch. Following
(Zhu et al. 2023; Liu et al. 2023a), we further demonstrate
a two-stage training paradigm. We begin by pre-training the
patch embeddings projection layer. Subsequently, with the
instruction tuning data, we fine-tune both the Q-former and
the patch embeddings projection layer. During this phase,
we maintain both the image encoder and LLM in a frozen
state. We adopt this approach based on two findings from
our experiments: firstly, unfreezing the vision encoder re-
sults in catastrophic forgetting of prior knowledge; secondly,
training the LLM concurrently didn’t bring improvement but
brought significant training complexity.

In summary, our study consists of the following high-
lights:

• We present BLIVA, which leverages both learned query
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Figure 1: Comparison of various VLM approaches. Both (a) Flamingo (Alayrac et al. 2022) and (b) BLIP-2 / InstructBLIP (Li
et al. 2023b; Dai et al. 2023) architecture utilize a fixed, small set of query embeddings. These are used to compress visual
information for transfer to the LLM. In contrast, (c) LLaVA aligns the encoded patch embeddings directly with the LLM. (d)
BLIVA (Ours) builds upon these methods by merging learned query embeddings with additional encoded patch embeddings.

embeddings and encoded patch embeddings, providing
an effective method for interpreting text within images.

• Our experimental results showcase that BLIVA provides
improvements in the understanding of text within images
while maintaining a robust performance in general (not
particularly text-rich) VQA benchmarks and achieving
the best performance on MME benchmark among pre-
vious methods.

• To underscore the real-world applicability of BLIVA,
we evaluate the model using a new dataset of YouTube
thumbnails with associated question-answer pairs.

Related Work
Multimodal Large Language Model
Large Language Models (LLMs) have demonstrated im-
pressive zero-shot abilities across various open-ended tasks.
Recent research has explored the application of LLMs for
multimodal generation to understand visual inputs. Some
approaches leverage the pre-trained LLM to build unified
models for multi-modality. For example, Flamingo (Alayrac
et al. 2022) connects the vision encoder and LLM by a Per-
ceiver Resampler which exhibits impressive few-shot per-
formance. Additionally, BLIP-2 (Li et al. 2023b) designs a
Q-former to align the visual feature with OPT (Zhang et al.
2022) and FLAN-T5 (Wei et al. 2021). MiniGPT-4 (Zhu
et al. 2023) employed the same Q-former but changed the
LLM to Vicuna (Zheng et al. 2023). Some approaches
also finetuned LLM for better alignment with visual fea-
tures such as LLaVA (Liu et al. 2023a) directly finetuned
LLM and mPLUG-Owl (Ye et al. 2023) performs low-rank
adaption (LoRA) (Hu et al. 2022) to finetune a LLaMA
model (Touvron et al. 2023). PandaGPT (Su et al. 2023)

also employed LoRA to finetune a Vicuna model on top
of ImageBind (Girdhar et al. 2023), which can take multi-
modal inputs besides visual. While sharing the same two-
stage training paradigm, we focus on developing an end-to-
end multimodal model for both text-rich VQA benchmarks
and general VQA benchmarks.

