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Abstract

Cross domain medical image reconstruction aims to address
the issue that deep learning models trained solely on one
source dataset might not generalize effectively to unseen tar-
get datasets from different hospitals. Some recent methods
achieve satisfactory reconstruction performance, but often at
the expense of extensive parameters and time consumption.
To strike a balance between cross domain image reconstruc-
tion quality and model computational efficiency, we propose
a lightweight sparse Bayesian deep learning method. Notably,
we apply a fixed-form variational Bayes (FFVB) approach
to quantify pixel-wise uncertainty priors derived from degra-
dation distribution of the source domain. Furthermore, by
integrating the uncertainty prior into the posterior sampled
through stochastic gradient Langevin dynamics (SGLD), we
develop a training strategy that dynamically generates and
optimizes the prior distribution on the network weights for
each unseen domain. This strategy enhances generalizability
and ensures robust reconstruction performance. When evalu-
ated on medical image reconstruction tasks, our proposed ap-
proach demonstrates impressive performance across various
previously unseen domains.

Introduction

Image reconstruction is a crucial task in medical image pro-
cessing that involves estimating the degradation distribution
from the given input and removing it to obtain a clean image.
Previous methods, such as deep neural networks (DNN5s)
and generative adversarial networks (GANs), have demon-
strated remarkable performance in medical image denois-
ing and artifact removal (Ronneberger, Fischer, and Brox
2015; Zhang et al. 2017; Chen et al. 2017; Zhu et al. 2017).
Such deep learning (DL) methods typically operate under
the assumption of consistent degradation features between
training and testing datasets, a simplification that diverges
from real-world application. Clinical datasets are inherently
varied, affected by differences in scanning protocols, imag-
ing equipment manufacturers, and patient demographics (Li
et al. 2020), evident during simulations as well as actual pa-
tient assessments. Consider the example in Figure 1 which
contrasts two distinct cross domain scenarios in medical im-
age reconstruction: distribution shift and domain shift. The
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Figure 1: Examples of two kinds of cross domain scenarios
in medical image reconstruction tasks: distribution shift and
domain shift.

varying texture of smooth regions in low-dose abdominal
and head computed tomography (CT) scans, along with the
diversity in artifact expression across magnetic resonance
image (MRI) datasets, highlight the substantial divergence
between source (training data) and target (testing data) do-
mains. This gap presents evident challenges for the scala-
bility and real-world applicability of DL in a clinical set-
ting, with models prone to overfit to training data and subse-
quently lose generalization capabilities when encountering
new degradation types. Consequently, the ability to bridge
source-target domain discrepancies is crucial for the deploy-
ment of DL in medical image reconstruction tasks.

Recent progress in Bayesian deep learning offers promis-
ing solutions to the prevalence of overfitting in conven-
tional reconstruction networks (Xu, Zhang, and Zhang 2020;
Zhang et al. 2020a; El Helou and Siisstrunk 2020). Bayesian
neural networks, in contrast to their traditional counterparts,
infer a posterior distribution over model parameters, thus
encapsulating the underlying uncertainty. This approach af-
fords a more nuanced representation of parameter uncer-
tainties, which is particularly advantageous in handling the
erratic nature of real-world clinical data. To address the
cross domain problem, some methods (Shankar et al. 2018;
Manakov et al. 2019; Du, Chen, and Yang 2020; Huang
et al. 2020) have been proposed to transfer the image from
the noise domain to the clean domain, based on the simi-
larity between the query image and support example. For
instance, hybrid discriminator cycleGAN (Manakov et al.
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2019) and CaGAN (Huang et al. 2020) have advanced the
field of medical image reconstruction by focusing on dual-
domain networks (Ganin et al. 2016). Nevertheless, these
approaches tend to overlook the variations of degradation.
In the pursuit of achieving both robustness and adaptability,
certain hybrid approaches have emerged, aiming to integrate
deep networks into traditional optimization algorithms. One
such example is the utilization of deep plug-and-play (PNP)
methods (Zhang et al. 2021; Huang et al. 2022), in which
pretrained convolutional neural networks (CNN) are inte-
grated as priors within iterative optimization frameworks de-
signed for various image reconstruction tasks. Regrettably,
these methods tend to face the drawback of time-consuming
inference processes. Inspired by establishing a connection
between model-based approaches and DL methodologies,
Mou et al (Mou, Wang, and Zhang 2022) propose a deep
generalized unfolding network (DGUNet) with good inter-
pretability. While the proposed proximal gradient descent
(PGD) algorithm enhances the deep unfolding networks
(DUN), this method also requires numerous parameters. To
rectify the above issues, we propose a sparse Bayesian deep
learning method into a CNN-based reconstruction network,
ensuring regularization and the retention of source domain
knowledge to mitigate overfitting and maintain robustness.
The contributions of this paper have three-folds:

* A sparse Bayesian deep learning method has been pro-
posed to optimize the variational inference steps with less
computational cost and higher reconstruction accuracy.

* We generalize fixed-form variational Bayes (FFVB) to
a general form under Gaussian distribution, and prove
the feasibility of sparse Bayesian Learning in Gaussian
regression model. The model is adopted to quantify the
pixel-wise uncertainty priors derived from the degrada-
tion distribution extracted from the source domain.

* By integrating uncertainty prior into the posterior sam-
pled by stochastic gradient Langevin dynamics (SGLD),
a training strategy is developed to dynamically optimize
the prior distribution on the network weights under each
unseen domain to improve generalizability.

Related Work
Bayesian Deep Learning

Bayesian learning techniques have received much atten-
tion in various image reconstruction tasks, which allows es-
timation of prediction uncertainty (Bishop and Nasrabadi
2006). The uncertainty is usually divided into random un-
certainty and cognitive uncertainty (Kendall and Gal 2017),
where the random uncertainty comes from the noise in the
data. Bayesian neural network (BNN) is capable of incor-
porating uncertainty through priors on network weights,
thus enabling variational inference about the loss function
through posterior predictive distributions (MacKay 1992;
Neal 2012). For instance, Chen et al. (Chen et al. 2023) pro-
pose a novel Bayesian noise uncertainty alignment (BNUA)
method to conduct implicit noise distribution modeling and
alignment in the latent space due to its impressive ro-
bustness. Bayesian deep learning methods have also been
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adeptly utilized in high-stakes applications such as enhanc-
ing the resolution of extremely low-dose CT (LDCT) im-
ages through Bayesian inversion coupled with conditional
Wasserstein GANs (Adler and Oktem 2019), as well as
in MRI super-resolution tasks that employ subpixel con-
volutional networks augmented with adaptive dropout rates
(Tanno et al. 2017).

Cross Domain Medical Image Reconstruction

Cross domain framework is designed to improve the robust-
ness in unseen domains (test datasets). Some proposed ap-
proaches, like Du et al. (Du, Chen, and Yang 2020), aim
to learn an invariant representation devoid of noise through
disentangled learning, aligning the features of reconstructed
clean observations within a latent space for adaptation.
Zhang et al. (Zhang et al. 2020b) propose a noise adapta-
tion generative adversarial network (NAGAN) to generate
identical noise patterns and preserve content by mapping
data between domains. Despite their ability to retain cer-
tain semantic and background information, these methods
depend on noise invariance. To address this constraint, Li et
al. (Li et al. 2022) devise a Gaussian mixture model (GMM)
to characterize noise distribution by classifying device pa-
rameters that influence noise. Although the GMM-based
approach outperforms the parameter-dependent framework
(PDF) introduced by Xia et al. (Xia et al. 2021) in modeling
robust noise characteristics of LDCT images under various
noise types, assuming a constant current during CT scan-
ning, especially for the chest and abdomen, is untenable. On
the other hand, Huang et al. (Huang et al. 2023) pioneer a
novel cross domain denoising network (CDDnet) founded
on a triplet loss to achieve local information alignment.

Proposed Method

Preliminary

In a cross domain scenario, domains are partitioned into dis-
tinct non-overlapping source domains denoted as .S and tar-
get domains denoted as T'. Throughout the training phase,
solely the data from source domains is available, while
data from the target domains remains unobserved. The ob-
jective is to construct a model exclusively using the data
from source domains, which demonstrates effective gen-
eralization across the target domains. Given a source do-
main, there are n corrupted images with paired references,
denoted respectively as X° = {x{,---,x7} and Y*
{y?,--+,y>}. In target domain, there are m corrupted im-
ages available, denoted as X7 = {xT,... | xT 1.

