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Abstract

Recently 3D object detection from surround-view images has
made notable advancements with its low deployment cost.
However, most works have primarily focused on close per-
ception range while leaving long-range detection less ex-
plored. Expanding existing methods directly to cover long
distances poses challenges such as heavy computation costs
and unstable convergence. To address these limitations,
this paper proposes a novel sparse query-based framework,
dubbed Far3D. By utilizing high-quality 2D object priors,
we generate 3D adaptive queries that complement the 3D
global queries. To efficiently capture discriminative features
across different views and scales for long-range objects, we
introduce a perspective-aware aggregation module. Addition-
ally, we propose a range-modulated 3D denoising approach
to address query error propagation and mitigate conver-
gence issues in long-range tasks. Significantly, Far3D demon-
strates SoTA performance on the challenging Argoverse 2
dataset, covering a wide range of 150 meters, surpassing
several LiDAR-based approaches. The code is available at
https://github.com/megvii-research/Far3D.

Introduction
3D object detection plays an important role in understand-
ing 3D scenes, aiming to provide accurate object localization
and category around the ego vehicle. Surround-view meth-
ods (Huang and Huang 2022; Li et al. 2023; Liu et al. 2022b;
Li et al. 2022c; Yang et al. 2023; Park et al. 2022; Wang et al.
2023a), with their advantages of low cost and wide applica-
bility, have achieved remarkable progress. However, most of
them focus on close-range perception (e.g., ∼50 meters on
nuScenes (Caesar et al. 2020)), leaving the long-range detec-
tion field less explored. Detecting distant objects is essential
for real-world driving to maintain a safe distance, especially
at high speeds or complex road conditions.

Existing surround-view methods can be categorized into
two groups based on the intermediate representation, dense
Bird’s-Eye-View (BEV) based methods and sparse query-
based methods. BEV based methods (Huang et al. 2021;
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Figure 1: Peformance comparisons on Argoverse 2 between
3D detection and 2D detection. (a) and (b) demonstrate pre-
dicted boxes of StreamPETR and YOLOX, respectively. (c)
imply that 2D recall is notably better than 3D recall and can
act as a bridge to achieve high-quality 3D detection. Note
that 2D recall does not represent 3D upper bound due to dif-
ferent recall criteria.

Huang and Huang 2022; Li et al. 2023, 2022c; Yang et al.
2023) usually convert perspective features to BEV features
by employing a view transformer (Philion and Fidler 2020),
then utilizing a 3D detector head to produce the 3D bound-
ing boxes. However, dense BEV features come at the cost of
high computation even for the close-range perception, mak-
ing it more difficult to scale up to long-range perception.
Instead, following DETR (Carion et al. 2020) style, sparse
query-based methods (Wang et al. 2022; Liu et al. 2022a,b;
Wang et al. 2023a) adopt learnable global queries to repre-
sent 3D objects, and interact with surround-view image fea-
tures to update queries. Although sparse design can avoid the
squared growth of query numbers, its global fixed queries
cannot adapt to dynamic scenarios and usually miss targets
in long-range detection. We adopt the sparse query design
to maintain detection efficiency and introduce 3D adaptive
queries to address the inflexibility weaknesses.
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Figure 2: Different cases of transformimg 2D points into 3D
space. The blue dots indicate the centers of 3D objects in im-
ages. (left) shows the redundant prediction with the wrong
depth, which is in yellow. (right) illustrates the error propa-
gation problem dominated by different ranges.

To employ the sparse query-based paradigm for long-
range detection, the primary challenge lies in poor recall
performance. Due to the query sparsity in 3D space, as-
signments between predictions and ground-truth objects are
affected, generating only a small amount of matched pos-
itive queries. As illustrated in Fig. 1, 3D detector recalls
are pretty low, yet recalls from the existing 2D detector
are much higher, showing a significant performance gap
between them. Motivated by this, leveraging high-quality
2D object priors to improve 3D proposals is a promis-
ing approach, for enabling accurate localization and com-
prehensive coverage. Although previous methods like Sim-
MOD (Zhang et al. 2023) and MV2D (Wang et al. 2023b)
have explored using 2D predictions to initialize 3D object
proposals, they primarily focus on close-range tasks and
discard learnable object queries. Moreover, as depicted in
Fig. 2, directly introducing 3D queries derived from 2D pro-
posals for long-range tasks encounters two issues: 1) inferior
redundant predictions due to uncertain depth distribution
along the object rays, and 2) larger deviations in 3D space
as the range increases due to frustum transformation. These
noisy queries can impact the training stability, requiring ef-
fective denoising ways to optimize. Furthermore, within the
training process, the model exhibits a tendency to overfit on
densely populated close objects while disregarding sparsely
distributed distant objects.