Multimodal Instruction Tuning
Instruction tuning has been shown to improve the general-
ization performance of language models to unseen tasks. In
the natural language processing (NLP) community, some ap-
proaches collect instruction-tuning data by converting exist-
ing NLP datasets into instruction format (Wang et al. 2022b;
Wei et al. 2021; Sanh et al. 2022; Chung et al. 2022) oth-
ers use LLMs to generate instruction data (Taori et al. 2023;
Zheng et al. 2023; Wang et al. 2023; Honovich et al. 2022).
Recent research expanded instruction tuning to multimodal
settings. In particular, for image-based instruction tuning,
MiniGPT-4 (Zhu et al. 2023) employs human-curated in-
struction data during the finetuning stage. LLaVA (Liu et al.
2023a) generates 156K multimodal instruction-following
data by prompting GPT-4 (OpenAI 2023) with image cap-
tions and bounding boxes coordinates. mPLUG-Owl (Ye
et al. 2023) also employs 400K mixed text only and multi-
modal instruction data for finetuning. Instruction tuning also
enhanced the previous vision language foundation model’s
performance. For example, MultimodalGPT (Gong et al.
2023) designed various instruction templates that incorpo-
rate vision and language data for multi-modality instruction
tuning OpenFlamingo (Awadalla et al. 2023). (Xu, Shen, and
Huang 2023) built a multimodal instruction tuning bench-
mark dataset that consists of 62 diverse multimodal tasks
in a unified seq-to-seq format and finetuned OFA (Wang
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The image depicts the famous Hollywood sign located on a hillside, surrounded by mountains. 
The sign is prominently displayed in the center of the image, with its letters spelling out 
"HOLLYWOOD." In addition to the Hollywood sign, there are several trees scattered 
throughout the scene, providing a natural backdrop for the iconic landmark.
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Figure 2: Model architecture of BLIVA. BLIVA uses a Q-Former to draw out instruction-aware visual features from the patch
embeddings generated by a frozen image encoder. These learned query embeddings are then fed as soft prompt inputs into
the frozen Language-Learning Model (LLM). Additionally, the system repurposes the originally encoded patch embeddings
through a fully connected projection layer, serving as a supplementary source of visual information for the frozen LLM.

et al. 2022a). MIMIC-IT (Li et al. 2023a) built a big-
ger dataset comprising 2.8 million multimodal instruction-
response pairs to train a stronger model Otter (Li et al.
2023a). We also employed instruction tuning data following
the same prompt as InstructBLIP(Dai et al. 2023) to demon-
strate the effectiveness of utilizing additional encoded patch
embeddings.

Method
Architecture Overview
As illustrated in Figure 1, there are mainly two types of
end-to-end multimodal LLMs: 1) Models that utilize learned
query embeddings for LLM. For instance, MiniGPT-4 (Zhu
et al. 2023) used the frozen Q-former module from BLIP-
2 (Li et al. 2023b) to extract image features by querying the
CLIP vision encoder. Flamingo (Alayrac et al. 2022), em-
ployed a Perceiver Resampler, which reduced image features
to a fixed number of visual outputs for LLM. 2) Models that
directly employed image-encoded patch embeddings, such
as LLaVA (Liu et al. 2023a), which connect its vision en-
coder to the LLM using an MLP. Nevertheless, these mod-
els exhibit certain constraints. Some models employ learned
query embeddings for LLM, which help in better under-
standing the vision encoder but may miss crucial informa-
tion from encoded patch embeddings. On the other hand,
some models directly use encoded image patch embeddings
through a linear projection layer, which might have limited
capability in capturing all the information required for LLM.

To address this, we introduce BLIVA, a multimodal LLM
designed to incorporate both learned query embeddings —

which are more closely aligned with the LLM — and image-
encoded patch embeddings that carry richer image informa-
tion. In particular, Figure 2 illustrates that our model incor-
porates a vision tower, which encodes visual representations
from the input image into encoded patch embeddings. Sub-
sequently, it is sent separately to the Q-former to extract re-
fined learned query embeddings, and to the projection layer,
allowing the LLM to grasp the rich visual knowledge. We
concatenate the two types of embeddings and feed them di-
rectly to the LLM. These combined visual embeddings are
appended immediately after the question text embedding to
serve as the final input to the LLM. During inference, we
employed beam search to select the best-generated output.
Conversely, for classification and multi-choice VQA bench-
marks, we adopted the vocabulary ranking method as out-
lined in InstructBLIP (Dai et al. 2023). Given our prior
knowledge of a list of candidates, we calculated the log-
likelihood for each and chose the one with the highest value
as the final prediction. To support another version for com-
mercial usage of our architecture, we also selected FlanT5
XXL as our LLM. This is named as BLIVA (FLanT5XXL) in
this paper.