Sparse Bayesian Formulation

Fixed-form Variational Bayes Bayesian Learning typi-
cally relies on Bayesian inference to estimate the parameters
of a model and the associated uncertainties. In the context
of image analysis where each pixel intensity is assumed to
follow a Gaussian distribution, obtaining pixel-wise uncer-
tainty involves the estimation of the variance for each pixel’s
Gaussian distribution. Variational Bayes (VB) is a method
to approximate these posterior distributions without direct
computation. To formalize this, we describe the generative
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Figure 2: Overview of the proposed framework, using LDCT images as an example. The left side of the framework depicts
the alignment process during both the training phase for source domain and the testing phase for target domain. On the right,
two main phases are detailed: 1) Training Phase, showcasing a convolutional encoder-decoder network for reconstruction with
a three-layer sparse Bayesian inference structure. 2) Testing Phase. As target domain data become available, dynamic updated
prior accommodates for uncertainty and is fine-tuned to adapt through backpropagation, which also adjusts hyperparameters.

model for each pixel value. Assuming each pixel ¢ is inde-
pendent, the likelihood of an observed image y given the
latent variables x and hyperparameters 6 is:

N
p(y|X,9) :HN(yz|f(I‘z,0),UL2), ()
i=1
where N is the number of pixels per image, AV represents the
Gaussian distribution, y; is the observed intensity of pixel ¢,
f(x;,0) denotes the encoder of an autoencoder that maps
the latent variable ( x; ) to the mean of the Gaussian dis-
tribution with outputing a mean g, and variance log o? for
each pixel’s latent representation. o2 is the variance of the
Gaussian for pixel ¢, representing the uncertainty in the in-
tensity measurement.
The posterior distribution we want to estimate is:

p(x,0ly) o« p(y|x,8), p(x), p(6), ()
where p(x) and p(0) are priors on the latent variables and
hyperparameters, respectively. Here, we impose a Laplace
prior on both of these to induce sparsity. The Laplace dis-
tribution is chosen due to its heavier tails compared to the
Gaussian distribution, leading to a higher probability of co-
efficients being close to zero, which encourages sparsity.
Assumption 1. The variational posterior can be factorized
as gy(w) = Hle N (w;|pi, 02), with the number of layers
L. In each forward pass, all the weights are sampled using
reparameterizationw = p+ o © ¢ ~ N (0, I).

Followed the Assumption 1, FFVB approximates the true
posterior distribution with a factorized distribution that can
be optimized to be as close as possible to the true posterior
by minimizing the Kullback-Leibler (KL) divergence from
¢4 (w) to the true posterior.

Assumption 2. A fixed parametric form for the VB approx-
imation density q, e.g., ¢ = @ belongs to some class of
distributions Q indexed by a vector v called the variational
parameter.
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Theorem 1. Suppose the multiple satisfies Assumption (2),
Gv can be a Gaussian distribution with mean . and covari-
ance matric A.

The variational parameters ¢ = (u, o) are optimized by
minimizing the negative [og evidence lower bound. This ef-
fectively doubles the number of trainable parameters and is
known as Bayes by backdrop (Blundell et al. 2015).

Dynamic Optimization To update the prior distribution
on network weights, we follow the Bayesian principle to
define an appropriate objective based on Assumption 2 and
Theorem 1. The target is the posterior distribution over the
network weights, given data from both the source domain
(seen during training) and target domains (unseen during
training). With a focus on generalizability, we seek to up-
date our prior knowledge as target domain data arrives,
while integrating uncertainty estimation into the learning
process. SGLD combines ideas from stochastic gradient de-
scent (SGD) with elements from Langevin dynamics by
injecting controlled noise that reflects uncertainty in the
model. In this paper, this noise is directly related to the pos-
terior distribution we are trying to sample from. The update
rule for the weights using SGLD can be formularized as:

Aﬁt = etV 1ng(0t_1|D) + 2€tN(O,I), (3)

where D is the training data, 6, are the parameters at itera-
tion ¢, €;is the learning rate, and N (0, I) represents isotropic
Gaussian noise.