To address the aforementioned challenges, we design a
novel 3D detection paradigm to expand the perception hori-
zon. Despite the 3D global query that was learned from the
dataset, our approach also incorporates auxiliary 2D pro-
posals into 3D adaptive query generation. Specifically, we
first produce reliable pairs of 2D object proposals and corre-
sponding depths then project them to 3D proposals via spa-
tial transformation. We compose 3D adaptive queries with
the projected positional embedding and semantic context,
which would be refined in the subsequent decoder. In the
decoder layers, perspective-aware aggregation is employed
across different image scales and views. It learns sampling
offsets for each query and dynamically enables interactions
with favorable features. For instance, distant object queries
are beneficial to attend large-resolution features, while the
opposite is better for close objects in order to capture high-

level context. Lastly, we design a range-modulated 3D de-
noising technique to mitigate query error propagation and
slow convergence. Considering the different regression dif-
ficulties for various ranges, noisy queries are constructed
based on ground-truth (GT) as well as referring to their dis-
tances and scales. Our method feeds multi-group noisy pro-
posals around GT into the decoder and trains the model to a)
recover 3D GT for positive ones and b) reject negative ones,
respectively. The inclusion of query denoising also alleviates
the problem of range-level unbalanced distribution.

Our proposed method achieves remarkable performance
advancements over state-of-the-art (SoTA) approaches on
challenging long-range Argoverse 2 dataset, and surpasses
the prior arts of LiDAR-based methods. To evaluate the
generalization capability, we further validate its results on
nuScenes and demonstrate SoTA metrics. In summary:

• We propose a novel sparse query-based framework to
expand the perception range in 3D detection, by incor-
porating high-quality 2D object priors into 3D adaptive
queries.

• We develop perspective-aware aggregation that captures
informative features from diverse scales and views, as
well as a range-modulated 3D denoising technique to ad-
dress query error propagation and convergence problems.

• On the challenging long-range Argoverse 2 datasets, our
method surpasses surround-view methods and outper-
forms several LiDAR-based methods. The generalization
of our method is validated on the nuScenes dataset.

Related Work
Surround-view 3D Object Detection
Recently 3D object detection from surround-view images
has attracted much attention and achieved great progress,
due to its advantages of low deployment cost and rich se-
mantic information. Based on feature representation, exist-
ing methods (Wang et al. 2021, 2022; Liu et al. 2022a;
Huang and Huang 2022; Li et al. 2023, 2022b; Jiang et al.
2023; Liu et al. 2022b; Li et al. 2022c; Yang et al. 2023; Park
et al. 2022; Wang et al. 2023a; Zong et al. 2023; Liu et al.
2023) can be largely classified into BEV-based methods and
sparse-query based methods.

Extracting image features from surround views, BEV-
based methods (Huang et al. 2021; Huang and Huang 2022;
Li et al. 2023, 2022c) transform features into BEV space
by leveraging estimated depths or attention layers, then a
3D detector head is employed to predict localization and
other properties of 3D objects. For instance, BEVFormer (Li
et al. 2022c) leverages both spatial and temporal features by
interacting with spatial and temporal space through prede-
fined grid-shaped BEV queries. BEVDepth (Li et al. 2023)
propose a 3D detector with a trustworthy depth estimation,
by introducing a camera-aware depth estimation module. On
the other hand, sparse query-based paradigms (Wang et al.
2022; Liu et al. 2022a) learn global object queries from the
representative data, then feed them into the decoder to pre-
dict 3D bounding boxes during inference. This line of work
has the advantage of lightweight computing.
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Figure 3: The overview of our proposed Far3D. Feeding surround-view images into the backbone and FPN neck, we obtain
2D image features and encode them with camera parameters for perspective-aware transformation. Utilizing a 2D detector and
DepthNet, we generate reliable 2D box proposals and their corresponding depths, which are then concatenated and projected
into 3D space. The generated 3D adaptive queries, combined with the initial 3D global queries, are iteratively refined by the de-
coder layers to predict 3D bounding boxes. Furthermore, temporal modeling is equipped through long-term query propagation.

