
MFOS: Model-Free & One-Shot Object Pose Estimation

JongMin Lee1, Yohann Cabon2, Romain Brégier2, Sungjoo Yoo1, Jerome Revaud2

1Seoul National University
2Naver Labs Europe

sdrjseka96@naver.com, sungjoo.yoo@gmail.com, {romain.bregier, yohann.cabon, jerome.revaud}@naverlabs.com

Abstract

Existing learning-based methods for object pose estimation
in RGB images are mostly model-specific or category based.
They lack the capability to generalize to new object categories
at test time, hence severely hindering their practicability and
scalability. Notably, recent attempts have been made to solve
this issue, but they still require accurate 3D data of the object
surface at both train and test time. In this paper, we introduce
a novel approach that can estimate in a single forward pass
the pose of objects never seen during training, given minimum
input. In contrast to existing state-of-the-art approaches, which
rely on task-specific modules, our proposed model is entirely
based on a transformer architecture, which can benefit from re-
cently proposed 3D-geometry general pretraining. We conduct
extensive experiments and report state-of-the-art one-shot per-
formance on the challenging LINEMOD benchmark. Finally,
extensive ablations allow us to determine good practices with
this relatively new type of architecture in the field.

Introduction
Being able to estimate the pose of objects in an image is a
mandatory requirement for any tasks involving some kind of
interactions with objects. The past decade has seen a surge
of research in 3D vision, with potential applications rang-
ing from robotics (Hietanen et al. 2019; Deng et al. 2019)
to VR/AR (Belghit et al. 2018; Marchand, Uchiyama, and
Spindler 2016). These applications require pose estimators
that are accurate, robust and scalable. In this context, we
tackle the problem of object pose estimation from a single
image, i.e. we aim at extracting the 6D pose of a target object
relatively to the camera.

Object pose estimation is a long-studied research topic.
Earlier approaches were holistic (Hinterstoisser et al. 2011,
2012a,b; Rios-Cabrera and Tuytelaars 2013; Kehl et al. 2016),
based on sliding-window template-based matching (Song
2017; Henriques et al. 2014) or local features (Brachmann
et al. 2014, 2016; Tejani et al. 2014). These methods were
heavily handcrafted to exploit 3D priors. With the advent
of deep learning, a new training-based paradigm emerged
for object pose estimation (Xiang et al. 2017; Li, Wang, and
Ji 2019; Wang et al. 2021; Park, Patten, and Vincze 2019),
the idea of letting a deep network end-to-end predict the
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pose of an object from an image, given sufficient training
data (images of the same object in various poses). While
significantly improving in robustness and accuracy, these
methods have the disadvantage of being model-specific: they
can only cope with objects seen during training.

While some works have broadened the model scope to
object categories rather than object instances (Wang et al.
2019; Tian, Jr., and Lee 2020; Lee et al. 2021; Chen, Li, and
Xu 2020; Chen et al. 2020), the trained model is still only
suitable for objects or categories seen during training. To
remedy this shortcoming, recent learning-based methods that
can generalize to objects unseen during training, denoted as
one-shot, have been proposed. In practice however, they rely
on 3D models (Cai, Heikkilä, and Rahtu 2022; Shugurov et al.
2022), video sequences (Wen and Bekris 2021) or additional
depth maps (He et al. 2022) of the objects at test time. These
requirements severely hinder the practicality and scalability
of such approaches.

In this paper, we propose a novel approach to address the
limitations of previous methods for object pose estimation.
As illustrated in Figure 1, our method can estimate the pose
of a target object from a single image, denoted as query
image in the following. To specify the object of interest at
inference, we provide as input the object’s 2D bounding box,
a rough estimate of the object size, and a small collection
of reference images of the target object with known poses.
These inputs can be obtained via scalable and straightforward
methods, e.g. fiducial markers (AprilTags) (Olson 2011) or
SfM (Schönberger and Frahm 2016). Similar to previous
work, our model outputs a dense 2D-3D mapping from which
the object pose can be obtained straightforwardly (Zakharov,
Shugurov, and Ilic 2019; Li, Wang, and Ji 2019; Park, Patten,
and Vincze 2019).

Our approach is entirely implemented using Vision Trans-
former (ViT) blocks (Dosovitskiy et al. 2021). Doing so en-
ables us to leverage a powerful pretraining technique specifi-
cally tailored to 3D vision that can embed strong geometric
priors in the network. Specifically, we initialize our network
from an off-the-shelf model pretrained using Cross-View
Completion (CroCo) (Weinzaepfel et al. 2022a). We show
that this pretraining considerably boost the generalization
capabilities of our method, making it possible to estimate
the pose of target objects unseen during training. Inspired
by BB8 (Rad and Lepetit 2017), we simply yet effectively
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encode the object pose with a proxy shape positioned and
scaled according to the object’s pose and dimensions, respec-
tively. We show that using rectangular cuboid as proxy shape
works well in practice and allows us to deal with objects
of unknown shape at test time. Our overall architecture is a
generalization of the CroCo architecture (Weinzaepfel et al.
2022b) to multiple reference images (instead of just one in
CroCo). It is computationally efficient at both training and
test time, and it requires a single forward pass.