Two Stages Training Scheme
We adopted the typical two-stage training scheme: 1) In
the pre-training stage, the goal is to align the LLM with
visual information using image-text pairs from image cap-
tioning datasets that provide global descriptions of images.
2) After pre-training, the LLM becomes familiar with the
visual embedding space and can generate descriptions of
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images. However, it still lacks the capability to discern the
finer details of images and respond to human questions. In
the second stage, we use instruction tuning data to enhance
performance and further align the visual embeddings with
the LLM and human values. Recent methods have predom-
inantly adopted a two-stage training approach (Zhu et al.
2023; Liu et al. 2023a; Ye et al. 2023) except PandaGPT (Su
et al. 2023), which utilizes a one-stage training method, has
also demonstrated commendable results.

In BLIVA, our visual assistant branch,specifically the en-
coded patch embeddings, diverges from the approach of
BLIP-2 (Li et al. 2023b), which uses a 129M pre-training
dataset. Instead, it leverages a more compact 0.5M pre-
training caption data following (Liu et al. 2023a). This
presents a more efficient strategy for aligning the visual en-
coder and LLM at the first stage. We employed language
model loss as our training objective. The model learns to
generate subsequent tokens based on the preceding context.

Thumbnails Dataset
To showcase the wide-ranging industry applications made
feasible by BLIVA, we assess the model by introduc-
ing a new evaluation dataset, named YTTB-VQA which
consists of 400 YouTube Thumbnail Visual Question-
Answer pairs to evaluate the visual perception abili-
ties of in-text images. It covers 11 different categories
which is illustrated in the Appendix of arXiv ver-
sion. During the data collection, we randomly selected
YouTube videos with text-rich thumbnails from different
categories. We recorded the unique video ID for each
YouTube video and obtained the high-resolution thumb-
nail from the URL ”http://img.youtube.com/vi/<YouTube-
Video-ID>/maxresdefault.jpg”. After retrieving all the
YouTube thumbnails, we created the annotation file with the
following fields: ”video id” representing the unique identifi-
cation for a specific YouTube video, ”question” representing
the human-made question based on the text and image in the
thumbnail, ”video classes” representing the 11 video cate-
gories, ”answers” representing the ground truth answer, and
”video link” representing the URL link for each YouTube
video.

Experiment
In this section, we conduct extensive experiments and anal-
yses to show the efficacy of our model. We evaluate our
model, baseline, and other SOTA models on 10 OCR-related
tasks and 8 general (not particularly text-rich) VQA bench-
marks, including image captioning, image question answer-
ing, visual reasoning, visual conversational QA, image clas-
sification, and video question answering. We also evaluated
on a comprehensive multimodal LLM benchmark (MME).
We seek to answer the following:

• How does our proposed method compare to alternative
single image embeddings approaches in text-rich VQA,
general VQA benchmarks and MME benchmark?

• How do the individual components of our method influ-
ence its success?

• How does BLIVA enhance the recognition of YouTube
thumbnails?

Datasets
To demonstrate the effectiveness of patch embeddings, we
followed (Dai et al. 2023) to use the same training and
evaluation data unless mentioned explicitly. Due to the ille-
gal contents involved in LAION-115M dataset (Schuhmann
et al. 2021), we cannot download it securely through the uni-
versity internet. Besides lacking a subset of samples of im-
age captioning, we keep all other training data the same. It
includes MSCOCO (Lin et al. 2015) for image captioning,
TextCaps (Sidorov et al. 2020), VQAv2 (Goyal et al. 2017),
OKVQA (Marino et al. 2019), A-OKVQA (Schwenk et al.
2022), OCR-VQA (Mishra et al. 2019) and LLaVA-Instruct-
150K (Liu et al. 2023a). For evaluation datasets, we also fol-
low (Dai et al. 2023) but only keep Flickr30K (Young et al.
2014), VSR (Liu, Emerson, and Collier 2023), IconQA (Lu
et al. 2022), TextVQA (Singh et al. 2019), Visual Dia-
log (Das et al. 2017), Hateful Memes (Kiela et al. 2020),
VizWiz (Gurari et al. 2018), and MSRVTT QA (Xu et al.
2017) datasets. The detailed dataset information can be
found at Appendix of arXiv version.

