
SC-NeuS: Consistent Neural Surface Reconstruction from Sparse and Noisy Views
Shi-Sheng Huang1, Zixin Zou2, Yichi Zhang3, Yan-Pei Cao4, Ying Shan4

1Beijing Normal University
2Tsinghua University

3Beijing Institute of Technology
4 ARC Lab, Tencent PCG

huangss@bnu.edu.cn, zouzx19@mails.tsinghua.edu.cn, zhangyc@bit.edu.cn, caoyanpei@gmail.com,
yingsshan@tencent.com

Abstract

The recent neural surface reconstruction approaches using
volume rendering have made much progress by achieving
impressive surface reconstruction quality, but are still lim-
ited to dense and highly accurate posed views. To overcome
such drawbacks, this paper pays special attention on the con-
sistent surface reconstruction from sparse views with noisy
camera poses. Unlike previous approaches, the key difference
of this paper is to exploit the multi-view constraints directly
from the explicit geometry of the neural surface, which can
be used as effective regularization to jointly learn the neu-
ral surface and refine the camera poses. To build effective
multi-view constraints, we introduce a fast differentiable on-
surface intersection to generate on-surface points, and pro-
pose view-consistent losses on such differentiable points to
regularize the neural surface learning. Based on this point, we
propose a joint learning strategy, named SC-NeuS, to perform
geometry-consistent surface reconstruction in an end-to-end
manner. With extensive evaluation on public datasets, our SC-
NeuS can achieve consistently better surface reconstruction
results with fine-grained details than previous approaches,
especially from sparse and noisy camera views. The source
code is available at https://github.com/zouzx/sc-neus.git.

Introduction
3D surface reconstruction from multi-view images contin-
ues to be an important research topic in computer vision
and graphics communities. Unlike traditional Multi-View
Stereo (MVS) based methods leveraging structure from mo-
tion (Sf M) (Snavely, Seitz, and Szeliski 2006) technique for
sparse (Labatut, Pons, and Keriven 2007; Schönberger et al.
2016; Schonberger and Frahm 2016; Xu and Tao 2019) or
dense (Kar, Häne, and Malik 2017; Yao et al. 2018; Xu and
Tao 2020) surface reconstruction, the recent neural surface
reconstruction approaches (Yariv et al. 2020; Wang et al.
2021a; Oechsle, Peng, and Geiger 2021; Huang et al. 2021;
Azinović et al. 2022; Darmon et al. 2022; Fu et al. 2022;
Zou et al. 2022) adopt to learn the deep implicit represen-
tation (Park et al. 2019; Peng et al. 2020; Atzmon and Lip-
man 2020; Jiang et al. 2020) with the aid of volume ren-
dering (Mildenhall et al. 2021), leading to more better com-
plete and fine-grained surface reconstruction quality, which
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Figure 1: Surface reconstruction results from sparse input
images with noisy camera poses. By exploring the multi-
view constraints directly from the explicit geometry of neu-
ral surface, our SC-NeuS can achieve much better surface re-
construction than previous approaches like IDR (Yariv et al.
2020), GeoNeuS (Fu et al. 2022) and SPARF (Truong et al.
2023) etc. Note that GeoNeuS with the coarse-to-fine learn-
ing of BARF (Lin et al. 2021) (termed as GeoNeuS-BARF)
also fails to achieve satisfactory results compared to our SC-
NeuS.

have received much research attention for multi-view image
based 3D reconstruction.