As new data from the target domain becomes available,
we update the prior distribution of the network weights to
reflect the new information. The updated prior account for
the uncertainty inherent to the unseen domain and dynam-
ically adjust to fit it. This involves backpropagation to not
only update the weights but also adjust the hyperparameters
governing the prior distribution. Iterate between sampling
(using SGLD) and adapting the prior as more data from the
target domain is encountered. Regularize the learning pro-
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Algorithm 1: Dynamic Prior Optimization with SGLD

Input: Source data Dyoyrce, target data Digrger, Initial prior
distribution p(#), Initial network weights 6y, Learning
rate schedule {e;}, Number of adaptation steps Tigapi,
Number of SGLD iterations Tigq.

Output: Adapted network weights 6.

1: Initialize network weights 6 ~ p(6).

2: fort = 1to Tygq do

3:  Sample mini-batch from Dggyce-

4:  Compute gradient of log-posterior: grad_logpost =
V log p(f|mini-batch).

5:  Inject noise: noise_term = /2¢; N (0, I).

6 Update weights by Eq. (3).

7: end for

8: for t = 1 t0 Tygap do

9:  Sample mini-batch from Dy ger.

0:  Compute gradient of log-posterior with respect to the

target domain.

11:  Update the prior p(f) parameters based on the perfor-

mance on the target domain.

12:  Inject noise: noise_term = /2¢; N (0, 7).

13:  Update weights by Eq. (3).

14: end for

15: return 6.

10:

cess to prevent overfitting to the target domain while still
retaining the knowledge from the source domain.

Model Training

As shown in right side of Figure 2, the encoder denoted
by E, extract pixel-wise features from the input x°. Subse-
quently, guided by the aforementioned Bayesian framework,
the reconstruction network integrates a three-layer sparse
Bayesian inference mechanism. This approach is pivotal for
determining the joint distribution P(X’,)) and for param-
eterizing the posterior distribution P(W|X’,Y) through the
application of SGLD within our conventional reconstruction
network. Followed by this Bayesian regularization, the up-
dated features are then transformed by a decoder G into the
reconstructed image §°. We also apply reconstruction loss
L. and perceptual loss £, to facilitate the training:

2

Lree(E,G) = |y® = 3%, 4)

»Cper = vag(ys) - Ugg(yS)H; ) (5)

where L., is applied to deal with potential issues like
over-smoothing and distortion compared to per-pixel mean-
square error (MSE) loss (Johnson, Alahi, and Fei-Fei 2016).

Furthermore, we introduce a KL divergence loss, Dk,
to enforce the alignment of the latent variable distribu-
tion within the network. This loss component ensures that
the latent representation extracted from the autoencoder (as
shown in the left side of Figure 2) adheres more closely
to a predefined distribution (normal distribution) p(zx~ ~
N(0,1)), thus assisting with the generalization of the model
to target domains without compromising the quality of the

reconstruction. In summary, our model can be trained by
minimizing the following objectives as:

‘Call = )\alignDKL + )\recﬁrec(E7 G) + )\perﬁpew (6)

Experiments
Cross Domain LDCT Image Denoising

Dataset For this application, we train our proposed
method on a phantom dataset (Phantom), in which 500
low-dose and normal-dose CT (NDCT) chest image pairs
corrupted by random radiation levels with unknown distri-
bution have been selected. The first testing dataset AAPM
is authorized by Mayo Clinic for the 2016 NIH-AAPM-
Mayo Clinic Low Dose CT Grand Challenge (McCollough
2016), among which 500 paired chest CT image slices and
same amount of head CT image slices are randomly selected
for testing. Another 500 pairs of chest and head CT im-
age slices are randomly selected from the Low-Dose Paral-
lel Beam (LoDoPaB)-CT dataset (LoDoPaB) (Leuschner
et al. 2021) and the Low Dose CT Image and Projection
Data (LDCT-and-Projection-data) (Moen et al. 2021), re-
spectively. The experiments are divided into three groups:
training on Phantom dataset and testing on AAPM,
LoDoPaB and LDCTPD (i.e, Phantom — AAPM).

