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Abstract
Lidar-based 3D Detection is one of the significant compo-
nents of Autonomous Driving. However, current methods
over-focus on improving the performance of 3D Lidar per-
ception, which causes the architecture of networks becoming
complicated and hard to deploy. Thus, the methods are diffi-
cult to apply in Autonomous Driving for real-time processing.
In this paper, we propose a high-efficiency network, SwiftPil-
lars, which includes Swift Pillar Encoder (SPE) and Multi-
scale Aggregation Decoder (MAD). The SPE is constructed
by a concise Dual-attention Module with lightweight opera-
tors. The Dual-attention Module utilizes feature pooling, ma-
trix multiplication, etc. to speed up point-wise and channel-
wise attention extraction and fusion. The MAD interconnects
multiple scale features extracted by SPE with minimal com-
putational cost to leverage performance. In our experiments,
our proposal accomplishes 61.3% NDS and 53.2% mAP in
nuScenes dataset. In addition, we evaluate inference time on
several platforms (P4, T4, A2, MLU370, RTX3080), where
SwiftPillars achieves up to 13.3ms (75FPS) on NVIDIA Tesla
T4. Compared with PointPillars, SwiftPillars is on average
26.58% faster in inference speed with equivalent GPUs and a
higher mAP of approximately 3.2% in the nuScenes dataset.

Introduction
Recently, autonomous driving technology has received con-
siderable attention, which brings a huge impact on trans-
portation. One of the most essential technologies for au-
tonomous driving is computer vision, where efficient Lidar-
based 3D object detection is the main area of research (Feng
et al. 2023). This research plays a vital role in efficiently
perceiving the surroundings of scenario and facilitating sub-
sequent tasks such as driving decision and planning. But the
development of Lidar-based 3D detectors for practical use in
autonomous driving continues to face significant challenges,
especially in real-time perception.

But in practical applications, real-time capability and de-
ployability are crucial. Real-time perception allows timely
responses to dynamic traffic changes, ensuring safe driv-
ing by detecting moving obstacles and signal light updates.
Moreover, real-time perception improves driving efficiency
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Figure 1: Performance of SwiftPillars on the KITTI test
set with current mainstream methods in terms of inference
speed and detection accuracy.

by continuously capturing information about nearby vehi-
cles’ positions, enabling precise path planning and decision-
making, and reducing unnecessary stops and waiting times.

However, most existing methods (Zhou et al. 2022; Zhao
et al. 2021; Mao et al. 2021a; Li et al. 2021; Sun et al. 2022;
Dong et al. 2022; Shi et al. 2020) prioritize improving detec-
tion accuracy, leading to network architectures complexity
and overlooking practical deployment and inference speed.
(Yang et al. 2020; Qi et al. 2019; Chen et al. 2022a; Shi,
Wang, and Li 2019) primarily adopts PointNet (Qi et al.
2017) as the main feature extraction unit; (Yan, Mao, and
Li 2018; Chen et al. 2023b,a; Deng et al. 2021; Hu, Kuai,
and Waslander 2022; Xu, Zhong, and Neumann 2022; Yin,
Zhou, and Krahenbuhl 2021) apply 3D convolutions after
voxelizing the point cloud. Furthermore, some methods have
utilized transformer architectures (Zhou et al. 2022; Sun
et al. 2022; Feng et al. 2023) to provide a larger receptive
field and extract global feature information. While each of
these methods has contributed to the improvement of de-
tection accuracy, their network structure become complex,
which leads to deployment limited in practical application.
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For (Wu et al. 2021; Shi, Li, and Ma 2022; Li, Luo, and
Yang 2023; Hu et al. 2022; Yang et al. 2020), although they
achieve much faster inference than the previously proposed
methods, these methods rely on sparse convolution, which is
still hard to deploy in practice.