Furthermore, temporal modeling for surround-view 3D
detection can improve detection performance and decrease
velocity errors significantly, and many works (Huang and
Huang 2022; Liu et al. 2022b; Park et al. 2022; Wang et al.
2023a; Lin et al. 2022, 2023) aim to extend a single-frame
framework to multi-frame design. BEVDet4D (Huang and
Huang 2022) lifts the BEVDet paradigm from the spatial-
only 3D space to the spatial-temporal 4D space, via fus-
ing features with the previous frame. PETRv2 (Liu et al.
2022b) extends the 3D position embedding in PETR for
temporal modeling through the temporal alignment of dif-
ferent frames. However, they use only limited history. To
leverage both short-term and long-term history, SOLOFu-
sion (Park et al. 2022) balances the impacts of spatial resolu-
tion and temporal difference on localization potential, then
use it to design a powerful temporal 3D detector. Stream-
PETR (Wang et al. 2023a) develops an object-centric tem-
poral mechanism in an online manner, where long-term his-
torical information is propagated through object queries.

2D Auxiliary Tasks for 3D Detection
3D detection from surround-view images can be improved
through 2D auxiliary tasks, and some works (Xie et al. 2022;
Zhang et al. 2023; Wang, Jiang, and Li 2022; Yang et al.
2023; Wang et al. 2023b) aim to exploit its potential. There
are several approaches including 2D pertaining, auxiliary su-
pervision, and proposal generation. SimMOD (Zhang et al.
2023) exploits sample-wise object proposals and designs a
two-stage training manner, where perspective object pro-
posals are generated and followed by iterative refinement
in DETR3D-style. Focal-PETR (Wang, Jiang, and Li 2022)
performs 2D object supervision to adaptively focus the at-
tention of 3D queries on discriminative foreground regions.
BEVFormerV2 (Yang et al. 2023) presents a two-stage BEV
detector where perspective proposals are fed into the BEV

head for final predictions. MV2D (Wang et al. 2023b) de-
signs a 3D detector head that is initialized by RoI regions of
2D predicted proposals.

Compared to the above methods, our framework differs
in the following aspects. Firstly, we aim to resolve the
challenges of long-range detection with surrounding views,
which are less explored in previous methods. Besides learn-
ing 3D global queries, we explicitly leverage 2D predicted
boxes and depths to build 3D adaptive queries, utilizing po-
sitional prior and semantic context simultaneously. Further-
more, the designs of perspective-aware aggregation and 3D
denoising are integrated to address task issues.

Method
Overview
Fig. 3 shows the overall pipeline of our sparse query-based
framework. Feeding surround-view images I = {I1, ..., In},
we extract multi-level images features F = {F1, ...,Fn}
by using the backbone network (e.g. ResNet, ViT) and a
FPN (Lin et al. 2017) neck. To generate 3D adaptive queries,
we first obtain 2D proposals and depths using a 2D detector
head and depth network, then filter reliable ones and trans-
form them into 3D space to generate 3D object queries. In
this way, informative object priors from 2D detections are
encoded into the 3D adaptive queries.

In the 3D detector head, we concatenate 3D adap-
tive queries and 3D global queries, then input them to
transformer decoder layers including self-attention among
queries and perspective-aware aggregation between queries
and features. We propose perspective-aware aggregation to
efficiently capture rich features in multiple views and scales
by considering the projection of 3D objects. Besides, range-
modulated 3D denoising is introduced to alleviate query er-
ror propagation and stabilize the convergence, when training
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with long-range and imbalanced distributed objects. Sec de-
picts the denoising technique in detail.

Adaptive Query Generation
Directly extend existing 3D detectors from short range (e.g.
~50m) to long range (e.g. ~150m) suffers from several prob-
lems: heavy computation costs, inefficient convergence and
declining localization ability. For instance, the query num-
ber is supposed to grow at least squarely to cover possi-
ble objects in a larger range, yet such a computing disas-
ter is unacceptable in realistic scenarios. Besides that, small
and sparse distant objects would hinder the convergence and
even hurt the localization of close objects. Motivated by the
high performance of 2D proposals, we propose to generate
adaptive queries as objects prior to assist 3D localization.
This paradigm compensates for the weakness of global fixed
query design and allows the detector to generate adaptive
queries near the ground-truth (GT) boxes for different im-
ages. In this way, the model is equipped with better general-
ization and practicality.