Experimental Settings The convolutional layers used in
the encoder are of the kernel size 3, the padding size 1,
and the stride 1, followed the protocol of the modularized
CPCE (Shan et al. 2018). In all experiments, we randomly
crop patches with a batch size of 16 for training. Hyper-
parameters are set t0 Ag1ign=10, Ar¢=0.013 and Ap.,=10.
Number of SGLD iterations Tygq for Phantom data and
number of adaptation steps Tigqp is set to 8. The learning
rate was initially set as 0.001 and reduced to 0.0001 when
the training errors held steady.

Analysis To visualize the reconstruction performance, we
depict the results of head sets selected from LDCT-and-
Projection-data (LDCT PD). To further evaluate the per-
formance of the details, zoomed region-of-interests (ROIs)
of the image are also given, marked by the yellow rect-
angles. We can observe in Figure 3 that our proposed
method achieves relatively better noise suppression on both
head scans from different domains compared with other
methods and reserves better information about the back-
ground. From their enlarged ROIs shown in Figure 3, we
see that they have good reconstruction performance but lose
some fine structural objects compared to the ground truth
(NDCT) image. We calculate four full-reference quality as-
sessments, Peak Signal Noise Rate (PSNR), structural simi-
larity (SSIM), information fidelity criterion (IFC) (Sheikh,
Bovik, and De Veciana 2005), and visual information fi-
delity (VIF) (Sheikh and Bovik 2006). The values are cal-
culated over all CT images selected from four datasets. Ta-
ble 1 and Table 2 summarize the comparison results tested
on the testing sets. Among the four metrics, PSNR and SSIM
have more focus on pixel-level similarity, VIF and IFC have
more focus on psychovisual features of the human visual
system (HVS) by using natural statistics models. Our pro-
posed method achieves the highest values of four metrics in
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Figure 3: Performance comparison of different methods on the head slices from LDCT PD. All methods are trained on the
chest sets from Phantom. The display window is [-10, 80]HU.

Phantom — AAPM

Phantom — LoDoPaB

Phantom — LDCTPD

Method
PSNR1 SSIM4t VIF{ IFCt PSNRt SSIMt VIFt IFCt PSNRT SSIMt VIEt IFC1H
DIP 24.43 0.850 0.205 1.272 25.33 0.825 0.203  1.283 26.72 0.905 0.205 1.443
CycleGAN 25.98 0.857 0.212  1.321 26.64 0.842 0.201  1.395 27.92 0.918 0.208 1.452
Du et al. 26.24 0.852 0.193 1.393 27.10 0.892 0.210 1.475 28.97 0.921 0.218 1.462
DPIR 27.93 0.863 0.199 1.393 28.50 0.904 0.217 1.496 30.42 0.935 0.225 1.494
DGUNet 28.42 0.866 0.208  1.400 29.75 0914 0.225 1.567 31.79 0.948 0.229 1.508
Ours 29.46 0.899 0.234 1.495 30.45 0.926 0.248 1.592 32.81 0.955 0.231 1.516

Table 1: Quantitative results of LDCT image denoising from chest to head. All the methods are trained on chest slices set from
Phantom and tested on each head set from AAPM, LoDoPaB and LDCT PD. The best scores are highlighted in bold.

Phantom — AAPM

Phantom — LoDoPaB

Phantom — LDCTPD

Method
PSNR1 SSIM1 VIF{ IFCt PSNRt SSIMt VIFt IFCt PSNRT SSIMt VIE{ IFC1t
DIP 25.62 0.840 0.209 1478 27.03 0.853 0.207 1.458 28.93 0911 0.214 1.448
CycleGAN 26.05 0.897 0.223  1.453 28.31 0.864 0.205 1.489 29.48 0.924 0.227  1.469
Du et al. 23.92 0.844 0.204  1.309 28.02 0.902 0.214  1.490 30.73 0.930 0.239 1476
DPIR 25.84 0.892 0.213  1.396 29.03 0.910 0.219  1.509 31.16 0.935 0.240 1.486
DGUNet 27.24 0.934 0.225 1425 29.35 0.913 0.220 1.510 33.00 0.946 0.249  1.490
Ours 28.82 0.946 0.230 1.489 29.93 0.914 0.230 1.519 32.33 0.950 0.249 1.498

Table 2: Quantitative results of LDCT image denoisng from head to chest. All the methods are trained on selected head slices

set and tested on chest set. The best scores are highlighted in bold.

all experiments. The reconstructed images in Figure 3 also
show that our proposed model achieves a better balance of
reconstruction and structure preservation.