In order to solve the above issues, in this paper, we pro-
pose an efficient pillar-based detector, SwiftPillars. Firstly,
we analyze the efficiency bottleneck of the most widely
used detector, PointPillars, and find that its Point Feature
Network (Qi et al. 2017) for encoding pillar features per-
forms multiple matrix transpositions, which incurs signif-
icant I/O time cost, and its capability of feature extrac-
tion is also limited. As a result, we propose a novel ar-
chitecture to improve both of efficiency and performance
of Lidar Perception, which includes Swift Pillar Encoder
(SPE) and Multi-scale Aggregation Decoder (MAD). The
SPE fuses point-wise and channel-wise attention to encode
the pillar information of the point cloud, achieving efficient
pillar feature extraction. The MAD obtains pyramidal fea-
tures by feature self-sampling, and multi-scale feature ag-
gregation is achieved by interconnecting features at differ-
ent scales. Then, for better real-time performance, we opti-
mize the operators and interconnection of modules chiefly,
analyze the impact of different operators on the inference
speed, and propose an effective optimization scheme. Fi-
nally, we conduct sufficient experiments on three publicly
available datasets (KITTI, nuScenes, and DAIR-V2X-I) and
many different computing platforms. We compare SwiftPil-
lars and PointPillars across multiple computing platforms
(T4, P4, A2, MLU370, RTX3080). The results show that
SwiftPillars inference speed is on average 26.58% faster
than PointPillars on equivalent GPUs. On the nuScenes
dataset, SwiftPillars achieves the state-of-the-art inference
speed, up to 13.3ms (75FPS) on an NVIDIA Tesla T4, and
achieves 53.2% mAP, 3.2% higher than PointPillars(Lang
et al. 2019). The results show that our SwiftPillars achieve
the fastest inference speeds currently while guaranteeing sat-
isfactory detection accuracy. The main contributions of this
paper are as follows:

• We propose a real-time LiDAR perception architecture,
SwiftPillars, which achieves high-speed and accurate 3D
object detection and enables easy deployment;

• We design two novel models, Swift Pillar Encoder
(SPE) and Multi-scale Aggregation Decoder (MAD).
The SPE achieves efficient pillar feature extraction by
Dual-attention Module. The MAD enables multi-scale
feature aggregation;

• We analyze the operators currently widely used in 3D de-
tectors, identify their performance bottlenecks, and pro-
pose an effective optimization scheme that greatly im-
proves the inference speed, which can provide an effec-
tive reference for future network development;

• We conduct evaluations across multiple platforms and
achieve the fastest inference speed among all mainstream
methods. Our SwiftPillars is on average 26.58% faster
than PointPillars and even 100.2% faster on NVIDIA
Tesla A2. Additionally, our method outperforms Point-
Pillars in mAP by 3.2%.

Related Work

High-Precision 3D Detectors. Currently, Existing high-
precision methods typically use Voxel-based approaches and
Transformer-based approaches. Voxel-based methods (Hu
et al. 2022; Yu et al. 2022a; Kuang et al. 2020; Mahmoud,
Hu, and Waslander 2023; Wang et al. 2022; Chen et al.
2022b) grid the point cloud and apply 3D CNN. For ex-
ample, Second (Yan, Mao, and Li 2018) considers the spar-
sity of point clouds and introduces 3D sparse convolution
to improve efficiency. PV-RCNN series work (Shi et al.
2020, 2023) compensates for the loss of precise positional
information during voxelization by introducing additional
raw point cloud information. Largekernel3D (Chen et al.
2023a) proposes a large-kernel 3D CNN network to increase
the network’s receptive field. Transformer-based methods
(Wang et al. 2023; Sun et al. 2022; Yang et al. 2023; Fan
et al. 2022a) improve model performance by incorporat-
ing transformer architecture into different parts of the net-
work. Point transformer (Zhao et al. 2021) first applies trans-
former to point cloud processing. Voxel transformer (Mao
et al. 2021b) combines transformer with voxels. Center-
former (Zhou et al. 2022) uses multi-frame point clouds and
center point features as inputs to the transformer. Although
the methods achieve outstanding detection accuracy, tech-
niques like expanding convolutional kernels or introducing
transformer architecture unavoidably increase the complex-
ity of the network, resulting in exceptionally slow model de-
tection speed. In contrast to the methods, our method stands
out by offering both high speed and high precision that are
practically applicable.
High-Speed 3D Detectors. To meet the demands of prac-
tical applications, some studies (Zheng et al. 2021a; He
et al. 2020; Yang et al. 2020; Fan et al. 2022b; Wu et al.
2021) have made contributions to improve network speed.
One of the most well-known examples is PointPillars (Lang
et al. 2019), which compresses the height dimension infor-
mation during voxelization and directly employs 2D con-
volutions for feature extraction. This design makes it easy
to deploy and significantly faster, making it widely used in
the industry. However, this compression of information leads
to significant information loss. To achieve higher detec-
tion speeds, 3DSSD (Yang et al. 2020) removes the upsam-
pling layer, which is initially essential in point-based meth-
ods, and proposes a new point cloud downsampling method
to preserve more foreground points to maintain network
performance. CIA-SSD (Zheng et al. 2021a) introduces a
lightweight spatial semantic feature aggregation module that
adaptively fuses high and low-level spatial features. Pillar-
Net (Shi, Li, and Ma 2022) aims to retain the extracted infor-
mation from pillars and inserts 2D sparse convolutions for
further feature extraction, along with a novel neck module to
aggregate multi-scale features. While these methods strike
a balance between accuracy and speed, they still fall short
of real-time perception and rely heavily on operations such
as sparse convolutions, which are challenging to deploy in
practice. Therefore, we propose SwiftPillars, which demon-
strates significantly improved inference speed over existing
methods on multiple computing platforms.
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Figure 2: Illustration of the proposed SwiftPillars. It is primarily composed of three components: 1) Voxelization: Voxelizing
the input point cloud into pillars, consistent with the approach of PointPillars (Lang et al. 2019); 2) Swift Pillar Encdoer:
Performing feature extraction on pillars to generate pseudo-images; and, 3) Multi-scale Aggregation Decoder: Aggregating
multi-scale pseudo-image features and generating 3D detection results.