As like NeRF (Mildenhall et al. 2021), one main draw-
back of most neural surface reconstruction approaches
(NeuS (Wang et al. 2021a), VolSDF (Yariv et al.
2021), Unisurf (Oechsle, Peng, and Geiger 2021), Neural-
Warp (Darmon et al. 2022), GeoNeuS (Fu et al. 2022)) is
the dependency on dense input views, which is not suit-
able for many real-world applications with only sparse in-
put views and often noisy camera poses. Some subsequent
works propose to improve the reconstruction quality from
sparse scenarios, by introducing regularization like sparse
points (Deng et al. 2022), multi-views depth priors (Chen
et al. 2021; Niemeyer et al. 2022; Truong et al. 2023), ren-
dering ray entropy (Kim, Seo, and Han 2022) or geometry-
aware feature volume (Long et al. 2022). However, most of
these approaches are still relying on highly accurate camera
poses, which could not be easily obtained using technique
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like COLMAP (2016) for sparse input views.
To overcome the dependency on highly accurate cameras

poses, many recent works propose to jointly learn the deep
implicit geometry and the camera poses, with the guidance
of novel registration from photometric (Chng et al. 2022;
Lin et al. 2021; Meng et al. 2021; Wang et al. 2021c; Yariv
et al. 2020) or silhouette (Boss et al. 2022; Kuang et al.
2022; Zhang et al. 2021) priors. But since those registrations
are often performed independently across dense input views,
the registration quality would significantly drop for sparse
scenarios (Fig. 1), where enough relations across views are
missing to effectively bundle adjust both the deep implicit
geometry and camera poses. It still remains to be challeng-
ing to jointly learn the deep implicit geometry and camera
poses from sparse input views (Zhang, Ramanan, and Tul-
siani 2022) for geometry-consistent surface reconstruction.

This paper proposes a Sparse-view Consisent Neural
Surface (SC-NeuS) learning strategy, which performs
geometry-consistent surface reconstruction with fine-
grained details from sparse and noisy camera poses (as
few as 3 views). Unlike previous independent registrations
from dense input views, we seek to explore more effective
multi-view constraints between sparse views. Due to the
gap between the volume rendering integral and point-based
SDF modeling (Fu et al. 2022), except from relying on
the depth constraints (Chen et al. 2021) rendered from the
under-constrained signed distance field (Fu et al. 2022), we
utilize extra regularization directly from the explicit geom-
etry of the neural surface representation. Our key insight is
that the observation of the explicit surface geometry across
multiple views should be consistent, which can be used
as effective regularization to jointly learn both the neural
surface representation and camera poses. Specifically, we
first introduce a fast differentiable on-surface intersection
to sample on-surface points from explicit geometry of the
neural surface, and then provide effective view-consistent
losses defined on such differentiable on-surface intersec-
tions, which builds up an end-to-end joint learning for the
neural surface representation and camera poses. Besides,
to further improve the geometry-consistent neural surface
learning, we incorporate an coarse-to-fine learning strat-
egy (Lin et al. 2021) for highly accurate and fine-grained
surface reconstruction results.

To evaluate the effectiveness of our SC-NeuS, we con-
duct extensive experiments on public dataset including
DTU (Jensen et al. 2014) and BlendedMVS (Yao et al. 2020)
with various geometry scenarios. Compared with previous
state-of-the-art approaches(Lin et al. 2021; Fu et al. 2022;
Jeong et al. 2021; Yariv et al. 2020; Wang et al. 2021a), our
SC-NeuS achieves consistently better geometry-consistent
surface reconstruction results both quantitatively and quali-
tatively, which becomes a new state-of-the-art neural surface
reconstruction approach from sparse and noisy cameras.

Related Work
Novel View Synthesis. The success of NeRF (Mildenhall
et al. 2021) and subsequent works (Trevithick and Yang
2021; Wang et al. 2021b; Yu et al. 2021) have achieved
impressive novel view synthesis applications. To overcome

the drawback of dense input views, multiple works pro-
pose to extra regularizations or priors for sparse view novel
view synthesis, such as depth and appearance smoothness
(RegNeRF (Niemeyer et al. 2022), MVSNeRF (Chen et al.
2021)), ray entropy regularization (InfoNeRF (Kim, Seo,
and Han 2022)), perceptual losses (SVS (González et al.
2022)), Spatio-Temporal consistency (Li et al. 2023) or ray
distortion (Mip-NeRf360 (Barron et al. 2022)) et al. Be-
sides, some recent approaches (Wei et al. 2021; Deng et al.
2022; Roessle et al. 2022) use depth priors to constrain the
NeRF optimization, which also achieves promising novel
view synthesis results from sparse input views. Different
from these previous approaches, our approaches aims at
geometry-consistent neural surface learning with noisy cam-
era poses, and contributes a joint neural surface learning and
camera pose optimization strategy from sparse input views.