Cross Domain MRI Artifact Removal

Dataset We also conduct cross domain pseudo-artifact re-
moval comparative experiments with mainstream models
and the models proposed earlier on the MRNet dataset (Bien
et al. 2018) and the ADNI dataset (Jack Jr et al. 2008).
The experiments are divided into two groups: training on
the ADNI dataset and testing on the MRNet dataset (i.e.,
ADNI — MRNet), and training on the MRNet dataset
and testing on the ADNI dataset (i.e., M RNet — ADNI).
The quantitative results of the comparative experiments are
shown in Table 3, where the values in parentheses represent
the results of the models trained and tested on the same-
domain dataset (i.e., ADNI — ADNI).
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Experimental Settings In this experiment, we use 3D-
CPCE (Shan et al. 2018). As the downsampling layers of the
3D-CPCE encoder do not perform on the depth, we can eas-
ily set kernel size as 3, the padding size as 1, and the stride as
1 in each 3D convolutional layers. Hyper-parameters are set
t0 Aatign=7, Arec=0.02 and A,e-=5. Number of SGLD iter-
ations Tygq for ADN T data and number of adaptation steps
Tigapt Tor M RNet is set to 8. Number of SGLD iterations
Tie1a for M RN et data and number of adaptation steps Thdapt
for ADNT is set to 10.

Analysis From Table 3, it can be observed that the notable
disparities in data distribution between the training and test-
ing sets lead to a significant deterioration in the model’s arti-
fact correction performance. Whether transitioning from the
ADNI dataset to the MRNet dataset or vice versa, there is an
average decrease of approximately 32.5% in PSNR and an
average decrease of about 5.17% in SSIM. Additionally, the
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Figure 4: Visual comparison of MRI artifact removal. All the methods are trained on knee MRI data from M RNet and tested
on head data from AD N I, Our method performs better with the result are visually closer to the ground truth.

ADNI — MRNet

MRNet — ADNI

Model
PSNR 1 SSIM 1t PSNR 1 SSIM 1
CycleGAN  18.82(29.39) 0.904(0.958) 19.27(32.28) 0.737(0.894)
DeblurGAN  18.70(28.30)  0.895(0.950) 23.25(34.31)  0.722(0.958)
DPIR 24.38(32.55) 0.939(0.986) 25.17(37.42) 0.824(0.979)
DGUNet 26.42(33.49) 0.949(0.982) 26.49(37.90) 0.845(0.985)
Ours 28.85 0.963 29.45 0.894

Table 3: Quantitative results of cross domain MRI artifact removal between simulated datasets.

MAP MCD

Corrupted

Bayesian DIP

SGLD FFVB+MCD FFVB+SGLD Ground Truth

Figure 5: Ablation studies of different parts of Bayesian deep learning methods on AAPM.

transition from the MRNet dataset to the ADNI dataset expe-
riences an average decrease of around 20.3% in PSNR and
6.52% in SSIM. This phenomenon might be attributed to
the higher complexity of head structures compared to knee
structures, a detailed analysis of which will be presented in
subsequent sections in conjunction with visualized results.
Furthermore, it can be observed in Figure 4, the proposed
method achieves favorable generalization performance, with
an average improvement of approximately 30.2% in PSNR
and about 6.32% in SSIM. Compared with other methods,
our proposed method achieves reconstructions that are clos-
est to the ground truth image.

Ablation Study

To evaluate the effectiveness of our dynamic optimiza-
tion approach, we benchmark it against five baseline
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Bayesian inference techniques. The reconstructions from
Bayesian Deep image prior (DIP) and MAP exhibit notice-
able artifacts; however, the results from SGLD, MCD, and
FFVB combined with MCD (FFVB+MCD) are markedly
smoother. Importantly, images reconstructed by our model
(FFVB+SGLD) achieve an improved balance between de-
tail retention and artifact reduction, as evident in Figure 5.
Notably, Bayesian DIP tends to preserve more structural in-
tegrity than MAP, suggesting that MAP may discard sub-
tler details. The application of Bayesian Optimization (BO)
broadens the critical period before overfitting for both SGLD
and MCD, underlining that early stopping is still a prereq-
uisite for optimal reconstruction quality. Our FFVB-based
method, however, successfully avoids overfitting to erro-
neous patterns and distinctly surpasses other methods in
PSNR and SSIM across all test images, detailed in Table 4.
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Phantom — AAPM