Method
In this section, we first present the overview of the SwiftPil-
lars architecture. Then, we describe the detailed explanation
of two critical modules, the Swift Pillar Encoder (SPE) and
the Multi-scale Aggregation Decoder (MAD).

Overview
The overall architecture of SwiftPillars, as shown in Figure
2. Firstly, the point cloud is voxelized using the pillar-based
approach to obtain coarse pillar features. Then, the coarse
pillar features are fed into the Swift Pillar Encoder, which
utilizes the Dual-attention module to extract features and
generate pseudo-images. Subsequently, the Multi-scale Ag-
gregation Decoder aggregates features from pseudo-images
across various scales. Lastly, these features are used by spe-
cific detection heads to produce the final results.

Swift Pillar Encoder
Given input point clouds P ∈ RN×3, where N represents
the number of points and each point denotes 3-dimensional
space coordinates [x, y, z]. The 3D scene of P is partitioned
as several voxels according to the given grid size, and the
shape of the grid along the X and Y directions indicates
W and H respectively. The initial number of pillars is di-
vided into W ×H . However, due to the sparsity of the point
cloud, many pillars do not contain any points. We denote
the number of non-empty pillars as N . Within each pillar,
the maximum number of points is set as M . Each point is
enlarged from 3 to C, which is defined as V : [x, y, z] →
[x, y, z,mx,my, cx, cy, cz], where cx, cy, cz represent the
arithmetic average distance of all points inside the pillar

and mx,my indicate the horizontal distance from the cen-
ter of the pillar. Each voxel indicates V : {v1, v2, ..., vN},
vN refers to the N-th non-empty pillar in the 3D scenes. The
pillars are composed as Coarse Pillar Feature ∈ RN×M×C

as the SwiftPillars Network input.

Dual-Attention Module We utilize both channel-wise at-
tention and point-wise attention to extract more advanced
features within each pillar.

Channel-Wise Attention. For each pillar in V , we per-
form max pooling along the point dimension, resulting in
channel-wise features with an output of Cin ∈ RN×1×C .
Subsequently, the feature is fed into two fully connected lay-
ers, with an activation function added after the first fully
connected layer. The output of the channel-wise attention,
denoted as Cout ∈ RN×1×C , is calculated as follows:

Cout = fcc2(σ(fcc1(C
in))) (1)

where fcc1 represents first fully connected layer fc (C →
C), fcc2 represents the second fully connected layer
fc (C → C) and σ represents the ReLU activate function.