Neural Surface Reconstruction. The neural implicit rep-
resentation (DeepSDF (Park et al. 2019; Jiang et al. 2020))
or NeRF (Mildenhall et al. 2021) has been state-of-the-art
way for neural surface reconstruction. IDR (Yariv et al.
2020) introduces a neural surface rendering based on the
neural implicit representation, which enables precise sur-
face learning from 2D images. The NeRF based approaches
(NeuS (Wang et al. 2021a)) further incorporate more ex-
plicit surface supervisions (GeoNeuS (Fu et al. 2022)),
balance between surface rendering and volume rendering
(UNISURF (Oechsle, Peng, and Geiger 2021)) or multi-
view geometry priors (NeuralWarp (Darmon et al. 2022)) for
more accurate surface learning. However, most of these pre-
vious works depend on dense input views for accurate neural
surface learning, which is not feasible for sparse scenarios.

Recently, SparseNeuS (Long et al. 2022) achieves more
generalizable neural surface learning form sparse input
views, but still relies on highly accurate camera poses. In
contrast, our approaches enables accurate neural surface
learning from sparse input views, and optimizes the noisy
camera poses simultaneously.

Joint Deep Implicit Geometry and Pose Optimization.
BARF (Lin et al. 2021) is probably one of the first works
to reduce NeRF’s dependent on highly accurate camera
poses, by introducing a coarse-to-fine registration strategy.
GARF (Chng et al. 2022) further provides a Gaussian based
activation functions for more robust camera pose refinement.
SCNeRF (Jeong et al. 2021) builds geometric loss optimiza-
tion on the ray intersection re-projection error. Subsequent
works (Boss et al. 2022; Kuang et al. 2022; Zhang et al.
2021) also incorporate the photometric loss from silhou-
ette or mask, but requires accurate foreground segmentation.
However, most of these approaches still depends on dense
input views (Level-S2fM (Xiao et al. 2023)), which will not
be effective for sparse scenarios.

Different from these previous approaches, our approach
explores the view-consistent constraints on the explicit sur-
face geometry of neural surface representation, which pro-
vides more effective cues than rendered depth (Truong et al.
2023) to jointly learn neural surface and refine camera
poses in an end-to-end manner, without need any shape
prior (Zhang et al. 2021) or RGB-D input (Sucar et al. 2021;
Azinović et al. 2022; Zhu et al. 2022).
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Figure 2: The overview of our SC-NeuS. Given sparse input images (as few as 3 views) with noisy camera poses T , our SC-
NeuS represents the object’s geometry as a signed distance field f(x, θ) and perform volume rendering of the geometry with an
extra radiance field c(x, θc, v). Combing the effective view-consistent loss defined on the multi-view differentiable intersection
points on the explicit surface of f(x, θ), with color loss and Eikonal loss, our SC-Neus performs jointly learning of f(x, θ),
c(x, θc, v) and camera poses T in an end-to-end manner, achieving geometry-consistent surface reconstruction results with
fine-grained details.

SC-NeuS
Given sparse view images (as few as 3) with noisy cam-
era poses of an object, we aim at reconstructing the surface
represented by neural implicit function and jointly optimiz-
ing the camera poses. Specifically, for sparse input views
I = {Ii} with noisy camera poses T = {Ti} (i ∈ {1, 2, 3}),
we adopt to represent the object’s geometry as signed dis-
tance field (SDF) f(x, θ) (x ∈ R3, θ is the MLP parameter),
and render its appearance using volume rendering from an
extra radiance field c(x, θc, v) as provided by NeuS (Wang
et al. 2021a).

