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Abstract

Facial attribute editing has garnered significant attention, yet
prevailing methods struggle with achieving precise attribute
manipulation while preserving irrelevant details and control-
ling attribute styles. This challenge primarily arises from the
strong correlations between different attributes and the inter-
play between attributes and identity. In this paper, we pro-
pose Semantic Disentangled GAN (SDGAN), a novel method
addressing this challenge. SDGAN introduces two key con-
cepts: a semantic disentanglement generator that assigns fa-
cial representations to distinct attribute-specific editing mod-
ules, enabling the decoupling of the facial attribute editing
process, and a semantic mask alignment strategy that con-
fines attribute editing to appropriate regions, thereby avoid-
ing undesired modifications. Leveraging these concepts, S-
DGAN demonstrates accurate attribute editing and achieves
high-quality attribute style manipulation through both latent-
guided and reference-guided manners. We extensively e-
valuate our method on the CelebA-HQ database, provid-
ing both qualitative and quantitative analyses. Our result-
s establish that SDGAN significantly outperforms state-of-
the-art techniques, showcasing the effectiveness of our ap-
proach. The code implementing our model is available at http-
s://github.com/sysuhuangwenmin/SDGAN.

Introduction
Facial attribute editing aims to modify facial images by al-
tering specific attributes, finding applications in diverse real-
world domains, including entertainment, visual effects, and
e-commerce. With the rapid development of deep genera-
tive models, facial attribute editing powered with generative
adversarial networks (GANs) (Goodfellow et al. 2014) has
achieved impressive progress (He et al. 2019; Lee et al.
2020; Dalva, Altındiş, and Dundar 2022; Shi et al. 2022).

The challenges in facial attribute editing primarily arise
from two main aspects: 1) Correct Modification and Unrelat-
ed Preservation: An effective model should accurately ma-
nipulate the target attribute while preserving irrelevant de-
tails such as non-target attributes, identity information, and
illumination, as illustrated in the 1st row in Fig. 1. Achieving
this ideal facial attribute editing is difficult due to the strong
correlation between different attributes (e.g., eyeglasses and
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Figure 1: Illustration of correct modification and unrelated
preservation (the 1st row) & style manipulation (the 2nd
row) with the proposed SDGAN.

age) and between attributes and identity; 2) Style Manipula-
tion: Adding or removing attributes have limited real-world
applicability. In many cases, there is a need to manipulate
the style of the target attribute, such as different styles of
eyeglasses: sunglasses, myopic glasses, and reading glasses,
as shown in the 2nd row in Fig. 1. However, this task poses
particular challenges as labeled databases with diverse at-
tribute styles are often unavailable.

Numerous related approaches have been proposed to
achieve accurate modifications while preserving unrelated
attributes. These methods can be broadly categorized into t-
wo groups: image-to-image translation and latent space ma-
nipulation, based on differences in their underlying princi-
ples. Image-to-image translation methods typically employ
an encoder-decoder architecture to directly learn the trans-
lation between the original and edited images. Early works
(Shen et al., 2017; Zhang et al., 2018) use cycle-consistent
and adversarial losses to train different models for various
attributes. More recent studies (Liu et al., 2019; Chen et al.,
2020) have adopted conditional Generative Adversarial Net-
works (cGANs) and used attribute labels as generative con-
ditions, enabling a single model to handle multiple attribute
editing tasks; On the other hand, those methods based on
latent space manipulation (Wang et al., 2022; Pehlivan et
al., 2023) utilize GAN inversion to obtain the latent repre-
sentation of a given face. They then manipulate this latent
representation along semantic directions and feed it into a
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pre-trained GAN, such as StyleGAN (Karras et al. 2020), to
generate the edited results. While using pre-trained GANs
on large databases, such as FFHQ (Karras, Laine, and Aila
2019), can yield realistic editing results, it often sacrifices
fine details in the original image due to the challenges of
jointly training GAN inversion and pre-trained GANs. Fur-
thermore, both these approaches are unable to achieve at-
tribute style manipulation, which restricts their applicability
in real-world scenarios. Future research may focus on ad-
dressing this limitation and exploring methods that can per-
form attribute style manipulation while preserving fine de-
tails in the edited images.