Point-Wise Attention. Similar to channel-wise attention,
for each pillar in V , we perform max pooling along the chan-
nel dimension, resulting in point-wise features with an out-
put of P in ∈ RN×M×1. The output of the channel-wise
attention, denoted as P out ∈ RN×M×1, is calculated as fol-
lows:

P out = fcp2(σ(fcp1(P
out))) (2)

where fcp1 represents the first fully connected layer
fc (M → M), and fcp2 represents second fully connected
layer fc (M → M) and σ represents the ReLU activate
function.
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Figure 3: The structure of the Swift Pillar Encoder (SPE).

And then, both attention features Cout, P out are fused by
Attention Fusion, which is described as follows:

PCout = (P out ⊗ φ1×C)⊙ (φM×1 ⊗ Cout) (3)

where φ represents the All-Ones Matrix to align the di-
mension of different attention features Cout, P out. And ⊙
indicates Hadamard Product, which aims to fuse the out-
puts of the repeated features. However, considering that the
matmul operator can achieve speedups on parallel plat-
forms, Eq.3 is replaced by matmul operator, which is
shown in Figure 3. The formula is substituted for:

PCout = matmul{P out, Cout} (4)

Pseudo-Image Generation Define the coarse pillar fea-
tures obtained after voxelization as Pcoarse ∈ RN×M×C ,
which we feature-weight with the output of Dual Atten-
tion Module PCout to better capture those features with
contributing information. Then, the F ∈ RN×M×C is ob-
tained by fusing it with the PCout. Subsequently, concate-
nating F with the coarse pillar features generates a pillar fea-
ture of size (N,M, 2C), and feeding it into a regular fully-
connected layer FC(2C → D) enhances the feature dimen-
sionality to output a feature of size (N,M,D). Finally, max-
imum pooling is performed in point-wise dimension to ob-
tain a feature of (N,D), which is scattered to generate a
pseudo-image of size (H,W,D), where H and W represent
the height and width of the feature body.

SPE vs PFN As shown in Figure 3, existing pillar-based
approaches usually adopt the Point Feature Network (PFN)
proposed by PointPillars (Lang et al. 2019) as a component
of their pillar encoding network. (Liu et al. 2020; Le et al.
2022), feed the output of attention into the PFN to make up
their complete pillar encoder, thus are actually two separate
modules. We design a novel architecture that fuses PFN and
attention into a single module and made a lot of effort on
the operators to improve the inference speed. For example,
in the feature fusion part, We found that in order to perform
a Batch Normalization along point feature dimension, PFN
has to use Matrix Transpose twice to accomplish the above
operation (corresponding to permute of pytorch), which in
turn increased the overall inference time consuming of PFN.
And the reasoning elapsed time increases with the increase

of input dimensions. So, we removed the operator. In the
end, SPE achieves a significant improvement in inference
speed while maintaining the original encoding capability.

Multi-Scale Aggregation Decoder
The main idea of Multi-scale Aggregation Decoder is that
after extracting pyramid features, the features of each scale
are connected with other scales like BiFPN (Tan, Pang, and
Le 2020), and the features containing multi-scale informa-
tion are aggregated to get the final output. Specifically, we
define the pseudo-image feature output from SPE as p0 and
input it into three cascaded Encoder Blocks. p1, p2 and p3
are three intermediate outputs, representing the features of
three different scales. The calculation formula is:

pi = conv(conv(pi−1))⊗ σ(conv(conv(pi−1))) (5)

where σ represents sigmoid activate function.
Then, the features of each scale are connected with each

other. The Aggregation Block is used to connect low-scale
features to high-scale features, and the Aggregation Decoder
is used to connect high-scale features to low-scale features.
The corresponding output at each scale can be formulated as
follows:

pout1 = AB1(p1, AB2(p2, p3)),

pout2 = AD1(p
out
1 , p2 +AB2(p2, p3)),

pout3 = AD2(p
out
2 , p3),

(6)

where ABi, ADi denote the i-th Aggregation Block, Ag-
gregation Decoder, pouti represents the output corresponding
to the fused multi-scale features at scale pi. The Decoder
Block is used to align feature size at each scale. And the fi-
nal feature output pout is the concatenation of features from
all scales. It can be expressed by the following formulas:

P out = concate[DB(p1), DB(p2), DB(p3)] (7)

where DB denotes the Decoder Block. Finally, Pout is fed
into the detection head of SwiftPillars to output the final 3D
Bounding Boxes.