By introducing effective multi-view constraints across
sparse views, we propose an new joint learning strategy,
called SC-NeuS, for both signed distance field f(x, θ) learn-
ing and camera poses T = {Ti} optimization. Fig. 2 demon-
strates the main pipeline of our SC-NeuS framework in an
end-to-end learning manner.

From Multi-view Constraints to Geometry-consistent
Surface Learning. Unlike the previous approaches (Chng
et al. 2022; Lin et al. 2021; Meng et al. 2021; Yariv et al.
2020) using photometric loss across dense input views in-
dependently, we adopt to exploit multi-view constraints as
extra effective regularization to constraint the surface learn-
ing. Besides, instead of relying on multi-view depth render-
ing prior from the neural surface to multi-view depth pri-
ors (Chen et al. 2021; Truong et al. 2023; Fu et al. 2022), we
propose to utilize more multi-view regularization directly
from the explicit surface geometry of the neural surface. Our
key observation is that the geometry cues (points or patches)
locating on the shape surface should be consistently ob-
served across multi-views, which is intuitively an effective
constraints for geometry-consistent surface learning, espe-
cially in sparse scenarios.

Specifically, we first derive an fast differentiable point
intersection on the explicit surface of signed distance
field f(x, θ). Then we provide view-consistent losses for
two kinds of on-surface geometry cues (3D sparse points

and patches) based on our differentiable point intersec-
tion, including view-consistent re-projection loss and patch-
warping loss , to effectively regularize the joint learning of
signed distance field f(x, θ) and camera poses T . Since
the intersection derived by our approach is differentiable for
both the neural surface parameters θ and camera poses T ,
our neural surface learning can be performed in an end-to-
end manner without any other supervisions.

Differentiable On-surface Intersection
To enable multi-view consistent constraints, the essential re-
quirement of the geometry cues is that they need locate on
the explicit surface, i.e., the zero level set of the signed dis-
tance field f(x, θ). Considering a 2D feature point p ∈ R2 in
the reference image Ii with camera pose Ti, we seek to com-
pute its intersection point P ∗ ∈ R3 on the surface geometry
of signed distance field f(x, θ). According to volume ren-
dering of SDF (Mildenhall et al. 2021; Wang et al. 2021a),
there exists a ray length value t∗ such that:

P ∗ = ci + t∗v, f(P ∗, θ) = 0,

where ci and v are the camera center point and casting ray
of p respectively.

Although IDR (Yariv et al. 2020) have provided a dif-
ferentiable intersection derivation for P ∗, however, which
is somewhat too slow to enable an efficient neural surface
learning. Therefore, we propose a new differentiable on-
surface intersection for fast neural surface learning. Specifi-
cally, as shown in Fig. 3, we first uniformly sample points
in the casting ray v of 2D feature point p with sampling
depth value set T = {tk}. Then we find the depth value
tk such that f(ci + tkv, θ)f(ci + tk+1v, θ) < 0. Finally, we
move tk along the casting ray v to the on-surface intersec-
tion P ∗(Ti, θ, v) following:

P ∗(Ti, θ, v) = ci + tkv −
v

⟨∂f∂x , v⟩
f(ci + tkv, θ). (1)
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Figure 3: The illustration of our fast differentiable on-
surface intersection P ∗(Ti, θ, v), between the explicit sur-
face of signed distance field f(x, θ) and camera view Ti

along the casting ray v.

View-Consistent Loss
Based on our differentiable intersection, we further define
effective losses to neural surface learning in the multi-view
scenario. Specifically, we utilize two kinds of on-surface ge-
ometry cues, i.e., 3D sparse points and patches (Fig. 4), and
formulate view-consistent losses for these on-surface geom-
etry cues respectively.