Specifically, given image features after FPN neck, we feed
them into the anchor-free detector head from YOLOX (Ge
et al. 2021) and a light-weighted depth estimation net, out-
putting 2D box coordinates, scores and depth map. 2D de-
tector head follows the original design, while the depth es-
timation is regarded as a classification task by discretizing
the depth into bins (Reading et al. 2021; Zhang et al. 2022).
We then make pairs of 2D boxes and corresponding depths.
To avoid the interference of low-quality proposals, we set a
score threshold τ (e.g. 0.1) to leave only reliable ones. For
each view i, box centers (cw, ch) from 2D predictions and
depth dwh from depth map are combined and projected to
3D proposal centers c3d.

c3d = K−1
i I−1

i [cw ∗ dwh, ch ∗ dwh,dwh,1]
T (1)

where Ki , Ii denote camera extrinsic and intrinsic matrices.
After obtaining projected 3D proposals, we encode them

into 3D adaptive queries as follows,

Qpos = PosEmbed(c3d) (2)

Qsem = SemEmbed(z2d, s2d) (3)
Q = Qpos +Qsem (4)

where Qpos,Qsem denote positional embedding and se-
mantic embedding, respectively. z2d sampled from F cor-
responds to the semantic context of position (cw, ch), and
s2d is the confidence score of 2D boxes. PosEmbed(·) con-
sists of a sinusoidal transformation (Vaswani et al. 2017) and
a MLP, while SemEmbed(·) is another MLP.

Lastly, the proposed 3D adaptive queries are concatenated
with initialized global queries, and fed to subsequent trans-
former layers in the decoder.

Perspective-aware Aggregation
Existing sparse query-based approaches usually adopt one
single-level feature map for computation effectiveness (e.g.
StreamPETR). However, the single feature level is not op-
timal for all object queries of different ranges. For exam-
ple, small distant objects require large-resolution features

for precise localization, while high-level features are bet-
ter suited for large close objects. To overcome the limita-
tion, we propose perspective-aware aggregation, enabling
efficient feature interactions on different scales and views.

Inspired by the deformable attention mechanism (Zhu
et al. 2020), we apply a 3D spatial deformable attention con-
sisting of 3D offsets sampling followed by view transfor-
mation. Formally, we first equip image features F with the
camera information including intrinsic I and extrinsic pa-
rameters K. A squeeze-and-excitation block (Hu, Shen, and
Sun 2018) is used to explicitly enrich the features. Given en-
hanced feature F′, we employ 3D deformable attention in-
stead of global attention in PETR series (Liu et al. 2022a,b;
Wang et al. 2023a). For each query reference point in 3D
space, the model learns M sampling offsets around and
projects these references into different 2D scales and views.

P2d
q = I ·K · (P3d

q +∆P3d
q ) (5)

where P3d
q ,∆P3d

q are 3D reference point and learned offsets
for query q, respectively. P2d

q stands for the projected 2d
reference point of different scales and views. For simplicity,
we omit the subscripts of scales and views.

Next, 3D object queries interact with multi-scale sampled
features from F

′
, according to the above 2D reference points

P2d
q . Then features from various views and scales are aggre-

gated into 3D queries considering their relative importance.

Range-modulated 3D Denoising
3D object queries at different distances have different regres-
sion difficulties, which is different from 2D queries that are
usually treated equally for existing 2D denoising methods
such as DN-DETR (Li et al. 2022a). The difficulty discrep-
ancy comes from query density and error propagation. On
the one hand, queries corresponding to distant objects are
less matched compared to close ones. On the other hand,
small errors of 2D proposals can be amplified when intro-
ducing 2D priors to 3D adaptive queries, illustrated in Fig. 2,
not to mention which effect increases along with object dis-
tance. As a result, some query proposals near GT boxes can
be regarded as noisy candidates, whereas others with no-
table deviation should be negative ones. Therefore we aim
to recall those potential positive ones and directly reject
solid negative ones, by developing a method called range-
modulated 3D denoising.