Implementation Details
We selected the ViT-G/14 from EVA-CLIP (Sun et al. 2023)
as our visual encoder. The pre-trained weights are initial-
ized and remain frozen during training. We removed the last
layer from ViT (Dosovitskiy et al. 2020) and opted to use
the output features of the second last layer, which yielded
slightly better performance. We first pre-train our patch
embeddings projection layer using LLaVA filtered 558K
image-text pairs from LAION (Schuhmann et al. 2021), CC-
3M (Sharma et al. 2018), and SBU (Ordonez, Kulkarni, and
Berg 2011), captioned by BLIP (Li et al. 2022). Using the
pre-training stage leads to slightly better performance. Dur-
ing the vision-language instruction tuning stage, we initial-
ize the Q-Former from InstructBLIP’s weight and finetune
the parameters of the Q-former and projection layer together
while keeping both the image encoder and LLM frozen. We
pre-trained the projection layer with 3 epochs with a batch
size of 64. During the instruction finetuning stage, we em-
ploy a batch size of 24 with a maximum of 200K steps which
roughly iterates two epochs of the training data. For both
stage training, we used the AdamW (Loshchilov and Hutter
2017) optimizer, with β1 = 0.9, β2 = 0.999, and a weight
decay of 0.05. Additionally, we apply a linear warmup of
the learning rate during the initial 1K steps, increasing from
10−8 to 10−5, followed by a cosine decay with a minimum
learning rate of 0. The pre-training stage takes 6 hours and
the instruction finetuning stage finished within two days on
8 Nvidia A6000 Ada (48G) GPUs.

Results & Discussions
We introduce our results in the context of each of our three
questions and discuss our main findings.

1. How does our proposed method compare to alterna-
tive single image embeddings approaches in text-rich VQA,
general VQA benchmarks and MME benchmark?
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ST OCR Text Doc Info Chart EST FUN SRO PO
VQA ↑ VQA ↑ VQA ↑ VQA ↑ VQA ↑ QA ↑ VQA ↑ SD ↑ IE ↑ IE ↑ Average ↑

OpenFlamingo (Awadalla et al. 2023) 19.32 27.82 29.08 5.05 14.99 9.12 28.20 0.85 0.12 2.12 13.67
BLIP2-OPT6.7b (Li et al. 2023b) 13.36 10.58 21.18 0.82 8.82 7.44 27.02 0.00 0.00 0.02 8.92
BLIP2-FLanT5XXL (Li et al. 2023b) 21.38 30.28 30.62 4.00 10.17 7.20 42.46 1.19 0.20 2.52 15.00
MiniGPT4 (Zhu et al. 2023) 14.02 11.52 18.72 2.97 13.32 4.32 28.36 1.19 0.04 1.31 9.58
LLaVA (Liu et al. 2023a) 22.93 15.02 28.30 4.40 13.78 7.28 33.48 1.02 0.12 2.09 12.84
mPLUG-Owl (Ye et al. 2023) 26.32 35.00 37.44 6.17 16.46 9.52 49.68 1.02 0.64 3.26 18.56
InstructBLIP (FlanT5XXL) (Dai et al. 2023) 26.22 55.04 36.86 4.94 10.14 8.16 43.84 1.36 0.50 1.91 18.90
InstructBLIP (Vicuna-7B) (Dai et al. 2023) 28.64 47.62 39.60 5.89 13.10 5.52 47.66 0.85 0.64 2.66 19.22
BLIVA (FlanT5XXL) 28.24 61.34 39.36 5.22 10.82 9.28 45.66 1.53 0.50 2.39 20.43
BLIVA (Vicuna-7B) 29.08 65.38 42.18 6.24 13.50 8.16 48.14 1.02 0.88 2.91 21.75

Table 1: Zero-Shot OCR-Free Results on Text-Rich VQA benchmarks. This table presents the accuracy (%) results for OCR-
free methods, implying no OCR-tokens were used. Note that our work follows InstructBLIP which incorporated OCR-VQA in
its training dataset, thus inevitably making OCR-VQA evaluation not zero-shot.

