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Abstract
Due to the unique environment and inherent properties of
magnetic resonance imaging (MRI) instruments, MR images
typically have lower resolution. Therefore, improving the res-
olution of MR images is beneficial for assisting doctors in
diagnosing the condition. Currently, the existing MR image
super-resolution (SR) methods still have the problem of insuf-
ficient detail reconstruction. To overcome this issue, this pa-
per proposes a multi-level feature transfer network (MFTN)
based on MRI-Transformer to realize SR of low-resolution
MRI data. MFTN consists of a multi-scale feature recon-
struction network (MFRN) and a multi-level feature extrac-
tion branch (MFEB). MFRN is constructed as a pyramid
structure to gradually reconstruct image features at different
scales by integrating the features obtained from MFEB, and
MFEB is constructed to provide detail information at differ-
ent scales for low resolution MR image SR reconstruction by
constructing multiple MRI-Transformer modules. Each MRI-
Transformer module is designed to learn the transfer features
from the reference image by establishing feature correlations
between the reference image and low-resolution MR image.
In addition, a contrast learning constraint item is added to the
loss function to enhance the texture details of the SR image.
A large number of experiments show that our network can
effectively reconstruct high-quality MR Images and achieves
better performance compared to some state-of-the-art meth-
ods. The source code of this work will be released on GitHub.

Introduction
Compared to CT and PET imaging, MRI is more effective
in detecting early lesions that are not easily noticeable and
has become the most efficient imaging diagnostic method
for diseases such as the brain and spinal cord. Furthermore,
MRI is nonionizing and harmless to the human body. How-
ever, MRI scans require longer acquisition times to obtain
high-resolution MR images, and due to limitations in device
hardware and post-processing, an increase in image resolu-
tion will also reduce the signal-to-noise ratio of the image.
This will also increase the consumption of hardware facili-
ties and shorten their lifespan, leading to an increase in the
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cost of acquiring MR images. To obtain high-quality MR im-
ages, two solutions are usually adopted. One is to introduce
more advanced equipment. However, state-of-the-art equip-
ment is expensive and not widely accessible. The second ap-
proach is to utilize computer vision technology to achieve
SR reconstruction of MR images, ensuring richer details are
reconstructed and restored while improving the spatial reso-
lution of the image.

Currently SR techniques for MR images can mainly be
divided into two categories: single-contrast SR methods
and multi-contrast SR methods. Single-contrast SR methods
only utilizes the information of the single modality degraded
image itself to improve its resolution, but the obtained fea-
ture information is limited and singular. The multi-contrast
SR methods restore more information by utilizing high-
resolution (HR) images from another modality as reference
images, thereby reconstructing HR images with more tex-
ture details. Currently, most of the SR works for MR images
use the multi-contrast reconstruction way, which achieve the
reconstruction of one modality image by utilizing two dif-
ferent modalities of MR images. Figure 1 shows two sets
of different modality MR images with the same anatom-
ical structure, such as fluid-attenuated inversion recovery
(FLAIR) and T2-weighted images, proton density-weighted
(PDWI) and fat-suppressed proton density-weighted (FS-
PDWI) images, which are generated by adjusting the param-
eter settings of the MRI machine. From the figure, it can be
seen that the two images have the same structure, but em-
phasize different details. Therefore, one of the images can
be used as a reference image for SR reconstruction of the
other image.

In the recent study, MSPN (Lyu et al. 2020) introduced
neural networks of different levels to perform multi-contrast
image fusion. Although this method generates more infor-
mation, there is also a problem of insufficient detail recon-
struction due to a lack of attention to long-distance informa-
tion. MINet (Feng et al. 2021a) adopted multi-stage inte-
grated network to carry out multi-contrast MR Image SR,
but it reconstructed features in HR space without recon-
structing intermediate scale features, resulting in the prob-
lem of missing details. WavTrans (Li et al. 2022b) in-
troduced wavelet transform into the network and designed
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Figure 1: Examples of two modalities of MR images.

a new residual cross-attention swin-transformer network
to realize multi-contrast MR Image SR. However, due to
performing feature reconstruction in LR space, the recon-
structed features in HR space are insufficient. McMRSR (Li
et al. 2022a) indicated that feature information at different
scales is different, and it is worth further research on how to
better utilize features at different scales to supplement infor-
mation for the reconstructed image. In addition, during the
data preprocessing process, there is a subpixel displacement
between the low-resolution (LR) MR image and the refer-
ence image, which makes it difficult to ensure that the fea-
tures extracted from the reference image are fully matched
with the same positional features in the LR MR image. This
can lead to artifacts and edge blurring in the reconstructed
image. Therefore, how to reduce the impact of subpixel dis-
placement on the accuracy of feature extraction is also cru-
cial for multi-contrast SR reconstruction.