Several studies have independently explored two ap-
proaches for style manipulation. The first approach, known
as the latent-guided manner, involves embedding laten-
t variables sampled from Gaussian noise into the genera-
tor (Wang et al. 2019). The second approach, referred to as
the reference-guided manner, utilizes style vectors extracted
from reference images (Xiao, Hong, and Ma 2018). Recent
studies (Choi et al. 2020; Li et al. 2021b; Dalva, Altındiş,
and Dundar 2022) have attempted to combine both types
of style manipulation into a unified framework. In this u-
nified approach, researchers utilize distinct style extraction
modules for randomly sampled Gaussian noise and refer-
ence images, and style vectors for each attribute are inde-
pendently generated through the different output branches
of these modules. This facial attribute editing paradigm has
achieved impressive results for style manipulation. Howev-
er, it is worth noting that the attribute editing process in the
generator is not decomposed, so there is a possibility that
the approach could fail to accurately manipulate the target
attribute and may inadvertently preserve irrelevant details,
as observed in (Choi et al. 2020).

In this paper, we present an innovative framework called
Semantic Disentangled GAN (SDGAN) to tackle the chal-
lenges in facial attribute editing. Building upon prior re-
search (Choi et al. 2020; Li et al. 2021b), SDGAN initial-
ly utilizes similar modules to create style vectors for all at-
tributes based on latent variables and reference images. Sub-
sequently, SDGAN introduces two innovative concepts for
face attribute editing: a semantic disentanglement genera-
tor and a semantic mask alignment strategy. Semantic disen-
tanglement generator factors the latent representation of S-
DGAN by the attribute-specific editing modules and seman-
tic masks. Each attribute-specific editing module is individ-
ually modulated with its corresponding attribute style vec-
tor, and an image is synthesized by composing local feature
maps with semantic masks. Unlike generators using a shared
editing module (Choi et al. 2020) or modular editing (Zhao
et al. 2018; Li et al. 2021b), our method utilizes semantic
masks to explicitly divide the manipulation regions of dif-
ferent attribute-specific editing modules, thus effectively de-
coupling the editing process of face attributes. Furthermore,
to achieve correct modification and unrelated preservation,
semantic masks should focus on the semantic regions cor-
responding to the target attribute. To this end, we design a
simple yet effective semantic mask alignment strategy. This
strategy only requires attribute labels for training, without
the need for cumbersome semantic region annotation for tar-
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Figure 2: Illustration of (a) style disentanglement extractor
and (b) generator for facial attribute editing.

get attribute. Its goal is to force that the focus region for the
semantic masks supports the attribute classifier in making
correct predictions regarding the target attribute.

In summary, our contributions are as follows:
• We introduce a semantic disentanglement generator that

effectively factors the facial attribute editing process by
attribute-specific editing modules and semantic masks.
• We propose a simple yet effective semantic mask align-

ment strategy to confine attribute editing within the ap-
propriate regions.
• Extensive comparative experiments show that our

method achieves state-of-the-art results across various
metrics, both qualitatively and quantitatively.

Related Work
Generative Adversarial Networks (GANs). GANs (Good-
fellow et al. 2014) have dominated the facial attribute edit-
ing due to their remarkable image synthesis capabilities.
Consisting of a generator and a discriminator, GANs are
trained in an adversarial manner to learn the distribution
of real images. Recently, substantial efforts have been de-
voted to enhance the training stability (Petzka, Fischer, and
Lukovnikov 2018; Yazici et al. 2019) and image synthe-
sis quality (Brock, Donahue, and Simonyan 2019; Kar-
ras, Laine, and Aila 2019) of GANs, resulting in their
widespread use as the dominant model for various image-
to-image translation tasks. Such tasks include image inpaint-
ing (Li et al. 2021a), object insertion (Gafni and Wolf 2020),
image super-resolution (Zhang et al. 2019; Xin et al. 2020)
colorization (Isola et al. 2017), image editing (Xu et al.
2021; Xia et al. 2023), and more.
Facial attribute editing. Up to now, many facial attribute
editing methods based on image-to-image translation (Shen
and Liu 2017; Yin, Liu, and Loy 2019; Gao et al. 2021) and
latent space manipulation (Wang et al. 2022; Alaluf et al.
2022; Pehlivan, Dalva, and Dundar 2023) have demonstrat-
ed impressive results in accurate modification and unrelated
preservation. However, these approaches overlook the im-
portance of attribute style manipulation in real-world scenar-
ios. Recent studies have attempted to incorporate attribute
style manipulation into facial attribute editing. For exam-
ple, ELEGANT (Xiao, Hong, and Ma 2018) introduces a
reference-guided style manipulation approach. It first em-
ploys an encoder to obtain latent encodings for both the o-
riginal and reference images. Then, by exchanging the target
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Figure 3: Overview of the proposed SDGAN, comprising the following components: (a) mapping model M , (b) extractor
module F , (c) semantic disentanglement generator G, (d) semantic mask alignment strategy A, and (e) discriminator D. ⊗ and
⊕ denote element-wise multiplication and addition operations, respectively.