View-consistent Re-projection Loss. Considering a pair
of 2D feature correspondence (pik, p

j
k) from reference image

Ii (camera pose Ti) and target image Ij (camera pose Tj)
with pik ∈ Ii, p

j
k ∈ Ij , we compute the on-surface inter-

section 3D point P ij
k via our differentiable intersection. By

re-projecting P ij
k back to Ii and Ij , we get the re-projection

location as p̄ik = π(P ij
k , Ti), p̄

j
k = π(P ij

k , Tj), where π(·)
is the camera projection operator. For a geometry-consistent
surface reconstruction, the re-projection error between pik →
p̄ik and pjk → p̄jk should be minimized. Then we formulate
the view-consistent re-projection loss Lr for all of possible
sparse correspondence as:

Lr =
∑
i,j

∑
k∈Nk

(|pik − π(P ij
k , Ti)|+ ||pjk − π(P ij

k , Tj)|).

View-consistent Patch-warping Loss. We also consider
the on-surface patch (Fig. 4) to utilize the geometric struc-
ture constraints to further improve the neural surface learn-
ing. Specifically, we warp the on-surface patch to multi-view
images but in a differentiable way using our differentiable
multi-view intersection. For a small patch s on the surface
which is observed by image pair Ii, Ij , we represent the
plane equation of s in the camera coordinate of the refer-
ence image Ii as nT p + d = 0, where p(Ti, Tj) is the in-
tersection point from Ii, Ij , n is the normal computed with
automatic differentiation of the signed distance field f(x, θ)
at p(Ti, Tj). Suppose that the s is projected to Ii, Ij to ob-
tain image patches si ∈ Ii, sj ∈ Ij respectively, for image
pixel x ∈ si and its corresponding pixel x′ ∈ sj , we have:

x = Hx′, H = Ki(RiR
t
j −

Ri(R
T
i ti −RT

j tj)n
T

d
)K−1

j ,

where H is the homography matrix, Ti = {Ri|ti}, Tj =

Figure 4: An example illustration of view-consistent losses
defined on two kinds of on-surface geometry cues, i.e., 3D
sparse points (colored red) and patches (colored orange), for
a sparse view (3 views) input case from DTU dataset.

{Rj |tj}, Ki,Kj are the intrinsic camera matrix for image
pair Ii, Ij .

We use the normalization cross correlation (NCC) as the
view-consistent patch-warping loss as :

Lncc(si, sj) =
Cov(Ii(si), Ij(sj))

V ar(Ii(si))V ar(Ij(sj))
,

where Cov and V ar donates the covariance and variance for
color identity of patches (si, sj) respectively.

Training Strategy
Based on the view-consistent losses, we formulate the ob-
jective function E as:

E = Lcolor + λrLr + λnccLncc + λregLreg, (2)

with Lr and Lncc are the view-consistent re-projection loss
and patch-warping loss defined above, and Lcolor and Lreg

are the color rendering loss and Eikonal regularization loss
proposed by NeuS (Wang et al. 2021a) as:

Lcolor =
1

N

N∑
i

|R(f(x, θ), c(x, θc, v), Ti)− Ii|,

Lreg =
1

M

M∑
i

(|| ▽ fθ||2 − 1)2,

where R(f(x, θ), c(x, θc, v), Ti) is the volume rendering
image from f(x, θ), c(x, θc, v) to view Ti.

So in summary, we propose to jointly learn the signed dis-
tance field f(x, θ), radian field c(x, θc, v) and camera poses
T = {Ti} to optimize the objective function E in an end-to-
end manner following:

{θ∗, θ∗c , T ∗} = arg min
θ,θc,T

E. (3)

Please refer to our supplementary materials for more details
on the network training and coarse-to-fine learning strategy.
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Translation ↓
Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
BARF 42.3 56.4 17.1 46.4 13.1 0.72 21.7 48.7 3.33 48.3 44.9 46.2 22.8 1.03 13.2 28.4
IDR 41.8 41.8 43.4 42.7 1.12 0.39 0.82 1.12 10.1 2.95 59.5 47.7 46.7 0.62 27.1 24.5
NBF 30.7 39.5 27.1 10.3 24.2 3.47 23.8 53.2 13.8 6.72 38.7 14.0 0.34 31.7 30.4 23.2
NBF∗ 45.3 39.9 41.7 43.9 1.16 0.48 1.28 1.76 1.73 1.44 53.3 46.9 0.17 0.66 29.6 20.6
GBF 0.12 52.0 18.1 29.3 0.07 0.06 0.27 52.3 0.27 0.08 28.5 0.20 39.2 0.20 10.5 15.4
SPF 0.24 0.29 0.44 0.09 0.32 0.61 0.21 0.24 0.57 0.40 0.10 0.59 0.31 0.14 0.07 0.31
Ours 0.15 0.23 0.16 0.07 0.16 0.17 0.16 0.07 0.31 0.01 0.17 0.12 0.23 0.12 0.17 0.15

Rotation (◦) ↓
Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
BARF 21.4 19.4 18.3 19.3 25.6 3.60 15.1 32.0 1.28 14.9 23.3 19.3 29.8 1.07 22.8 17.8
IDR 27.3 33.5 24.8 21.5 4.02 0.55 0.67 1.66 2.67 0.52 51.2 21.0 22.2 2.70 45.9 17.3
NRF 21.7 25.7 17.9 15.5 11.0 3.20 14.9 23.4 5.28 4.69 42.4 10.6 0.27 15.7 12.4 15.0
NBF∗ 32.9 26.0 32.6 16.6 1.93 1.45 0.22 0.55 0.59 0.19 26.7 16.2 0.27 0.55 18.8 11.7
GBF 0.08 11.5 9.20 8.94 0.05 0.04 0.08 25.7 0.23 0.07 39.7 0.09 14.6 0.09 18.6 8.61
SPF 0.07 0.38 0.08 0.20 0.40 0.14 0.08 0.35 0.17 0.13 0.10 0.14 0.14 0.18 0.15 0.18
Ours 0.07 0.17 0.06 0.08 0.06 0.21 0.10 0.17 0.21 0.06 0.06 0.18 0.09 0.08 0.14 0.12

Table 1: The quantitative comparison results in terms of RMSE accuracy (both translation and rotation errors) of camera pose
estimation from different comparing approaches on DTU dataset. NBF (NBF*) represents NeuS-BARF (NeuS-BARF*), GBF
represents Geo-NeuS-BARF and SPF represents SPARF respectively.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
BARF 7.62 8.82 8.86 8.34 8.19 6.85 8.58 9.44 7.87 9.93 7.01 7.87 7.96 6.32 7.83 8.10
IDR 8.48 9.21 8.74 10.4 11.4 7.19 3.47 7.32 9.47 4.67 8.12 9.21 7.71 7.21 8.72 8.09
NBF 7.93 7.89 8.51 9.39 9.07 8.53 8.23 8.78 9.77 8.31 9.33 6.35 8.88 7.59 9.68 8.55
NBF∗ 9.22 9.90 8.31 9.16 9.60 5.94 3.75 7.04 5.64 2.37 8.59 9.00 1.10 3.47 8.67 6.78
GBF 1.54 8.30 8.73 8.98 1.75 2.15 0.78 9.88 1.21 1.80 9.49 0.78 9.13 0.90 9.65 5.00
SPF 2.10 5.89 2.10 1.57 8.90 1.81 1.53 9.39 1.47 3.03 2.18 2.55 0.76 1.20 1.43 3.06
Ours 1.07 2.14 1.55 1.38 1.31 2.03 0.81 2.95 1.02 1.39 1.30 1.62 0.37 0.88 1.37 1.41

Table 2: The quantitative comparison results of Chamfer Distance accuracy on DTU dataset. NBF (NBF*) represents NeuS-
BARF (NeuS-BARF*), GBF represents Geo-NeuS-BARF and SPF represents SPARF respectively.