To address the above issues, we design a multi-level fea-
ture transfer network (MFTN) based on MRI-Transformer
to realize SR reconstruction of LR MR images. In MFTN,
to reconstruct richer features, a multi-scale feature recon-
struction network (MFRN) is constructed to learn multiply
scale features and reconstruct a HR MR image, which solves
the problem of insufficient feature reconstruction in a single
scale network. To provide supplementary information for
feature reconstruction in MFRN, a multi-level feature ex-
traction branch (MFEB) is constructed. In MFEB, an MRI-
Transformer module is designed to extract transfer features
from the reference image, and it can reduce the impact of
sub-pixel displacement on feature extraction by paying at-
tention to long-distance features. The contributions of this
work are as follows:
• An MRI-Transformer based MFTN, including two

branches: MFRN and MFEB, is proposed to achieve SR
reconstruction of LR MR images by learning supplemen-
tary information from reference images.

• A pyramid structured MFRN is constructed to gradually
reconstruct image features at different scales and obtain
HR MR images by integrating transfer features from the
reference image.

• In view of the limitation of feature information in a sin-
gle modality image, an MFEB using another modality
image as a reference image is constructed to provide sup-
plementary information for MFRN. In MFEB, an MRI-
Transformer module is designed to learn transfer features
by establishing feature correlations between the LR MR
image and the reference image.

• To improve the visual effects of reconstructed MR im-

ages, a perceptual contrastive loss is defined and com-
bined with commonly used loss functions to achieve net-
work training.

Proposed Approach
In this section, a MFTN based on MRI-Transformer for MR
image SR is proposed by learning transfer features from a
reference image. As shown in Figure 2, MFTN consists of
FMRN and MFEB, which are respectively used to recon-
struct a HR MR image and learn transfer features from a ref-
erence image. The reference images and LR MR images are
collected using the same sensor with different parameter set-
tings on the same anatomical region, and images with higher
resolution are usually chosen as reference images, which are
used to assist in SR reconstruction of LR MR images. The
specific details of each module in MFMN will be described
in the following sections.

Multi-scale Feature Reconstruction Network (MFRN)
To reconstruct rich detail features, a pyramid structured net-
work called MFRN is constructed to learn features at differ-
ent scales and achieve SR reconstruction of LR MR images.
The specific structure is described below.

Firstly, a simple convolutional layer is used to extract
shallow features from the input LR MR image. Then, three
feature integration blocks are designed to achieve the recon-
struction of three scale features. In each feature integration
block, the current scale features are first concatenated with
the same level transfer features from MFEB, and then sent
to a feature fusion (FF) block consisting of a 3×3 convolu-
tion and batch normalization (BN) layer for feature integra-
tion. In addition, a residual structure is adopted to achieve
the reuse of shallow features at the current scale. Finally, n
residual blocks (RBS, n=4) are used to reconstruct the cur-
rent scale features. Between two adjacent feature integration
blocks, a scale extension layer containing a convolutional
layer and Pixelshuffle operation, called CP, is constructed to
increase the size of the feature maps, and then these feature
maps are fed into the next feature integration block.

Finally, the reconstructed feature maps at three scales are
enlarged into HR space and concatenated together into n
RBs to achieve the final HR MR image.

Multi-level Feature Extraction Branch (MFEB)
MFEB mainly consists of three multifold feature extractors
and three MRI-transformer modules. The multifold feature
extractors are constructed to extract different levels of shal-
low features from the input MR image. And subsequent
MRI-transformer modules take features of different levels
as inputs to extract transfer features, which are transferred
as supplementary features to MFRN. Below, we will provide
a detailed introduction to the structures of multifold feature
extractor and MRI-transformer module.

1) Multifold Feature Extractor
The multifold feature extractor similar to VGG architecture
is constructed to extract three levels of features from an input
MR image, as shown in Figure 3. The extractor consists of
three convolutional blocks, where the first two convolutional
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Figure 2: Architecture of MFTN.

blocks contain two convolutional layers composed of a con-
volutional operation, a BN layer, and a ReLU function, and
the last convolutional block contains only one convolutional
layer. In convolutional blocks, the Maxpooling operation is
adopted to reduce the size of the feature maps.