attribute part of their latent encodings, ELEGANT transfers
the target attribute style from the reference image to the in-
put image. SDIT (Wang et al. 2019) explores a latent-guided
style manipulation approach. It is built upon a conditional
encoder-generator framework and achieves both correctness
of attribute editing and diversity in the output style by simul-
taneously using attribute labels and latent variables sampled
from Gaussian noise as generation conditions. Subsequent-
ly, StarGANv2 (Choi et al. 2020), HiSD (Li et al. 2021b)
and VecGAN (Dalva, Altındiş, and Dundar 2022) combine
the above two types of style manipulation approaches into a
unified framework. These methods follow a similar editing
pipeline, as shown in Fig. 2. First, the style extractor with
multiple output branches generates style vectors from laten-
t variable or reference image. Then, the generator utilizes
target labels to retrieve corresponding style vector for both
target attribute editing and style manipulation. In this paper,
we employ a style extractor and mapping network similar
to HiSD to leverage its excellent style manipulation capabil-
ities. However, we introduce two novel components: a se-
mantic disentanglement generator (Fig. 3 (c)) and a seman-
tic mask alignment strategy (Fig. 3 (d)). These additions are
aimed at improving the editing quality and accuracy, and we
will elaborate on these new issues in the following section.

Approach
The primary idea behind our SDGAN is to achieve pre-
cise attribute editing and style manipulation by decoupling
the facial attribute editing process and constraining attribute
editing region. As shown in Fig. 3, the SDGAN framework

consists of five components: the mapping module M , the
extractor module F , the semantic disentanglement genera-
tor G, the semantic mask alignment strategy A, and the dis-
criminator D. These components work in unison to gener-
ate, extract, and manipulate the style of the target attributes
in facial images. In the subsequent sections, we provide a
comprehensive description of key components in SDGAN,
including modules M , F , as well as the novel components
G and A. Subsequently, we delve into the discussion of our
objective functions.

Mapping and Extractor Modules

The modules M and F are used to generate and extract ini-
tial style vectors from Gaussian noise and reference images,
respectively. Both M and F have separate output branches
for each attribute. Depending on whether the target attribute
style is provided byM or F , there are two ways to get the fi-
nal style vectors for manipulation: latent-guided manner and
reference-guided manner.

1) In the latent-guided manner, given an facial image xs to
be edited and a target attribute index t (e.g., bangs or
eyeglasses), M generates the target attribute style vec-
tor st from randomly sampled Gaussian noise z. To p-
reserve irrelevant attributes unchanged, F extracts the
target attribute-irrelevant style vectors st = {si|∀i 6=
t}i=1...n from the reference image xs, where si indicates
the style vector of i-th attribute, and n is the number of
attributes to be considered. Finally, we combine st and st
to form the final style vectors s = {s1, s2, ..., st, ..., sn}.
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2) In the reference-guided manner, the extractor module F
is responsible for extracting the target attribute style vec-
tor st and the target attribute-irrelevant vectors st from
a given reference image xr and the input image xs, re-
spectively. By combining st with st, we create the final
style vectors s. It’s important to note that in this process,
we do not utilize module M at all. The primary objective
here is to transfer the target attribute style from xr to xs.

Semantic Disentanglement Generator
To effectively manipulate the target attribute while preserv-
ing other irrelevant details, achieving a strong disentangle-
ment of face representations is crucial. Previous method-
s (Choi et al. 2020; Li et al. 2021b) have achieved impressive
results by decoupling the generation and extraction process-
es of style vectors. However, their generators mainly focus
on obtaining manipulation results that reflect the target at-
tribute style vector, ignoring other unrelated attributes and
content, as illustrated in Fig. 2 (b). In contrast, our approach
takes all attribute style vectors into account as generation
conditions, enabling us to manipulate the target attribute
style while preserving other unrelated attributes and con-
tent. Moreover, our generator is designed to learn distinct
attribute-specific editing modules and editing regions for d-
ifferent attributes, effectively decoupling the editing process
of facial attributes.