Concretely, we construct noisy queries based on GT ob-
jects by simultaneously adding positive and negative groups.
For both types, random noises are applied according to ob-
ject positions and sizes to facilitate denoising learning in
long-range perception. Formally, we define the position of
noisy queries as:

P̃ = PGT + αfp(SGT ) + (1− α)fn(PGT ) (6)

where α ∈ {0, 1} corresponds to the generation of negative
and positive queries, respectively. PGT ,SGT ∈ R3 repre-
sents 3D center (x, y, z) and box scale (w, l, h) of GT, and P̃
is noisy coordinates. We use functions fp and fn to encode
position-aware noise for positive and negative samples.
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Methods Backbone Modality Image/Voxel Size mAP↑ CDS↑ mATE↓ mASE↓ mAOE↓

BEVStereo‡ VoV-99 Camera 960 × 640 0.146 0.104 0.847 0.397 0.901
SOLOFusion‡ VoV-99 Camera 960 × 640 0.149 0.106 0.934 0.425 0.779
PETR VoV-99 Camera 960 × 640 0.176 0.122 0.911 0.339 0.819
Sparse4Dv2 VoV-99 Camera 960 × 640 0.189 0.134 0.832 0.343 0.723
StreamPETR VoV-99 Camera 960 × 640 0.203 0.146 0.843 0.321 0.650
Far3D (Ours) VoV-99 Camera 960 × 640 0.244 0.181 0.796 0.304 0.538

CenterPoint - Lidar (0.2, 0.2, 0.2) 0.274 0.210 0.548 0.362 0.781
FSD - Lidar (0.2, 0.2, 0.2) 0.291 0.233 0.468 0.299 0.740
VoxelNeXt - Lidar (0.1, 0.1, 0.2) 0.307 0.225 0.431 0.291 1.157
Far3D (Ours) ViT-L Camera 1536 × 1536 0.316 0.239 0.732 0.303 0.459

Table 1: Comparisons on the Argoverse 2 val set. We evaluate 26 object categories with a range of 150 meters. Far3D outper-
form previous surround-view methods with a large margin, and surpass several SoTA LiDAR-based methods. Surround-view
methods except for PETR are with temporal modeling. ‡ are reproduced by ourselves.

Methods Backbone Split mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

PETR ResNet101 val 0.366 0.441 0.717 0.261 0.412 0.834 0.190
SOLOFusion ResNet101 val 0.483 0.582 0.503 0.264 0.381 0.246 0.207
StreamPETR∗ ResNet101 val 0.504 0.592 0.569 0.262 0.315 0.257 0.199
Sparse4Dv2∗ ResNet101 val 0.505 0.594 0.548 0.268 0.348 0.239 0.184
Far3D (Ours)∗ ResNet101 val 0.510 0.594 0.551 0.258 0.372 0.238 0.195

SOLOFusion ConvNeXt-B test 0.540 0.619 0.453 0.257 0.376 0.267 0.148
Sparse4Dv2 VoV-99 test 0.556 0.638 0.462 0.238 0.328 0.264 0.115
StreamPETR ViT-L test 0.620 0.676 0.470 0.241 0.258 0.236 0.134
Far3D (Ours) ViT-L test 0.635 0.687 0.432 0.237 0.278 0.227 0.130

Table 2: Comparison on the nuScenes val and test splits. Far3D achieves the highest performance compared to prior-arts,
validating its generalization ability. ∗Benefited from the perspective-view pre-training. We employ the resolution 512 × 1408
for val and 1536 × 1536 for test split.

For positive noisy samples, we set fp(SGT ) as a linear
function of 3D box scale with a random variable. We in-
corporate the offset constraint within GT boxes to guide
the model in accurately reconstructing the GT from positive
queries, while ensuring clear distinction from surrounding
adjacent boxes. For negative samples, the offsets are sup-
posed to be relevant to their position range, thus we propose
several implementations. For some examples, fn(PGT ) can
be in forms of log(PGT ), λ2PGT or

√
PGT . We show these

attempts in Sec. . Moreover, multi-group samples are gener-
ated for each GT object to enhance query diversity. Each
group comprises one positive sample and K negative sam-
ples. This approach serves as an imitation of noisy positive
candidates and false positive candidates during training.

Experiment
Datasets and Metrics
We use the large-scale Argoverse 2 dataset (Wilson et al.
2023) and nuScenes dataset (Caesar et al. 2020) to explore
and evaluate the effectiveness of our approach.