Models VSR ↑ IconQA ↑ TextVQA ↑ Visdial ↑ Flickr30K ↑ HM ↑ VizWiz ↑ MSRVTT ↑
(val) (val-dev) (val-dev)

Flamingo-3B (Alayrac et al. 2022) - - 30.1 - 60.6 - - -
Flamingo-9B (Alayrac et al. 2022) - - 31.8 - 61.5 - - -
Flamingo-80B (Alayrac et al. 2022) - - 35.0 - 67.2 - - -
MiniGPT-4 (Zhu et al. 2023) 50.65 - 18.56 - - 29.0 34.78 -
LLaVA (Liu et al. 2023a) 56.3 - 37.98 - - 9.2 36.74 -
BLIP-2 (Vicuna-7B) (Dai et al. 2023) 50.0 39.7 40.1 44.9 74.9 50.2 49.34 4.17
InstructBLIP (Vicuna-7B) (Dai et al. 2023) 54.3 43.1 50.1 45.2 82.4 54.8 43.3 18.7
InstructBLIP Baseline (Vicuna-7B) 58.67 44.34 37.58 40.58 84.61 50.6 44.10 20.97
BLIVA (Vicuna-7B) 62.2 44.88 57.96 45.63 87.1 55.6 42.9 23.81

Table 2: Zero-shot results on general (not particularly text-rich) VQA benchmarks. Our baseline is obtained by directly fine-
tuning InstructBLIP (Dai et al. 2023). For the three datasets on the right, due to the unavailability of test-set answers, we have
evaluated them using validation dev. Here, Visdial and HM denote the Visual Dialog and Hateful Memes datasets, respectively.
Following previous works (Alayrac et al. 2022; Yang et al. 2021; Murahari et al. 2020), we report the CIDEr score (Vedantam,
Zitnick, and Parikh 2015) for Flickr30K, AUC score for Hateful Memes, and Mean Reciprocal Rank (MRR) for Visual Dialog.
For all remaining datasets, we report the top-1 accuracy (%). Notably, for Text-VQA, we have followed InstructBLIP’s method
of using OCR-tokens for comparison. While InstructBLIP also included GQA, iVQA, and MSVDQA, we were unable to ac-
cess these datasets due to either unresponsive authors or the datasets being removed from their websites. For ScienceQA and
Nocaps, we were unable to reproduce the results of InstructBLIP, hence their results are not reported here.

Zero-shot evaluation for text-rich VQA benchmarks
We compared our data with state-of-the-art Multimodality
LLMs. This includes LLaVA, which showcases robust OCR
capabilities using only patch embedding. We also consid-
ered BLIP2’s previous best version, BLIP-FLanT5xxL, the
state-of-the-art vision-language model mPlug-Owl (trained
on a vast amount of both text and vision-text data), and
our baseline, InstructBLIP. The results are illustrated in Ta-
ble 1. Our model consistently shows significant improve-
ment across all the text-rich VQA datasets compared to
InstructBLIP. Note that since InstructBLIP utilized OCR-
VQA as its training dataset, the comparison for this spe-
cific dataset isn’t zero-shot. We evaluated both InstructBLIP
and our model using the OCR-VQA validation set. BLIVA
achieved state-of-the-art results among 6 text-rich datasets
while mPlug-Owl performed the best in 4 datasets. Com-
pared to mPlug-Owl, which employs about 1104M image
captioning data in the Pre-training stage, BLIVA only em-
ploys 558K image caption pairs which could explain why

BLIVA is not performing the best in information-based
VQA tasks such as InfoVQA, ChartQA and ESTVQA.
BLIVA demonstrates the best performance on average com-
pared to all previous methods, underscoring our design
choice to employ learned query embeddings, further aided
by encoded patch embeddings.