The generator G aims to transform the input xs into the
edited image xt based on the resulting style vectors s de-
rived from the mapping and extractor modules, denoted as
xt = G(xs, s). As shown in Fig. 3 (c), G is composed of
three parts, i.e., the encoder En, the transformer T , and the
decoder De. En first converts xs into its immediate fea-
ture e. T then assigns e to different attribute-specific edit-
ing modules Ti (i = 1, 2, ..., n). Each Ti utilizes adaptive
instance normalization (AdaIN) (Huang and Belongie 2017)
to inject the style vector si into e, enabling it to learn the
editing for the i-th attribute. This process generates an edit-
ed feature fi and a semantic mask mi that is used to restrict
the manipulation region of Ti. To encourage that each Ti
focuses solely on its corresponding attribute and minimizes
undesired changes, we employ Softmax to divide the manip-
ulation region of each Ti:

m̃i =
exp(mi)∑n+1

i′=1
exp(mi′ )

, i = 1, 2, . . . n+ 1, (1)

where mn+1 is simply set to as a zero matrix, capturing the
region not associated with any specific attribute. Moreover,
the feature maps from different Ti are aggregated as follows:

f =
n∑

i=1

fi ⊗ m̃i + e⊗ m̃n+1, (2)

where ⊗ indicates element-wise multiplication operation.
Finally, f is fed into De to generate the edited image xt.

Semantic Mask Alignment Strategy
In the previous section, we introduce the semantic mask m̃i,
which aims to facilitate correct attribute modification while

suppressing undesired changes. However, accurately identi-
fying the relevant semantic regions associated with the i-th
attribute is a challenging task, especially without using addi-
tional supervised signals. To address this challenge, we first
propose an attribute classifier C to predict the attributes in
the image xs, and we define the corresponding loss function
of C as follows:

Lc =
n∑

i=1

−ailogCi(xs)− (1− ai)log(1− Ci(xs)), (3)

where ai ∈ {0, 1} denotes the true label of the i-th attribute
of xs, while Ci(xs) ∈ [0, 1] denotes the corresponding pre-
diction with the classifier C. As for m̃i, we force it to sup-
port the C to accurately predict the label bi ∈ {0, 1} of i-th
attribute of xt by using dynamic weighted cross-entropy:

Lm =
n∑

i=1

− 1

mi + ε
[biCi(xt ⊗ m̃i)+

(1− bi)(1− Ci(xt ⊗ m̃i))],

(4)

where mi is the mean value of the mask m̃i, which is used
to enhance training stability, and ε is a hyperparameter. Lc

and Lm respectively optimize C and G by iteration way.

Training Objectives
Reconstruction objective. To encourage the editing results
to preserve as many details as possible from the input image,
we consider three reconstruction versions:

1) x′s = De(En(xs)): When no attribute editing operation
is involved, the output should faithfully reconstruct the
input image.

2) x′′s = G(xs, F (xs)): Under the guidance of the style vec-
tors of the input image, the output of G should recon-
struct the input image.

3) x′′′s = G(G(xs, s), F (xs)): We first edit xs into xt =
G(xs, s) using latent-guided manner. Then, taking xs
as the reference image, we reverse xt back to x′′′s =
G(xt, F (xs)) using reference-guided manner.

We define the reconstruction objective as follows:

Lrec = ||x′s − xs||1 + ||x′′s − xs||1 + ||x′′′s − xs||1. (5)

Adversarial objective. To promote realistic editing, D is
designed with multiple output branches, and each branch
learns to distinguish whether an image is a real image of
the corresponding attribute or a image generated by G:

Ladv = logDt(xs) + log(1−Dt(xt)), (6)

where Dt indicates the output branch corresponding to the
target attribute t. This objective encourages M to generate
the correct target attribute style and compels F to accurately
extract the target attribute style from the reference image.
Style objective. The style vectors extracted from the edit-
ed image xt is supposed to be equal to the style vectors s
injected into G, which is defined as:

Lsty = ||F (xt)− s||1. (7)
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Figure 4: Qualitative results of the latent-guided manner, including (a) + Bangs and (b) + Eyeglasses.

Method + Bangs - Bangs + Eleglasses - Eleglasses Average
↓ FID ↑ Acc ↓ FID ↑ Acc ↓ FID ↑ Acc ↓ FID ↑ Acc ↓ FID ↑ Acc

SDIT 23.68 92.44 41.33 96.93 77.65 90.28 107.27 98.55 62.48 94.55
VecGAN 20.17 - - - - - - - - -

HiSD 17.18 85.99 39.71 92.25 62.17 80.39 95.99 99.33 53.76 89.49
Ours 15.69 90.67 38.69 97.67 49.39 98.52 78.99 95.33 45.69 95.54

Table 1: Quantitative results of the latent-guided manner.