Argoverse 2 is a dataset for perception and prediction

studies in autonomous driving domain. It contains 1000
scenes with 15 seconds duration and 10Hz annotation fre-
quency. And these total scenes are divided into 700 for train-
ing, 150 for validation, and 150 for testing. Seven high-
resolution ring cameras are provided with a combined 360°
field of view. We evaluate it with 26 categories in a 150-
meter range, satisfying the need for long-range tasks. In ad-
dition to the mean Average Precision (mAP), we evaluate
the methods with the metrics that Argoverse 2 proposed: the
Composite Detection Score (CDS), which is the main metric
combining all factors in Argoverse 2, and three true positive
metrics, including ATE, ASE, and AOE.

nuScenes is one of the most trustworthy datasets for
multi-camera 3D object detection containing 1000 driving
scenes in total. Each scene, approximately 20 seconds long,
is annotated in 10 categories with 3D bounding boxes for
sampled keyframes. We conduct experiments on it and com-
pare the results with other methods using the following met-
rics: mAP and the nuScenes Detection Score (NDS).
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Figure 4: 3D Recall and AP of each method with different distance thresholds. Metrics of different ranges show that our
approach consistently achieves a better result.

# Adaptive Query PA 3D Denoising mAP[%]↑ CDS[%]↑

1 20.3 14.6
2 ✔ 22.4 16.1
3 ✔ ✔ 23.4 17.3
4 ✔ ✔ ✔ 24.4 (+4.1) 18.1 (+3.5)

Table 3: Ablation of our components on Argoverse 2 val
set. StreamPETR is employed as the baseline, and we add
the adaptive query, perspective-aware aggregation (PA) and
range-modulated 3D denoising in order.

Implementation Details
With StreamPETR (Wang et al. 2023a) as our baseline,
Far3D is composed of a backbone, an FPN neck, a 2D pro-
posal head, and a 3D detection head. We adopt VoVNet-
99 (Lee et al. 2019) pre-trained with FCOS3D (Wang et al.
2021) on nuScenes as the backbone to conduct main exper-
iments. ViT-Large (Dosovitskiy et al. 2020) pre-trained by
Objects365 (Shao et al. 2019) and COCO (Lin et al. 2014)
dataset is used to scale up our model. By default, the FPN
gives 4-level feature maps with sizes of 1/8, 1/16, 1/32, and
1/64. The perception range is set as 152.4m × 152.4m.

We use AdamW (Loshchilov and Hutter 2017) optimizer
with a weight decay of 0.01. The total batch size is 8 and the
learning rate is set to 2e-4. The models are totally trained
for 6 epochs, following the previous method (Chen et al.
2023). Since the resolution of the front-view image is dif-
ferent from other views in Argoverse 2 dataset, we first re-
size the front image to a consistent resolution, then do the
same image data augmentation as other images do. We do
not use any BEV data augmentation on Argoverse 2 dataset.
On the nuScenes dataset, we set the batch size as 32 and use
the ResNet101 (He et al. 2016) backbone to train our method
for 60 epochs. Other settings keep in line with StreamPETR.

Main Results
Argoverse 2 Dataset. We compare the proposed framework
with the existing state-of-the-arts on Argoverse 2 val set.
As shown in Tab. 1, when adopting VoV-99 backbone and

τ mAP[%]↑ CDS[%]↑ mATE↓ mASE↓ mAOE↓

0.01 23.1 17.2 0.807 0.307 0.531
0.05 23.4 17.3 0.806 0.312 0.531
0.1 24.4 18.1 0.796 0.304 0.538
0.2 23.7 17.6 0.802 0.307 0.530
0.3 23.5 17.4 0.799 0.307 0.577

Table 4: Ablation of different threshold τ for 2D proposals.

960×640 input size, our method demonstrates a substan-
tial superiority over other methods, achieving an impres-
sive margin of 4.1% mAP and 3.5% CDS. Besides the listed
sparse query-based methods, we also conduct experiments
on dense BEV-based methods, BEVStereo (Li et al. 2022b)
and SOLOFusion (Park et al. 2022). The results are barely
satisfactory and we suppose that is because of the greater dif-
ficulty of depth estimation. We also reproduce MV2D (Wang
et al. 2023b) but it can hardly converge here. The reason is
mainly the generated anchors lack accurate depth estima-
tion, leading to large localization deviations over long dis-
tances. To sum up, the convergence problem in long-range
detection is severe for the above methods, and we believe
that our depth estimation and 3D denoising play key roles to
solve it. More explanations are in the supplementary.