Head and Loss Function
Following previous methods, We use two detection heads for
specific datasets, anchor-based and anchor-free.
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Method mAP NDS Car Truck Bus Trailer CV Ped Motor BC TC Barrier
3DSSD (2020) P 42.6 56.4 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
SASA (2022a) 45.0 61.0 76.8 45.0 66.2 36.5 16.1 69.1 39.6 16.9 29.9 53.6
CenterPoint (2021)

V
58.0 65.5 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9

Focals Conv (2023c) 63.8 70.0 86.7 56.3 67.7 59.5 23.8 87.5 64.5 36.3 81.4 74.1
LargeKernel3D (2023a) 65.4 70.6 85.5 53.8 64.4 59.5 29.7 85.9 72.7 46.8 79.9 75.5
TransFusion-L (2022)

T
65.5 70.2 86.2 56.7 66.3 58.8 28.2 86.1 68.3 44.2 82.0 78.2

SphereFormer (2023) 65.5 70.7 84.9 55.1 66.4 59.3 29.9 86.0 71.4 47.1 79.7 75.2
FocalFormer (2023c) 68.7 72.6 87.2 57.1 69.6 64.9 34.4 88.2 76.2 49.6 82.3 77.8
PointPillars (2019)

p

30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
SA-Det3D (2021) 47.0 59.2 81.2 43.8 57.2 47.8 11.3 74.5 38.0 13.9 63.9 54.2
PillarAcc (2023) 47.8 59.0 - - - - - - - - - -
SwiftPillars (ours) 53.2 61.3 83.2 45.1 52.9 52.1 16.0 79.0 47.7 20.6 68.8 65.7

Table 1: Comparison of LiDAR-only based methods on the nuScenes test set. Results are reported by the official nuScenes eval-
uation server. The meaning of abbreviation: ”P”, ”V”, ”T” and ”p” mean ”Point-based”, ”Voxel-based”, ”Transformer-based”
and ”Pillar-based”; ”CV”, ”Ped”, ”BC” and ”TC” mean ”Construction Vehicle”, ”Pedestrian”, ”Bicycle” and ”Traffic Cone”.
We submit our test results without using Test-Time Augmentation and Double Flip.

The anchor-based head are the same as PointPillars
(Lang et al. 2019), using Smooth-L1 to compute the re-
gression loss Lreg , focal loss to compute the classification
loss Lcls, and cross-entropy loss computes the direction loss
Ldir, and the total loss Lanchor−based is defined as:

Lanchor−based = λregLreg + λclsLcls + λdirLdir (8)

where λreg, λcls and λdir is used to control the weights of
different losses.

The anchor-free head adds an iou branch to (Yin, Zhou,
and Krahenbuhl 2021), following it, the cross-entropy loss
and Smooth-L1 loss are used for heat-map classification loss
L∗
cls and 3D box regression loss L∗

reg . In addition, we use
iou loss to compute Liou, and the total loss Lanchor−free is
defined as follows:

Lanchor−free = λ∗
regL∗

reg + λ∗
clsL∗

cls + λiouLiou (9)

where we set λ∗
reg, λ

∗
cls, and λiou denote the weight factors

of the corresponding loss, respectively.

Experiments
Datasets and Metrics
In this section, we perform extensive experiments of the pro-
posed SwiftPillars on three major benchmarks of large-scale
nuScenes dataset (Caesar et al. 2020), KITTI (Geiger, Lenz,
and Urtasun 2012) and DAIR-V2X (Yu et al. 2022b).

nuScenes Dataset. nuScenes is a challenging large-scale
dataset that provides 1000 scenes, of which 700 are used for
training, 150 for validation, and 150 for testing. The official
evaluation server uses NDS to measure the performance of
the model, which jointly considers the mean detection accu-
racy (mAP) and several different aspects of the error (e.g.,
Orientation, Velocity).

KITTI Dataset. KITTI is a prevalent dataset for 3D ob-
ject detection tasks, including 7481 training samples and
7518 test samples. It contains three different categories of
annotated information, which are categorized into three dif-
ficulty levels: easy, medium, and hard according to the de-
gree of occlusion. We follow the latest official test metric

and use 40 recall positions to compute AP, to measure the
performance of the model on the val set.