Zero-shot evaluation for general (not particularly text-
rich) VQA benchmarks Next, we compared BLIVA with
models that employ single image features. Results are given
in Table 2 and in Table 3 for LLMs available for commer-
cial use. Our model consistently and significantly outper-
formed the original InstructBLIP model in VSR, IconQA,
TextVQA, Visual Dialog, Hateful Memes, MSRVTT, and
Flickr30K. For VizWiz, our model nearly matched Instruct-
BLIP’s performance. This naturally raises the question: why
didn’t additional visual assistance improve all the bench-
marks? We speculate that the additional visual information
didn’t aid VizWiz task. We continue to investigate this phe-
nomenon in the next ablation study section. Overall, our de-
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Models VSR ↑ IconQA ↑ TextVQA ↑ Visdial ↑ Flickr30K ↑ HM ↑ VizWiz ↑ MSRVTT ↑
(val) (val-dev) (val-dev)

BLIP-2 (FlanT5XXL) (Li et al. 2023b) 68.2 45.4 44.1 46.9 73.7 52.0 29.4 17.4
InstructBLIP (FlanT5XXL) (Dai et al. 2023) 65.6 51.2 46.6 48.5 83.5 53.6 41.35 20.79
BLIVA (FlanT5XXL) 68.82 52.42 57.2 36.18 87.66 50.0 43.97 23.78

Table 3: Zero-shot results on general (not particularly text-rich) VQA benchmarks for models with open LLM eligible for
commercial use. Here, the commercial use applicable LLM we reported is FlanT5XXL. Same as Table 2, we report the same
evaluation datasets with the same evaluation metrics.

Model Overall ↑ Perception ↑ Cognition ↑
Exist. Count Pos. Color OCR Poster Cele. Scene Land. Art. Comm. Num. Trans. Code

LLaVA(Liu et al. 2023a) 712.5 50.0 50.0 50.0 50.0 50.0 50.0 48.8 50.0 50.0 49.0 57.1 50.0 57.5 50.0
MiniGPT-4(Zhu et al. 2023) 694.3 68.3 55.0 43.3 43.3 57.5 41.8 54.4 71.8 54.0 60.5 59.3 45.0 0.0 40.0
mPLUG-Owl(Ye et al. 2023) 1238.4 120.0 50.0 50.0 50.0 65.0 136.1 100.3 135.5 159.3 96.3 78.6 60.0 80.0 57.5
InstructBLIP(Dai et al. 2023) 1417.9 185.0 143.3 66.7 66.7 72.5 123.8 101.2 153.0 79.8 134.3 129.3 40.0 65.0 57.5
BLIP-2(Li et al. 2023b) 1508.8 160.0 135.0 73.3 73.3 110.0 141.8 105.6 145.3 138.0 136.5 110.0 40.0 65.0 75.0
BLIVA 1669.2 180.0 138.3 81.7 180.0 87.5 155.1 140.9 151.5 89.5 133.3 136.4 57.5 77.5 60.0

Table 4: Evaluation of MME-Benchmark. Here we report the results on all the sub tasks, including Existence(Exist.),
Count, Position(Pos.), Color, OCR, Poster, Celebrity(Cele.), Scene, Landmark(Land.), Artwork(Art.), Commonsense Reason-
ing(Comm.), Numerical Calculation(Num.), Text Translation(Trans.), and Code Reasoning(Code). We bold the highest overall
score and highlight the Top-2 model of each sub task with underline.