This objective encourages G to utilize s during the genera-
tion of xt, enabling F to accurately extract s from xt.
Full objective. Finally, our full objective function is written
as follows:

min
M,F,G,C

max
D

(Lc + λmLm + λrecLrec

+Ladv + λstyLsty),
(8)

where λm, λrec, and λsty are hyperparameters for each term.

Experiments
Database. Like previous methods (Li et al. 2021b; Pehli-
van, Dalva, and Dundar 2023), we evaluate our method on
CelebA-HQ (Karras et al. 2018), which comprises 30,000
facial images with attribute annotations. Following (Li et al.
2021b), we split CelebA-HQ into a test set of 3,000 images
and a training set of 27,000 images. For the editing task, we
focus on three typical attributes: bangs, eyeglasses, and hair
color, which are commonly considered in existing methods.
Baselines. Since the proposed method can control attribute
styles, four related methods are included for comparative s-
tudy, including SDIT (Wang et al. 2019), which supports on-
ly the latent-guided manner, ELEGANT (Xiao, Hong, and
Ma 2018), which supports only the reference-guided man-
ner, HiSD (Li et al. 2021b), and VecGAN (Dalva, Altındiş,
and Dundar 2022). Note that for VecGAN, we provide only
quantitative results as its code is not available. In addition,
we also compare our method with two modern methods (i.e.,

HFGI (Wang et al. 2022) and StyleRes (Pehlivan, Dalva, and
Dundar 2023) ) based on latent space manipulation, since
these methods usually achieve high-fidelity editing results.
Evaluation metrics. We evaluate both the visual quality
of generated images and the attribute editing ability using
Frechet inception distance (FID (Heusel et al. 2017)) and at-
tribute editing accuracy (Acc) for our method and baselines.
Following the evaluation protocol (Li et al. 2021b), we re-
port FID for the attribute of bangs, and consider challeng-
ing eyeglasses as an additional reference indicator. For Acc,
we use an attribute classifier trained on the training set of
CelebA-HQ, achieving an accuracy of 95.0% on the test set.

Comparison with Style Manipulation Methods
In this section, we evaluate the style manipulation perfor-
mance of our method from two perspectives: latent-guided
manner and reference-guided manner.
Latent-guided manner. Fig. 4 shows qualitative results of
the competing methods. SDIT exhibits limited performance
in style manipulation and image quality. HiSD produces pro-
duces unrealistic bangs (Fig. 4 (a)) and eyeglasses (Fig. 4
(b)). In contrast, our method effectively generates high-
quality and realistic editing results. Quantitative results are
listed in Table 1. Our approach achieves the best FID and
average Acc. Most significantly, our method demonstrates
significant improvements in average FID compared to HiS-
D, with a decrease of 8.07. For hair color manipulation and
additional results, please refer to our supplemental material.
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Figure 5: Qualitative results of the reference-guided manner, including (a) + Bangs and (b) + Eyeglasses.

Method + Bangs - Bangs + Eleglasses - Eleglasses Average
↓ FID ↑ Acc ↓ FID ↑ Acc ↓ FID ↑ Acc ↓ FID ↑ Acc ↓ FID ↑ Acc

ELEGANT 28.16 72.88 52.11 85.28 91.10 68.27 107.08 98.66 69.61 81.27
VecGAN 20.72 - - - - - - - - -

HiSD 17.53 76.32 38.73 89.33 56.64 83.82 89.97 95.11 50.71 86.14
Ours 16.27 86.27 38.62 90.52 51.45 87.09 75.17 95.02 45.37 89.70

Table 2: Quantitative results of the reference-guided manner.

Reference-guided manner. Fig. 5 presents qualitative re-
sults of the competing methods. ELEGANT fails to preserve
irrelevant content when manipulating eyeglasses. In certain
cases, HiSD cannot accurately transfer the shape and color
of the eyeglasses, as evident in the middle column of the sec-
ond row, and the left column of the last row in Fig. 5 (b). In
contrast, our method accurately transfers the attribute style
of reference images and obtain high-quality editing results.
Quantitative results are listed in Table 2. Our approach con-
sistently achieves the best FID and average Acc, and demon-
strates significant improvements in average FID compared to
HiSD, with a decrease of 5.34.