DAIR-V2X Dataset. DAIR-V2X is a novel publicly
available dataset targeting detection tasks in autonomous
driving. We chose its roadside data DAIR-V2X-I to conduct
our experiment. It contains 10084 frames of point cloud la-
beled with 10 classes, and 7058 samples have been released
for training and validation.

Implementation Details
We conduct our experiments in the OpenPCDet framework
(Team 2020). The models are all trained using the Adam op-
timizer with one-cycle learning rate strategy with an initial
learning rate of 0.001 on 8 NVIDIA V100 GPUs. In speed
evaluation, all models are converted to ONNX on differ-
ent GPUs (P4, T4, A2, MLU370, RTX3080) with Tensor-
RT accelerating. And their hyperparameters are set to be
consistent with those of (Shi, Li, and Ma 2022), with a
weight decay of 0.01 and a momentum of 0.9. Additionally,
we employ some normal data augmentation, including gt-
sampling, random flip, random rotation, random scaling.

nuScenes Dataset. We voxelize the 3D space with a de-
tection range of [−51.2,−51.2,−5.0, 51.2, 51.2, 3.0] using
a voxel size of [0.2, 0.2, 8], where the maximum number of
points within each voxel is set to 32. The batch size is set to
32 to train 20 epochs, which takes about 15 hours. The de-
tection head follows (Yin, Zhou, and Krahenbuhl 2021), and
an additional iou branch is added, the weight of IOU loss is
set to 1.0, and the rest of the parameter configurations are
consistent with (Yin, Zhou, and Krahenbuhl 2021).

KITTI and DAIR-V2X-I Dataset. Following the offi-
cial repository, we convert the DAIR-V2X-I to KITTI for-
mat. The same training configuration is used for both of
them. we voxelize the 3D space with a detection range
of [0,−39.68,−3, 69.12, 39.68, 1] using a voxel size of
[0.16, 0.16, 4], where the maximum number of points within
each voxel is set to 32. Batch size is set to 32 to train 80
epochs. Following (Lang et al. 2019), we use the anchor-
based detection head and the same parameters.
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Dataset Method Car Ped. Cyc. mAPEasy Mod. Hard Easy Mod. Hard Easy Mod. Hard

KITTI PointPillars 87.04 78.02 75.38 52.94 48.51 44.39 82.43 63.19 59.09 63.24
SwiftPillars (ours) 88.07 79.83 77.50 55.34 50.21 45.93 86.06 64.92 60.75 64.98

DAIR-V2X-I PointPillars 69.39 56.94 56.97 69.35 66.67 66.85 59.38 30.33 30.75 51.31
SwiftPillars (ours) 69.52 57.06 57.08 71.15 68.41 68.55 60.63 30.60 31.52 52.02

Table 2: Comparison with PointPillars on KITTI and DAIR-V2X-I validation sets. The experimental results are performed using
the official evaluator for the calculations. Abbreviation Explanations: ”Ped.” and ”Cyc.” stand for ”Pedestrian” and ”Cyclist”;
”Mod.” signifies ”Moderate”.

Comparison Evaluation

We evaluate the detection performance of SwiftPillars,
which is the basis on which our SwiftPillars can be prac-
tically applied to autonomous driving perception tasks.
Specifically, We compare our method with the current main-
stream methods on nuScenes to analyze its detection accu-
racy. And we directly compare it with PointPillars on DAIR-
V2X-I and KITTI to show the performance of SwiftPillars
in practical application.

Results of nuScenes. The evaluation results on the
nuScenes test set are shown in Table 1. We classify the ex-
isting methods into four categories according to the different
ways of data encoding. It can be seen that Voxel-based meth-
ods and Transformer-based methods have been leading the
road in terms of accuracy in recent years, with NDS reach-
ing over 70% and mAP over 60%. Although SwiftPillars
still has a gap in detection accuracy compared to these two
types of methods, it is more accurate than existing point-
based methods, with 8.2% higher mAP and 0.3% higher
NDS compared to SASA. And we also have some advan-
tages in the same pillar-based methods. The main reason for
our low accuracy is that pillar encoding of point clouds in-
evitably loses more information compared to voxel encoding
and transformer encoding, and the transformer architecture
is able to obtain a larger receptive field, thus improving the
ability to extract important information. However, SwiftPil-
lars has a much faster detection speed, which is a huge im-
provement in the speed of acquisition at a small accuracy
loss, making it better suited to meet the real-time require-
ments of autonomous driving perception tasks.