Instruct- Baseline Patch Pre- Fine- ST- OCR- Text– Doc- Info- Chart- EST- FUNSD SROIE POIE Improvement
BLIP (Instruction Embed- Training tuning VQA VQA VQA VQA VQA QA VQA

Tuning dings LLM
Qformer)

✓ 28.64 47.62 39.60 5.89 13.10 5.52 47.66 0.85 0.64 2.66 + 0 %
✓ ✓ 30.08 65.8 40.5 6.13 12.03 8.08 47.02 0.85 0.57 2.62 + 7.40%
✓ ✓ ✓ 28.86 65.04 40.7 6.65 14.28 8.24 47.72 1.19 1.66 2.83 + 31.72%
✓ ✓ ✓ ✓ 29.08 65.38 42.18 6.24 13.50 8.16 48.14 1.02 0.88 2.91 + 17.01%
✓ ✓ ✓ ✓ ✓ 29.94 66.48 41.9 6.47 12.51 7.52 46.76 1.02 0.51 2.85 + 9.65%

Table 5: Results of adding individual techniques of our framework in text-rich VQA benchmarks. We include four ablations
that accumulate each technique (i) baseline: instruction tuning InstructBLIP’s Qformer. (ii) instruction tuning patch embeddings
(iii) pre-training stage of patch embeddings (iv) Finetuning LLM with LORA during the instruction tuning stage.

Instruct- Baseline Patch Pre- Fine- VSR IconQA TextVQA Visdial Flickr HM VizWiz MSRVTT Improvement
BLIP (Instruction Embed- Training tuning 30K (val) (val-dev) (val-dev)

Tuning dings LLM
Qformer)

✓ 54.3 43.1 50.1 45.2 82.4 54.8 43.3 18.7 + 0%
✓ ✓ 58.67 44.34 37.58 40.58 84.61 50.6 44.1 20.97 - 1.91%
✓ ✓ ✓ 58.85 44.91 58.8 41.67 87.4 49.1 42.83 23.70 + 5.43%
✓ ✓ ✓ ✓ 62.2 44.88 57.96 45.63 87.1 55.6 42.9 23.81 + 8.61%
✓ ✓ ✓ ✓ ✓ 51.39 41.34 57.82 42.32 82.7 46.2 44.91 22.67 + 1.15%

Table 6: Results of adding individual techniques of our framework in general (not particularly text-rich) VQA benchmarks. We
include four ablations that accumulate each technique same as in Table 5.

sign not only achieved significant improvements in under-
standing text-rich images but also improves 7 out of 8 gen-
eral VQA benchmarks.

MME Benchmark We further evaluated BLIVA on a
comprehensive Multlimodal LLM benchmark (MME) (Fu
et al. 2023). As illustrated in Table 4, BLIVA demonstrates

the best performance among the current methods for both the
perception and cognition tasks overall. For all text-rich tasks
such as OCR, Poster, Numerical Calculation, Text Trans-
lation, and code, BLIVA outperforms InstructBLIP. BLIVA
achieved top 2 performance across all the tasks except art-
work and landmark which demand extensive informational
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knowledge. This is consistent with our findings from infor-
mational VQA, indicating that our light-weight pre-training
stage and the missing LAION-115M web image caption
dataset during instruction tuning stage both likely contribute
to a degradation in BLIVA’s internet knowledge base.

2. How do the individual components of our method
influence its success?

To investigate the impact of image-encoded patch embed-
dings, the pre-training stage, and fine-tuning the LLM, we
conducted ablation studies, incorporating each element re-
spectively. For simplicity, here we only conduct ablation on
the BLIVA (Vicuna-7B) model. Since our baseline is the In-
structBLIP, we report the results of using baseline alone as
directly finetuning the InstructBLIP model with our data and
implementation.