To ensure robust generalization of our model, we train it on
a diverse set of object-centric data, including BOP challenge
data (Hodan et al. 2018), OnePose (Sun et al. 2022) and the
ABO datasets (Collins et al. 2022), which include a variety
of objects along with their poses. Extensive ablation studies
highlight the importance of mixing several data sources, and
enable to validate our design choices for this relatively novel
type of architecture in the field. Our method outperforms all
existing one-shot pose estimation methods on the LINEMOD
benchmark (Hinterstoisser et al. 2012b) and performs well in
the OnePose benchmark (Sun et al. 2022). Finally, to demon-
strate the robustness of our method in real-world scenarios,
we present evaluation results in which a limited number of
reference images are provided, outperforming all other meth-
ods.

In summary, we make several contributions. First, we pro-
pose a novel transformer-based architecture for object pose
estimation that can handle unseen objects at test time with-
out resorting to 3D models. Second, we demonstrate the
importance of generic 3D-vision pretraining for better gener-
alization in the context of object pose estimation. Third, we
conduct extensive evaluations and ablations, and show that
our method outperforms other existing one-shot methods on
several benchmarks. In particular, our method does not sig-
nificantly compromise performance in situations with limited
information, such as a restricted number of reference images.

Related Work
Model-specific approaches are only able to estimate the
pose of objects for which the method has been specifically
trained. Some of these methods directly regress 6D pose from
RGB images (Xiang et al. 2017; Li, Wang, and Ji 2019; Li
and Ji 2020; Wang et al. 2021; Do et al. 2018), while others
output 2D pixel to 3D point correspondences from which 6D
pose can be solved using PnP (Park, Patten, and Vincze 2019;
Chen et al. 2022; Peng et al. 2018; Zakharov, Shugurov, and
Ilic 2019; Rad and Lepetit 2017). In this latter case, most
methods leverage accurate 3D mesh models for each object
as ground-truth for the 2D-3D mapping (Park, Patten, and
Vincze 2019; Kehl et al. 2017; Iwase et al. 2021). Although
high pose accuracy can be achieved this way, the requirement
for exact mesh models hinders scalability and practical use
in many application scenarios. To eliminate the need for 3D
models, recent works (Park et al. 2019; Lin et al. 2020) use
neural rendering models (Mildenhall et al. 2020) for pose
estimation. Regardless, model-specific methods remains not
scalable, as they need to be retrained for each new object.

Category-level methods learn the shared shape prior
within a category and thus eliminate the need for instance-

level mesh models at test time (Wang et al. 2019; Tian, Jr.,
and Lee 2020; Lee et al. 2021; Wang, Chen, and Dou 2021;
Chen et al. 2020, 2021; Chen, Li, and Xu 2020; Chen and
Dou 2021; Pavllo et al. 2023). Most of these approaches
try to infer correspondences from pixels to 3D points in a
Normalized Object Coordinate Space (NOCS). Nevertheless,
category-level methods still face limitations. Namely, they
can handle only a restricted number of categories and cannot
handle objects from unknown categories.

Model-agnostic methods focus on estimating the poses
of objects unseen during training, regardless of their cate-
gory (Wen and Bekris 2021; He et al. 2022; Cai, Heikkilä,
and Rahtu 2022; Gou et al. 2022; Shugurov et al. 2022; Liu
et al. 2023; Sun et al. 2022; He et al. 2023). These meth-
ods assume that some additional input about the object at
hand is provided at test time in order to define a reference
pose (otherwise, the pose estimation problem would be ill-
defined). BundleTrack (Wen and Bekris 2021) and Fs6D (He
et al. 2022), for instance, requires RGB-D input sequences at
inference time. More recently, several methods have been pro-
posed for pose estimation of previously unseen objects, given
their 3D mesh models. For instance, OVE6D (Cai, Heikkilä,
and Rahtu 2022) utilizes a codebook to encode the 3D mesh
model. OSOP (Shugurov et al. 2022) employs 2D-2D match-
ing and PnP solving techniques based on the 3D mesh model
of the object. However, these methods require dense depth
information, video sequences or 3D meshes that can be chal-
lenging to obtain without sufficient time or specific devices.

One-shot image-only pose estimation methods are a sub-
set of model-agnostic methods that only require minimal
input at test time, i.e. a set of reference images with an-
notated poses (Liu et al. 2023; Sun et al. 2022; He et al.
2023). Gen6D (Liu et al. 2023) uses detection and retrieval
to initialize the pose of a query image and then refines it by
regressing the pose residual. However, it requires an accurate
pose initialization and struggles with occlusion scenarios.
OnePose (Sun et al. 2022) and OnePose++ (He et al. 2023)
beforehand reconstruct the object 3D point-cloud from the
set of reference images using COLMAP (Schönberger and
Frahm 2016), from which 2D-3D correspondences are ob-
tained. Although not requiring an explicit 3D mesh models,
these two method still need to reconstruct a 3D point-cloud
under the hood, which is complex, prone to failure, and not
real-time. In comparison, our method do not need 3D mesh
model nor reconstructed point-cloud to infer the object pose.