Results of KITTI and DAIR-V2X-I. The evaluation re-
sults on the KITTI and DAIR-V2X-I validation sets are
shown in Table 2. Under medium difficulty, compared to
PointPillars, the mAP of SwiftPillars is 1.74% and 0.71%
higher on the KITTI and DAIR-V2X-I, respectively. In the
category of pedestrians, SwiftPillars is 1.70% and 1.74%
higher under medium difficulty, respectively.

Although our SwiftPillars is slightly lower in accuracy
compared to the methods proposed in recent years, Swift-
Pillars can be directly applied to real-world application sce-
narios. Moreover, PointPillars is still widely used in indus-
try, while our method shows better performance than it, with
higher detection accuracy on all three datasets, and at the
same time, we achieve faster inference speed (Analyzed in
the following subsections). Thus, our method achieves a bet-
ter balance of performance between speed and accuracy.

Method NDS (%) mAP (%) FPS
PFN + RPN (CP) 57.93 48.72 70

SPE + RPN 59.05 49.75 81
PFN + MAD 59.43 51.16 65

SPE + MAD (SwiftPillars) 60.82 52.00 75

Table 3: Independent analysis of the components of Swift-
Pillars on nuScenes val set. We did not use Test-Time
Augmentation or Double Flip. ”CP” represents our base-
line Centerpoint-pillar (Yin, Zhou, and Krahenbuhl 2021),
”SPE” represents ”Swift Pillar Encoder”, and ”MAD” rep-
resents ”Multi-scale Aggregation Decoder”.

Method FPS mAP3D(R11)@car on val
Easy Mod. Hard mAP

FocalConv (2022b) 10 89.52 84.93 79.18 84.54
OcTr (2023) 17 89.80 86.97 79.28 85.35

3D SSD (2020) 25 89.71 79.45 78.67 82.61
TANet (2020) 29 88.21 77.85 75.62 80.56

SE-SSD (2021b) 33 - 85.71 - -
PointPillars (2019) 66 86.62 76.06 68.91 77.20
SwiftPillars (Ours) 85 87.36 78.23 75.37 80.32

Table 4: Comparison of the speed of inference and the accu-
racy with previous methods. The inference time is obtained
from officially published sources. ”Mod.” means ”Moder-
ate”. ”mAP3D(R11)” is calculated with 11 recall points.

Ablation Study
To validate the effectiveness of our proposed Swift Pillar
Encoder and Multi-scale Aggregation Decoder, we evaluate
their impact on network performance and efficiency based
on nuScenes validation set.

Effects of Swift Pillar Encoder As shown in Table 3, af-
ter replacing Point Feature Network of Centerpoint-pillar
with Swift Pillar Encoder, the mAP is improved by 1.03%,
the NDS is improved by 1.12%, and the detection speed is
increased from 70FPS to 81FPS. The results show that com-
pared with the Point Feature Network, Swift Pillar Encoder
can extract prominent pillar features more efficiently.

Effects of Multi-Scale Aggregation Decoder As shown
in Table 3, after replacing the original RPN with MAD, the
mAP improves by 2.44%, and the NDS improves by 1.5%,
without increasing much inference time. This indicates that
the Multi-scale Aggregation Decoder is a powerful feature
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Dataset Platform PP SP Imp.

DAIR-V2X

MLU370 12.24ms 10.02ms 22.1%
RTX3080 3.45ms 3.39ms 1.8%

P4 11.70ms 10.00ms 17.0%
T4 6.70ms 5.18ms 29.3%
A2 6.70ms 4.49ms 49.2%

KITTI

MLU370 29.24ms 29.18ms 0.2%
RTX3080 6.73ms 6.56ms 2.5%

P4 27.75ms 24.06ms 15.3%
T4 15.01ms 11.71ms 28.2%
A2 21.53ms 10.75ms 100.2%

Table 5: Comparison of inference time between PP (Point-
Pillars) and SP (SwiftPillars) on different GPU plat-
forms. ”Imp.” indicates improvement. ”P4”, ”A2”, ”T4”
and ”RTX3080” mean ”NVIDIA Tesla P4”, ”NVIDIA A2”,
”NVIDIA T4” and ”NVIDIA GeForce RTX3080”. All re-
sults are based on the same input data.

decoder, and it can integrate more information from different
scales to improve detection performance.