Phantom — LoDoPaB

Phantom — LDCTPD

Method
PSNR 1 SSIM 1 PSNR 1 SSIM 1 PSNR 1 SSIM 1
Bayesian DIP 24.58 0.853 24.19 0.836 21.39 0.809
MAP 25.64 0.843 2591 0.843 22.69 0.832
MCD 26.58 0.883 26.19 0.871 26.46 0.852
SGLD 26.28 0.888 26.98 0.872 25.36 0.855
FFVB+MCD 26.64 0.893 2791 0.883 27.29 0.885
FFVB+SGLD (Ours) 27.33 0.905 27.01 0.896 29.44 0.891
Table 4: Quantitative results with different Bayesian inference methods.
100 Bayesian DIP Consumption Time Params MACs Memory
% MAP DIP 1146 1324  2.100 9.160
Z'SED CycleGAN 22.24 7.500 5.000 19.34
80— vesmeo Duetal. 26.24 10.24 13.00 18.00
40 :S\::f;ZD ‘ LMY DPIR 30.05 15.93 1.320 43.00
—— FFVB+SDLG (Ours) / 1 / DGUNet 46.44 22.30 12.07 63.70
20 : Ours 27.19 13.32 2.650 11.26
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Figure 6: The accuracy of uncertainty estimation with dif-
ferent Bayesian inference methods during the training stage.

Furthermore, as illustrated in Figure 6, our proposed ap-
proach demonstrates the smallest absolute error in compari-
son to all evaluated Bayesian methods.

Evaluation

Computational Cost We compare the computational cost
of each model in the four dimensions of T@me, Paras,
MAC's, and Memory. Among them, Time refers to the
average training time of one epoch. Params refers to
the total number of parameters that a layer model needs
to train. M AC's stands for multiply-accumulate opera-
tions when a layer model is trained. Memory refers to
the maximum memory required by the entire model dur-
ing training. Both Params and M AC's are calculated us-
ing PyTorch-OpCounter, and Memory is calculated using
Pytorch-Memory-Utils. Table 5 shows that the training time
of our proposed method is shorter. And Params, M AC's
and M emory required for training are far within the range
that the server can afford. Therefore, the proposed method
can obtain excellent results at a small computational cost.

Interpretability Our proposed method, like DIP and
MAP, ensures that the features and the target results main-
tain the same development trend by imposing partial mono-
tonicity constraints, thus generating quantifiable feature im-
portance. Table 6 shows the feature importance ranking of
the models from high to low, and the correlation between
different models’ rankings is shown by Kendall’s tau coeffi-
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Table 5: Comparison of computational cost.

Feature Ours DIP MAP
Laplace and Guassian (LOG) 1 5 3
Scale-Invariant Feature 3 4 2
Fourier Energy Spectrum 2 3 1
Laws Texture Energy Metric 5 1 5
Normal Vector Flows (NVFs) 4 2 4

Table 6: Feature importance ranking for reconstruction.

cient (Van Doorn et al. 2018). Due to the different degrees of
attention to features among models, the correlation between
our method and other models also varies. Our method can
achieve a correlation of 0.733 and pays more attention to
Laplace and Guassian (LOG) and Fourier energy spectrum,
two features that describe the image edge and noise charac-
teristic, than other models, and these two features rank first
and second in the ranking, respectively.

Conclusion

In addressing the challenge of medical image reconstruc-
tion across diverse domains, we present a lightweight
sparse Bayesian learning approach, tailored for cross do-
main adaptability and efficiency. Our method utilizes FFVB
to capture pixel-wise uncertainty and leverages SGLD to
dynamically optimize the prior distribution for network
weights. Through this approach, we enhance the model’s
generalizability and robustness in reconstructing medical
images from unseen domains. Comparative evaluations on
LDCT and MRI datasets confirm the effectiveness of our
methodology over existing techniques, achieving better per-
formance in cross domain reconstruction tasks.
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