Ablation in text-rich VQA benchmarks For text-rich
image related tasks, Table 5 illustrates the results of adding
each technique separately. Compared to the baseline, adding
patch embeddings improved performance across all tasks
with the exception of ST-VQA and OCR-VQA. This can
stem from data contamination, as STVQA includes data
already present in InstructBLIP’s Qformer training set but
not included in patch embedding’s training set. Without the
pre-training stage, the performance of ST-VQA, OCR-VQA,
TextVQA, ESTVQA, and POIE decreased, while the rest are
benefited. Since the pre-training stage employs image cap-
tion pairs, we observed that it didn’t benefit BLIVA’s perfor-
mance in text-rich VQA tasks as consistently as in the gen-
eral VQA tasks. Considering the improvement of all tasks,
pre-training is still adopted. BLIVA on average outperforms
InstructBLIP by 31.72% without pre-training and 17.01%
with it, both outpacing the 7.40% improvement from instruc-
tion tuning Qformer. These studies indicate that our design
of employing patch embeddings provides more detailed vi-
sual information. It also supports our hypothesis that an ad-
ditional visual assistant improves visual knowledge in areas
where the query embeddings either neglect or have limited
extraction capabilities.

Ablation in general (not particularly text-rich) VQA
benchmarks As illustrated in Table 6, the presence of
encoded patch embeddings improves performance in all
benchmarks significantly except HM and VizWiz. For tasks
where we observed a drop in performance, such as HM,
which focuses on interpreting the feeling of hatefulness, and
VizWiz, which predicts whether a visual question can be an-
swered. We conjecture these tasks can be fulfilled by utiliz-
ing global-level query embeddings information such as feel-
ing the hatefulness in the image or if the image’s object is
unrelated to the question asking. When adding the first pre-
training stage, the performance for VSR, VisDial, HM, and
MSRVTT tasks improves substantially while others are kept
roughly the same. These ablation results confirmed the ne-
cessity of two-stage training. During the instruction tuning
stage, we also experimented with fine-tuning the LLM us-
ing LoRA in conjunction with Q-former and encoded patch
embeddings. However, this approach didn’t yield as much
improvement as our best model and even reduced perfor-
mance in many tasks. Nonetheless, we have included these
results in the ablation study for completeness. We conjec-

Models Accuracy (%)
MiniGPT4 (Zhu et al. 2023) 47.75
LLaVA (Liu et al. 2023a) 41.75
InstructBLIP (Dai et al. 2023) 82.2
BLIVA (Vicuna-7B) 83.5

Table 7: Evaluation results of our collected Youtube thumb-
nails dataset. We report the top-1 accuracy (%).

ture that frozen LLM has a satisfactory understanding of vi-
sual information after our two-stage alignment. The visual
embeddings are interpreted as a ”foreign language” to LLM
and thus finetuning LLM together is not needed in this case.

3. How does BLIVA enhance the recognition of
YouTube thumbnails?

Youtube Thumbnails Evaluation Table 7 illustrates the
results of the youtube thumbnail dataset with BLIVA achiev-
ing the best performance. From an application perspective,
BLIVA has the ability to extract extra visual information
from images besides extracting information from YouTube
captions alone like LLMs. Our success in this use case can
be further expanded to large-scale thumbnail images.

Qualitative Analysis
We use real-life scene images, movie posters, webpages, and
memes to demonstrate our model’s performance regarding
interaction with humans based on text-rich images. The ex-
amples are in Appendix of arXiv version. BLIVA showcases
exceptional OCR capabilities, paired with a robust localiza-
tion ability that accurately identifies texts and objects within
images.

Conclusion
In this paper, we illustrate the effectiveness of assisting
learned query embeddings with encoded image patch em-
beddings as a visual assistant. This straightforward yet in-
novative design bolsters performance in both general VQA
benchmarks and text-rich VQA benchmarks. Our model,
BLIVA, demonstrates superior performance in both aca-
demic benchmarks and qualitative real-world examples.
Moreover, human evaluation of the model’s performance re-
veals that BLIVA struggles with deciphering numerical sym-
bols in images. This could be attributed to the reduced pixel
representation often used for these symbols and needs future
work to develop valuable insights. Our work also demon-
strates the effectiveness of mixing different types of visual
embeddings. We encourage more future work to explore
how to scale more visual embeddings to LLM which can be
the key to the next stage of Large Vision-Language Models.
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