Experiments and Analysis
Experimental Settings
Dataset. Firstly, we choose to evaluate our approach on the
public DTU dataset (Aanæs et al. 2016) with 15 different
object scan. For sparse views, we follow (Long et al. 2022)
and (Lin et al. 2021) to randomly select as few as 3 views for
each object scan, and then synthetically perturb its camera
pose with an additive Gaussian noise N (0, 0.15). Besides,
we also evaluate on 7 challenging scenes from low-res set
of the BlendedMVS dataset (Yao et al. 2020), and similarly
select 3 views from them.

Baselines. We first choose BARF (Lin et al. 2021),
IDR (Yariv et al. 2020) and SPARF (Truong et al. 2023)
for comparison. Besides, we also choose NeuS (Wang et al.
2021a) and GeoNeuS (Fu et al. 2022), as with their BARF-
based versions, called ”NeuS-BARF”, ”GeoNeuS-BARF”
respectively, to enable a fair comparison.

Evaluation on DTU Dataset
Camera Pose Comparison. Table 1 demonstrates the av-
erage RMSE accuracy (including both translation and ro-
tation error) between the estimated camera poses and the

ground truth camera poses on DTU dataset, using differ-
ent comparing approaches, including BARF, IDR, NeuS-
BARF, GeoNeuS-BARF, SPARF and ours respectively. Note
that since NeuS-BARF need extra object mask supervi-
sion, we also conduct with it (called as ”NeuS-BARF*”)
for fair comparison. Among all the comparing approaches,
the NeRF-like approach BARF, achieves worse RMSE ac-
curacy than the other approaches. This makes sense since
other approaches (including our approach) adopt the signed
distance field to represent the object’s geometry, which is
more powerful than the radiance field used in BARF. Al-
though IDR, NeuS-BARF (NeuS-BARF*) and GeoNeuS-
BARF achieve various RMSE accuracy in each object scan
of DTU dataset respectively, in average they achieve the
same level of RMSE accuracy, which means they perform
similar camera pose estimation quality. SPARF achieves pre-
vious state-of-the-art camera pose estimate accuracy.

In comparison, our approach outperforms SPARF with
more better average RMSE accuracy, where we outperform
SPARF in 13(15) scenes in terms of translation, and 11(15)
scenes (with other 2 scenes are the same) in terms of rota-
tion. Note that SPARF utilize extra depth regularization for
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Noisy Pose GT Pose

Reference Image SPARFIDR OursNeuS-BARF NeuS SparseNeuSGeoNeuS-BARF

Figure 5: The visual comparing surface reconstruction results using different neural surface reconstruction approaches, with
noisy input camera poses (left columns) and ground truth input camera poses (right columns) on DTU dataset.

training while ours didn’t. Otherwise, our approach signifi-
cantly outperforms the other baselines in camera pose esti-
mation. This shows that our SC-NeuS takes effects for cam-
era pose estimation than the other baseline approaches.

Surface Reconstruction Quality. We also compare the
surface reconstruction quality between the different compar-
ing approaches. Table 2 demonstrates the quantitative results
on Chamfer Distance metric using different approaches eval-
uated on DTU dataset. Similarly, our approach achieve con-
sistently much better Chamfer Distance accuracy than the
other comparing approaches. Fig. 5 illustrates some visual
comparison results of the comparing approaches.

Here we didn’t include BARF for visual comparison since
BARF’s camera pose estimation accuracy is significantly
worse than the other baselines (as shown in Table 1). Be-
sides, for fair comparison we feed GT pose for NeuS (and
SparseNeuS (Long et al. 2022)) in the comparison.

Besides, we can see NeuS-BARF fails to reconstruct fine
object surface, which demonstrates that coarse-to-fine po-
sition embedding proposed in BARF is not effective to
sparse view setting either, even based on NeuS. In contrast,
our approach takes effects in joint learning of neural sur-
face representation and camera pose, leading to geometry-
consistent surface reconstruction with fine-grained details.

Translation ↓ Rotation (◦) ↓ CD ↓
w/o Lr 22.71 11.77 6.44

w/o Lncc 0.23 0.30 3.44
Full 0.15 0.12 1.41

Table 3: The RMSE (both translation and rotation) and
Chamfer Distance (CD) accuracy by different variants of our
system.