Due to the fact that MFEB learns transfer features from
the reference MR image, which has a higher resolution than
the input LR MR image, it is necessary to establish a fea-
ture distribution relationship between the HR space and the
LR space. Therefore, the reference image need be degraded
through down-sampling and up-sampling operations to ob-
tain a degraded reference image with a similar distribution to
the input LR image. Thus, three multifold feature extractors
are required to extract shallow features from three input im-
ages, namely the up-sampled LR MR image, reference MR
image, and degraded reference MR image. And the same
level shallow features from three extractors are used to de-
fine Query (Q), Key (K), and Value (V) for one of the subse-
quent MRI Transformer modules. Taking feature extraction
for the up-sampling LR MR image IUM as an example, the
execution process of the multi-fold feature extractor is as
follows.

CL(IUM ) = ReLU(BN(Conν3×3(IUM ))) (1)

Fm1 = CB(IUM ) = CL(CL(IUM )) (2)
Fm2 = CB(Maxpool(Fm1)) (3)
Fm3 = CL(Maxpool(Fm2)) (4)

where CL represents a convolutional layer containing a 3×
3 convolutional operation Conv3×3, a BN layer, and a

ReLU function. CB represents a convolutional block con-
taining two convolutional layers. Maxpool represents the
max-pooling operation. Fm1, Fm2, and Fm3 represent
three levels of feature maps extracted from the upsampling
LR MR image.

Using the same operation, the three levels of feature maps
extracted from the reference MR image can be represented
as Fr1, Fr2, and Fr3, while the three levels of features ex-
tracted from the degraded reference MR image can be rep-
resented as Fdr1, Fdr2, and Fdr3.

MRI-Transformer Module
The proposed MRI-Transformer module can extract trans-
fer features for feature reconstruction in MFRN by estab-
lishing feature correlations and long-distance dependencies
between the input LR image and the reference image. The
three MRI-Transformer modules are used to receive three
levels of feature maps from three multifold feature extrac-
tors and learn corresponding levels of transfer features.

Taking the generation of first level transfer features as an
example, the processing process of one MRI-Transformer
module is described below. Because the first level of transfer
features is transferred to the minimum scale feature recon-
struction stage in MFRN, the first MRI-Transformer module
takes the feature maps Fr1, Fdr1, and Fm1 as inputs. First,
these feature maps are mapped into the Query1(Q1), Key1
(K1), and Value1 (V 1), respectively. Then, to establish the
distribution relationship between the HR space and the LR
space, the multi-head attention mechanism (Vaswani et al.
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Figure 3: Architecture of Multifold feature extractor.

Table 1: Average objective results of 2× and 4× SR of all
comparison methods on the FastMRI dataset.

2017) is used to calculate a cross correlation matrix for the
two feature tensors Q1 and K1 from the reference image.
Next, a soft-attention mechanism is used for the feature ten-
sors V 1 and cross correlation matrix to obtain the feature
correlation matrix between the input LR image and the ref-
erence image. Finally, a residual link is established between
the feature correlation matrix and feature tensors Q1 to ob-
tain the transfer features Ft1 from the reference image.

As described above, the next second and third MRI-
Transformer modules obtain transfer features Ft2 and Ft3 at
the other two scales, respectively, which are sent to MFRN
to provide supplementary information.

Loss Function
To better guide network training, a joint loss function con-
taining four loss terms is defined: reconstruction loss, per-
ceptual loss, perceptual contrastive loss, and SSIM loss.

Reconstruction Loss L1 loss is employed to evaluate the
similarity between the reconstruction result and ground-
truth (GT) image. It can be represented as follows:

Lrec =
1

CWH
∥Igt − Isr∥1 (5)

where Igt denotes the GT image, and Isr denotes the re-
construction result. W and H is the width and height of the
images, and C is the number of channels.

Table 2: Average objective results of 2× and 4× SR of all
comparison methods on the AXA dataset.

Perceptual Loss Perception loss is the measurement of
the distance between two images in the feature space, and is
more in line with the human eye’s perception of image qual-
ity. In this paper, the pre-trained VGG network (Simonyan
and Zisserman 2014) is trained on RGB images to obtain
features of the reconstruction result and GT image. It can be
represented as follows:

Lper =
1

CiWiHi
∥ yi(Igt)− yi(Isr) ∥2 (6)

where yi(·) denotes the ith layer’s feature map of VGG-19.

Perceptual Contrastive Loss Inspired by the perceptual
loss in AECR-Net (Wu et al. 2021), we define a percep-
tual contrastive loss to enhance the network’s discriminative
capability by incorporating the idea of perceptual loss into
the contrastive loss. In the latent feature space, the common
intermediate features from the pre-trained VGG19 model
are used to participate in the calculation of perceptual con-
trastive loss. The perceptual contrastive loss can be repre-
sented as follows:

Lcom =

n∑
i=1

m∑
j=1

ωj ·
∥yj(Iisr), yj(Iist)∥1∑K
k=1 ∥yj(Iisr), yj(Iklr)∥1

(7)

where m is the number of total hidden layers, and wj is a
weighted term to balance the shallow and deep features. n
represents the total number of reconstructed images and K
represents the total number of positive and negative samples
for each image under each hidden layer.