Comparison with Methods Based on Latent Space
Manipulation
In this section, our main focus is to compare the challenging
attribute of eyeglasses. Note that both HFGI and StyleRes
utilize StyleGAN as the generator and have been pre-trained
on FFHQ. However, they tend to suffer from the loss of
fine details in the original images due to the absence of
end-to-end training, as evident in Fig. 6. For example, they
encounter difficulties in preserving the details of the collar
(1st row) and introduce distortions in the earrings (3th row).
Additionally, they struggle to handle occlusions effectively
(2nd row). In contrast, our method effectively preserves im-
age details while achieving accurate attribute editing.
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Method + Bangs - Bangs + Eleglasses - Eleglasses Average
L R L R L R L R L R

w/o ASEM 18.41 18.38 38.75 42.97 50.45 52.91 80.08 76.89 46.92 47.78
w/o Mask 18.43 18.32 41.20 41.27 50.93 52.85 83.03 79.50 48.39 47.98

w/o SMAS 17.26 17.93 41.31 40.90 54.72 61.54 87.88 86.56 50.29 51.73
SDGAN 15.69 16.27 38.69 38.62 49.39 51.45 78.99 75.17 45.69 45.37

Table 3: Quantitative results of the ablation study on FID. L: latent-guided; R: reference-guided.

Input HFGI StyleRes SDGAN-L SDGAN-R Reference

Figure 6: Qualitative comparison with HFGI and StyleRes
on attribute “+ Eyeglasses”. SDGAN-L: latent-guided;
SDGAN-R: reference-guided.

Method + Eleglasses - Eleglasses
↓ FID ↑ Acc ↓ FID ↑ Acc

HFGI 95.48 79.86 104.97 36.66
StyleRes 80.64 79.17 97.87 93.33

SDGAN-R 51.45 87.09 75.17 95.02
SDGAN-L 49.39 98.52 78.99 95.33

Table 4: Quantitative comparison with HFGI and StyleRes.

The quantitative results are shown in Table 4. It is worth
mentioning that HFGI and StyleRes perform poorly in terms
of FID because they are unable to manipulate target attribute
styles to produce diverse outputs. On the other hand, our
method excels in manipulating the target attribute style and
consistently achieves the best FID and Acc scores.

Ablation Study
In this section, we conduct ablation studies to showcase the
effectiveness of the proposed SDGAN. The qualitative re-
sults are presented in Fig.7. From the observations in Fig.7,
we identify three crucial findings:
1) We replay the attribute-specific editing modules (i.e., Ti

for different attributes in G) with an unified module (i.e.,
a single T ) for all attributes editing as existing methods
(w/o ASEM). This change affects other irrelevant con-
tent, e.g., hair color and illumination.

2) We remove the semantic masks and instead directly com-
bine the outputs of different attribute-specific editing
modules element-wise (w/o Mask). This change intro-
duces noise (1st row) and color distribution (3rd row),
and fails to preserve details of hair and beard (last row).

Input SDGANw/o Mask w/o SMASw/o ASEM

Figure 7: Qualitative results of the ablation study. The first
two rows: + Bangs, the last two rows: + Eyeglasses.

3) We exclude the semantic mask alignment strategy (w/o
SMAS). We provide the semantic mask corresponding to
the target attribute in the bottom right corner of each im-
age. Without SMAS, the semantic masks either focus on
incorrect regions (1st row) or cover a much larger area
than the actual region (3rd & 4th rows). Consequently,
unrealistic editing results emerged when editing bangs,
and undesirable changes occurred when editing eyeglass-
es. In contrast, SDGAN can focus on the relevant areas
and suppress undesired changes.

Overall, SDGAN demonstrates high-quality editing re-
sults with correct modification and unrelated preservation.
Moreover, SDGAN also consistently achieves the best quan-
titative performance, as listed in Table 3.

Conclusion
In this paper, we introduce a novel framework SDGAN to
address the challenge of accurate and controllable facial at-
tribute editing. By utilizing a semantic disentanglement gen-
erator with attribute-specific editing modules and semantic
masks, we effectively separate the editing process for differ-
ent attributes. Additionally, our novel semantic mask align-
ment strategy guides the semantic masks to precisely iden-
tify and restrict the editing regions. Extensive experiments
demonstrate the superiority of SDGAN over state-of-the-art
methods in style manipulation, image quality, and attribute
editing accuracy. Moreover, we believe that the modules and
strategies proposed in this paper can serve as valuable refer-
ences for other related editing tasks, potentially enhancing
their performance as well.
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