Please see the fine-grained detail reconstruction by our ap-
proach, which is also better than NeuS and SparseNeuS,
even with ground truth camera poses as input (Fig. 5). Please
refer to supplementary materials for more comparing results.

Evaluation on BlendedMVS Dataset
We also perform evaluation on BlendedMVS dataset to see
how our approach behave across different kinds of datasets.
Fig. 6 shows some visual comparing surface reconstruc-
tion results using different comparing approaches, includ-
ing NeuS-BARF, IDR, GeoNeuS-BARF, SPARF and our
approach. According to the comparison, our approach can
achieve much better surface reconstruction quality with fine-
grained details than the other approaches. Here we don’t
include BARF for visual comparison, since BARF fails to
converge in most of the comparing cases. Please refer to our
supplementary materials 1 for more comparing results.

Ablation and Analysis
View-consistent Re-projection. We first implement a vari-
ant version of our full system without using the view-
consistent re-projection loss, termed as ’w/o Lr’, and per-
form the surface reconstruction on the DTU dataset. As
shown in Table 3, we can see there are large accuracy
decrease for both RMSE and CD between ’w/o Lr’ and
’Full’ systems. This means the view-consistent re-projection
loss serves major contribution in our SC-NeuS for the fi-
nal geometry-consistent surface reconstruction and accurate
camera pose estimation. But please note that ’w/o Lr’ still
outperforms other comparing approaches including BARF,
IDR and NeuS-BAFR, by achieving better average RMSE
accuracy and CD accuracy in Table 1 and 2.

1https://arxiv.org/abs/2307.05892
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Figure 6: The visual comparing surface reconstruction results using NeuS-BARF, IDR, GeoNeuS-BARF, SPARF and our ap-
proach, with sparse view noisy input camera poses on the BlendedMVS dataset.

Full

Figure 7: The visual results by different variants of our sys-
tem.

View-consistent Patch-warping. We also implement a
variant system without using the view-consistent patch-
warping loss, termed as ’w/o Lncc’. According to Table 3,
we can see that ’w/o Lncc’ also achieve worse accuracy val-
ues than ’Full’ in both RMSE for camera pose estimation
and CD for surface reconstruction quality, even though the
quality decreases are not that much compared with those
from ’w/o Lr’ to ’Full’.

Fig. 7 shows the visual comparing surface reconstruction
results of two example from DTU dataset, using ’w/o Lr’,
’w/o Lncc’ and ’Full’ respectively. We can see there are
certain surface quality decrease for our full system (’Full’)
without using the view-consistent re-projection loss (’w/o
Lr’). Even though our approach can achieve fine surface
reconstruction without using view-consistent patch-warping

loss (see the results of ’w/o Lncc’), we can obvious fine-
grained details enhancement by adding the view-consistent
loss to our full system (see the results of ’Full’). This means
that view-consistent patch-warping loss takes more effective
for fine-grained details, while view-consistent re-projection
loss works better to boost up the joint learning quality of
neural surface and camera pose.

Limitation and Discussion
Our approach’s first limitation is that influence from the
quality of 2D feature point’s matching. Without enough fea-
ture point matching in challenging cases like low texture or
light changing, our approach couldn’t perform well for nice
surface reconstruction results. Large camera poses variation
between sparse views would also make our approach failed
for feasible joint optimization. In the further, we would like
to use more robust explicit surface priors for high reliable
neural surface reconstruction.

Conclusion
Joint learning for the neural surface representation and cam-
era pose remains to be a challenging problem, especially for
sparse scenarios. This paper propose a new joint learning
strategy, called SC-NeuS, which explores multi-view con-
straints directly from the explicit geometry of the neural sur-
face, and achieves consistently better surface reconstruction
quality and camera pose estimation accuracy than previous
approaches. We hope that our approach can inspire more ef-
forts to the neural surface reconstruction from sparse view
images, to enable more feasible real-world applications in
this community.
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