SSIM Loss To achieve the reconstruction results with bet-
ter visual effects in terms of brightness, contrast, and struc-
ture, in terms of brightness, contrast, and structure, we intro-
duce the SSIM loss, which is represented as follows:

Lssim = 1−
(2µIgtµIsr + c1)(2σIgtIsr + c2)

(µ2
Igt

+ µ2
Isr

+ c1)(σ2
Igt

+ σ2
Isr

+ c2)
(8)

Total Loss the joint loss function of our proposed network
is defined as:

Lall = αLrec + βLper + δLcom + εLssim (9)
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Figure 4: Qualitative results of different SR reconstruction methods on FastMRI and AXA dataset. The first/third row is the SR
reconstructed images obtained by different methods, and the second/fourth row is the corresponding residual maps.

where α, β, δ, ε and are the hyperparameters, we set α =
1.0, β = 0.1, δ = 0.01, and ε = 0.001 based on experience.

Experimental Results and Analysis
Datasets and Baselines
To verify the effectiveness of the proposed method, we con-
duct extensive experiments on a public dataset and a self-
built dataset. The public dataset (Zbontar et al. 2018) (the
largest publicly available MRI dataset) is named FastMRI
and the self-built dataset is named AXA. For the FastMRI
dataset, we follow the approach in LMKSP (Xuan et al.
2020) and select 227 pairs and 24 pairs of PD and PDFS
for training and validation, respectively. AXA dataset is
constructed from data collected from 50 patients using a
3T Siemens Magnetom Skyra system. Each MRI scan col-
lects data in T2 and Flair fully sampled k-spaces (TRFlair
= 9000ms, TEFlair = 120ms, TRT2 = 5725ms, TET2 =
100ms). The collection of clinical datasets has been ap-
proved by the institutional review board. The AXA dataset
is divided into training/validation/test sets in a ratio of 7:1:2.
In the FastMRI experiments, we used PD images to guide
SR reconstruction of PDFS images, while in the AXA ex-
periments, we used T2 images to guide SR reconstruction of
Flair images.

Experimental Setup
We implement our model using one NVIDIA RTX A6000
GPU with single-card 48GB memory. Our model is trained

using the Adam optimizer for 50 epochs, and a learning rate
is set to 1e-5. For the FastMRI dataset, the evaluation index
values of all comparison methods are obtained from MSDT
(Zou et al. 2023). For AXA dataset, the indicators of MSDT
are obtained by direct testing it, and the other comparison
methods are retrained and tested to obtain the corresponding
indicators.

Objective and Subjective Comparison
In order to quantitatively evaluate the performance of com-
parison methods, two commonly used indexes, peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM), are
adopted in the experiments. The higher the PSNR and SSIM
values, the better the performance of the method. In order
to demonstrate the validity of the proposed method, we ob-
jectively compare it with some state-of-the-art methods, in-
cluding EDSR (Lim et al. 2017), MCSR (Zeng et al. 2018),
NEU (Neubert et al. 2020), MINet (Feng et al. 2021a) and
MSDT (Zou et al. 2023), and the results obtained by the
comparison method are all from the official specifications.
Table 1 and Table 2 show the average measure results of 2×
and 4× SR reconstruction on the FastMRI and AXA datasets
for all comparison methods. As can be seen from the tables,
all quantitative indicators obtained by the proposed method
are significantly higher than those obtained by other compar-
ison methods. This indicates that the proposed method can
recover images closer to GT images. Figure 4 and Figure
5 show the visualization results of 2× and 4× SR recon-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2370



Figure 5: Qualitative results of different SR reconstruction methods on FastMRI and AXA dataset. The first/third row is the SR
reconstructed images obtained by different methods, and the second/fourth row is the corresponding residual maps.