Runtime Overhead Analysis
Comparison of Runtimes Cross Different Methods
This experiment is used to compare the performance of
SwiftPillars with previous methods in terms of inference
speed. The results are shown in Table 4, where our Swift-
Pillars implementation reaches the current state-of-the-art
level of 85FPS while achieving 78.23% mAP. Compared to
the state-of-the-art OcTr model with the highest accuracy,
SwiftPillars achieves a speed increase of 68FPS. Compared
to some fast methods, our mAP achieves outperformance by
2.17% for PointPillars and 0.38% for TANet on moderate
difficulty, while being faster than them. As a result, SwiftPil-
lars achieves a better balance between accuracy and speed.

SwiftPillars vs PointPillars Cross Platforms This ex-
periment is conducted to evaluate the performance of the
end-to-end inference time of SwiftPillars and PointPillars
across different platforms and also verifies that SwiftPillars
can achieve multi-platform compatibility, which has high
practical application value. From Table 5, it is evident that
SwiftPillars achieves faster inference speeds than PointPil-
lars across all platforms. Notably, on the KITTI dataset us-
ing NVIDIA Tesla A2, a remarkable 100.2% speed improve-
ment is achieved. Across all platforms, the average speed
improvement reached 26.58%. We noticed a considerable
variation in the speed improvement across different GPUs.
This difference is due to varying memory-bound character-
istics arising from distinct GPU memory and core architec-
tures. And, the primary reason SwiftPillars achieves faster
speeds is by removing memory-bound features related to
matrix transpose.

SwiftPillars vs PointPillars Cross Inputs Utilizing Ten-
sorRT exec on the NVIDIA Tesla T4 platform with CUDA
11.4 and TensorRT 8.2.0, we conduct a comparative anal-
ysis of the inference speeds of SPE and PFN across dif-
ferent parameters. As illustrated in Figure 4, the inference

Figure 4: Performance of inference speed for different num-
bers of pillars and points. Where the X-label of pillar nums
refers to the number of non-empty pillars in the input net-
work; 0.2 and 0.5 correspond to grid sizes of 0.2 and 0.5, re-
spectively; and, the numbers following SPE and PFN (e.g.,
SPE-32), respectively, indicate the maximum number of
points within an individual pillar.

speeds of both SPE and PFN rise with increased pillar num-
bers and point numbers. Moreover, the growth rate of PFN
is bigger than SPE. The main reason for this difference is
that as the input dimensions increase, the feature extraction
network needs to deal with larger dimensional tensors, i. e.,
the number of elements, besides, PFN has a higher memory-
bound demand. We sample and compute the number of non-
empty pillars at voxel sizes of 0.2 and 0.5 for the DAIR-
V2X, KITTI, and nuScenes datasets. This approach provides
insight into the real-world inference scenarios for both PFN
and SPE based on dataset quantity distribution. For instance,
considering the DAIR-V2X dataset with the voxel size of
0.2, the pillar count falls within the range of 25000-30000.
In this scenario, the inference speed of SPE is 16%/55%
faster than PFN for point numbers 32/100 within each pil-
lar, demonstrating the effectiveness of our SPE.

Conclusion
This paper proposes a novel and efficient Lidar-based 3D
object detector, including two essential modules: Swift Pil-
lar Encoder (SPE) and Multi-scale Aggregation Decoder
(MAD). SPE encodes pillars efficiently using the Dual-
attention Module and lightweight operators. MAD achieves
multi-scale feature aggregation. Through extensive experi-
ments, we demonstrate the effectiveness of SwiftPillars in
terms of both speed and accuracy. Among all known meth-
ods, SwiftPillars achieves the fastest inference speed while
maintaining accuracy. Specifically, our SwiftPillars is on
average 26.58% faster than PointPillars and even 100.2%
faster on NVIDIA Tesla A2. Additionally, our method out-
performs PointPillars in mAP by 3.2%. We aspire for Swift-
Pillars to serve as a robust baseline for future real-time per-
ception applications.
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