We further compare it with LiDAR-based SoTAs, Center-
Point (Yin, Zhou, and Krahenbuhl 2021), FSD (Fan et al.
2022), and VoxelNeXt (Chen et al. 2023). With a ViT-L
backbone and 1536×1536 resolution, our method outper-
forms them, showcasing the great potential of surround-view
methods. In detail, LiDAR-based methods have a lower lo-
calization error (i.e. ATE) due to accurate depth informa-
tion, while surround-view ones identify orientation proper-
ties (i.e. AOE) better.

As shown in Fig. 4, we present the 3D recall and mAP
results with different distances of 0-150m and 50-150m.
Far3D consistently outperforms other methods. For distant
objects, Far3D has a greater improvement when comparing
recall and mAP with thresholds of 2m and 4m.
nuScenes Dataset. To evaluate the generalization ability
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Figure 5: Visualization results on Argoverse 2 dataset. We show 3D bounding boxes predicted both in multi-camera images
and bird’s eye view. The view of the front center is distinguished from other six views. The detection boxes predicted from 3D
adaptive queries and 3D global queries are drawn in blue and green respectively. The GTs in orange are presented in BEV only.

of our approach, we conducted additional comparisons on
nuScenes dataset, as shown in Tab. 2. Notably, our method
outperforms previous SoTA methods with impressive re-
sults, achieving 51.0% mAP and 59.4% NDS on the val
set and 63.5% mAP and 68.7% NDS on the test set. These
superior metrics specifically highlight its effectiveness.

Ablation Study & Analysis
In this section, we present a comprehensive analysis of the
essential components of our model. As shown in Tab. 3, we
start from StreamPETR as the baseline in #1 and add each
module to verify its effect.
Adaptive Query. Comparing #1 and #2 in Tab. 3, we can
observe that adaptive query brings an improvement of 2.1%
mAP and 1.5% CDS. Adaptive queries are insensitive to
object range due to the robustness of 2D detectors in im-
ages, thus it is more suitable for general detection scenarios.
To choose the optimal score threshold of 2D proposals, we
conduct experiments shown in Tab. 4. Besides, we visualize
the detection results in Fig. 5 and distinguish the boxes pre-
dicted from 3D adaptive queries and 3D global queries. The
predictions from 3D adaptive queries cover a larger range,
showing their indispensable significance.
Perspective-aware Aggregation. Adding the perspective-
aware aggregation contributes a gain of 1.0% mAP and 1.2%
CDS. Distant objects only occupy a few pixels on the image,
therefore employing multi-level scales and views brings rich
features according to different object locations.
Range-modulated 3D Denoising. 3D denoising brings an
improvement of 1.0% mAP and 0.8% CDS. Penalizing neg-
ative samples flexibly alleviates the challenge of false pro-
posals and helps localize 3D objects, by taking the object
range into consideration. We present experiments on differ-
ent noising designs and numbers of negative samples, shown
in Tab. 5. The results imply that the logarithm function and
two negative samples are optimal settings.
Effect of the Global Query. We also design the experiment
to investigate the effect of global query in Tab. 6. 3D global
queries and adaptive queries coexist in our framework and
compensate for each other. As a baseline, StreamPETR suf-

# Negative sample Method mAP[%]↑ CDS[%]↑

0 – 23.4 17.3
1 log(·) 24.0 17.7
2 log(·) 24.4 18.1
3 log(·) 24.3 18.0

2 linear 24.1 17.9
2 sqrt 24.0 17.7
2 fixed 23.7 17.6

Table 5: Performance Comparison of negative denoising
samples with different designs and numbers.

# Global query StreamPETR Far3D (Ours)
100 300 644 100 300 644

mAP[%]↑ 1.5 16.9 20.5 23.5 23.6 24.4
CDS[%]↑ 0.9 11.8 14.8 17.4 17.5 18.1

Table 6: Impact of global query number. StreamPETR suf-
fers from convergence problem. In contrast, our framework
shows robust performance even with only adaptive queries.

fers from the convergence problem when using a small num-
ber of global queries (e.g. 100), and only works for a suffi-
cient amount. In contrast, our method showcases distinctive
robustness. As the number of global queries decreases, our
performance shows a slight decline.

Conclusion
In this paper, we present a sparse query-based method for 3D
long-range detection. Our approach incorporates 3D adap-
tive queries derived from 2D object priors, yielding high-
quality proposals for the decoder. To improve training ef-
ficacy, we introduce a perspective-aware aggregation and
range-modulated 3D denoising technique. Experimental re-
sults demonstrate the promising performance of our method,
indicating its great potential for practical applications.
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