Table 3: Average objective results of 2× SR of ablation ex-
periments about MRI-Transformer modules and Compara-
tive learning loss on the FastMRI dataset.

struction on two images from two datasets, respectively. To
facilitate the observation of differences between images, the
residual images between the reconstruction results and cor-
responding GT images are calculated and displayed. From
the figures, it can be clearly seen that due to the fact that
EDSR only uses one LR image to achieve image reconstruc-
tion, the reconstructed image contains fewer details and has
blurred edges, and the residual images obtained by EDSR
contain more residual information. Other comparison meth-
ods and proposed methods use reference images to achieve
image reconstruction, thereby reconstructing more texture
information. However, as the amplification factor increases,
there is a significant ringing artifacts in the results of EDSR,
MCSR, and Neu. From the residual images, it can be ob-

Table 4: Average objective results of 4× SR of ablation ex-
periments about different combinations of loss items on the
FastMRI dataset.

served that the residual images of other comparison meth-
ods contain more information than those of the proposed
method, which means that our results are closest to the GT
images.

Ablation Study
To verify the effectiveness of the proposed components, we
design several groups of ablation experiments on the com-
bination of the MRI-Transformer module and the perceptual
contrastive loss, the joint loss function, and the multi-scale
network structure, and the results are shown in Table 3, Ta-
ble 4, and Table 5.

The experiment results of different combinations of MRI-
Transformer module and the perceptual contrastive loss are
shown in Table 3. w comp represents a model with the per-
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Table 5: Average objective results of 4× SR of ablation
experiments about multi-scale network structure on the
FastMRI dataset.

Figure 6: Visualization results of 2×SR obtained by differ-
ent loss terms on the FastMRI dataset.

ceptual contrastive loss, while o comp represents a model
without the perceptual contrastive loss. MRIT represents
two cases of a model with the MRI-Transformer module,
which are trained with and without the perceptual con-
trastive loss. RT means two cases of a model with the Task
Transformer module from T2Net (Feng et al. 2021b) but no
MRI-Transformer module, which are trained with and with-
out the perceptual contrastive loss. From the table, it can
be seen that both cases included in MRIT achieved better
results than the two cases in RT, indicating that the MRI-
Transformer module is effective. And the model with the
perceptual contrastive loss in MRIT achieved the best results
in these four cases, indicating that the combination of both
the MRI-Transformer module and the perceptual contrastive
loss can enable the model to achieve better performance.

Table 4 shows the results of the network trained by dif-
ferent loss terms in the joint loss function. In the table, Rec
refers to reconstruction loss, Per refers to perception loss,
Com refers to perceptual contrastive loss, and 1-SSIM
refers to SSIM loss. From the table, we can see that the
network trained by the joint loss function obtains the best
results. Figure 6 shows the visual results and corresponding
residual images of various cases in Table 4. From the figure,
it can be seen that, the result of the joint loss function has
richer information. Therefore, the joint loss function defined
in this paper is effective.

Table 5 shows the results of the ablation experiment on
the multi-scale network structure. In the Table 5, low-scale
refers to the fact that all three feature reconstruction lay-
ers in MFRN perform feature reconstruction in LR space.
high-scale refers to the fact that all three feature reconstruc-
tion layers in MFRN perform feature reconstruction in HR
space, that is to say, the input LR image is magnified four

Figure 7: Visualization results of 4× SR obtained by
different-scale network structure on the FastMRI dataset.

times and then sent to the network for feature reconstruc-
tion. Ours(multi-scale) refers to the multi-scale network
structure in this paper. Similarly, for the first two cases, the
feature extractor in MFEB is also replaced by single-scale
convolutional layers. From the table, it can be seen that the
multi-scale network structure achieves the highest average
metric on the FastMRI dataset. Figure 7 shows the visual
results of the various cases in Table 5 and the correspond-
ing residual images, and it can be seen that due to the lack
of reconstruction of intermediate scale features, single-scale
structures reconstruct less information, and the result of low-
scale structure exhibit severe ringing phenomena. Although
high-scale structure can reconstruct MR Images better, it
is poor in detail reconstruction compared with multi-scale
structure. The network structure in this paper achieves the
result with more detail textures. Therefore, the constructed
multi-scale SR network has better performance than the
single-scale network.

Conclusion

In this paper, we propose a MFTN composed of two
branches: MFRN and MFEB, to achieve SR reconstruction
of LR MR image. In MFTN, a pyramid structured MFRN
is constructed to gradually reconstruct features at differ-
ent scales and generate a HR MR image by fusing transfer
features from reference images. A MFEB based on MRI-
Transformer modules is designed to learn the multi-level
transfer features, which are sent to different scale layers in
MFRN to supplement information for feature reconstruc-
tion. And each MRI-Transformer module learns one-level
transfer features from the reference image by establishing
feature correlations between input LR MR images and ref-
erence images. In addition, to improve the visual effect of re-
constructed images, a perceptual contrastive loss term is de-
fined to achieve network training. Extensive experiments on
two datasets demonstrate that our method outperforms some
state-of-the-art approaches in both quantitative and qualita-
tive evaluations.
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