Method
In this section, we first describe the architecture of the pro-
posed model-agnostic approach, then we describe its asso-
ciated training loss. Afterwards, we present training details
and the 6D pose inference procedure.

Model Architecture
Our model takes as input a query image Iq of the target
object O for which we wish to estimate the pose, and a set
of K reference images {I1, I2, . . . , IK} showing the same
object under various viewpoints, for which the object pose is
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Figure 1: Overview of the method. Our model takes as input a query image and a set of K reference views of the same object
seen under different viewpoints (annotated with pose information). We use a vision transformer (ViT) to first encode all images.
Reference images are encoded with their corresponding object pose annotations. Then, a transformer decoder jointly processes
features from the query and reference images. Finally, a prediction head outputs a dense 2D-3D mapping and a corresponding
confidence map, from which we can recover the query object pose by solving a PnP problem.

known. We denote by Pi = {(Ri, ti)} the pose of the object
relatively to the camera in the reference image Ii. Here we
assume prior knowledge of the object instance in the query
image, which is typically provided by an object detector
or a retrieval system applied beforehand. For the sake of
simplicity and without loss of generality, we also assume that
all images (query and reference images) are approximately
cropped to the object bounding box.

Overview of the architecture. Figure 1 shows an overview
of the model architecture. First, the query and reference im-
ages are encoded into a set of token features with a Vision
Transformer (ViT) encoder (Dosovitskiy et al. 2021). For
each reference image, the object pose is encoded and injected
into the image features using cross-attention. This latter mod-
ule, to which we refer as pose encoder, outputs visual features
augmented with 6D pose information. A transformer decoder
then jointly process the information from the query features
with the augmented reference features. Finally, a prediction
head outputs 3D coordinates for each pixel of the query im-
age, from which we recover the 6D pose in the query image.

Image encoder. We use a vision transformer (Dosovitskiy
et al. 2021) to encode all query and database images. In prac-
tice, we use a ViT-Base model, i.e. 16×16 patches with 768-
dimensional features, 12 heads and 12 blocks. Following (Xie
et al. 2023; Weinzaepfel et al. 2022a), we use RoPE (Su et al.
2021) relative position embeddings. As a result of the ViT
encoding, we obtain sets of token features denoted Fq for the
query and Fi for the reference image Ii respectively:{

Fq = ImageEncoder (Iq) ,
Fi = ImageEncoder (Ii) , i = 1 . . .K.

(1)

Pose encoder. There are multiple ways of inputting a 6D
pose Pi to a deep network, see (Brégier 2021). We opt for
an image-aligned pose representation which blends with the
visual representation Fi. Specifically, as shown in Figure 3,
we transform the pose into an image by rendering 3D coordi-
nates of a proxy shape (e.g. a cuboid or an ellipsoid), scaled
according to the object dimension, and positioned according

Pose Encoder

Augmented
features ℱ′

(image & pose)

Rendered Proxy Shape

ViT
Encoder

ViT
Encoder

Decoder
block

Decoder
block

Decoder
block

Image features ℱ
Reference view

Pose features

Figure 2: Architecture of the Pose Encoder. The pose encoder
combines the reference image features F with the annotated
object pose, in the form of a rendered 3D proxy shape, yield-
ing the pose-augmented features F ′.

to the 6D pose. As illustrated in Figure 2, this 3-channel
image is fed to another ViT, and then mixed with the visual
features Fi through the cross-attention layers of transformer
decoder, yielding the pose augmented features F ′

i :

F ′
i = PoseEncoder (Fi,ViT(Render(Pi))) . (2)

Decoder. The next step is to extract relevant information
from the reference images with respect to the query image.
To that aim, we again leverage a transformer decoder that
compares the query features Fq to all concatenated tokens
F ′

i from the augmented reference images via cross-attention.

Prediction head. After obtaining the token features from
the last transformer decoder block, we project them using
a linear head and reshape the result as a 4-channel image
with the same resolution as the query image. For each pixel,
we thus predict the 3D coordinates of the associated point
on the proxy shape, and an additional 4th channel yields
the confidence τ (see below). Note that we predict the 3D
coordinates on the surface of the proxy shape, not those on
the surface of the target object. Finally, a robust PnP estimator
extracts the pose from this predicted 2D-3D mapping.

Training Losses
3D regression loss. A straightforward way to train the net-
work is, for each pixel i, to regress the ground-truth 3D coor-
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Figure 3: Reference view and its associated proxy shape.
Illustration of a cuboid proxy shape used to jointly represent
the object pose and dimensions. The proxy shape is rendered
into a dense 3D coordinate map w.r.t. the object coordinate
system, represented here as a 3-channel image, a data-format
which is well suited for vision transformers.

Figure 4: Visualization of the cross-attention in the decoder.
Here we plot the top-10 attentions as correspondences be-
tween 2 tokens (i.e. 16x16 patches) in the query and reference
image, respectively.

dinates of the proxy shape at this pixel. We use an Euclidean
loss for pixels where such ground-truth is available:

L(i)
regr =

∥∥ŷi − ygt
i

∥∥ , (3)

where ŷi ∈ R3 is the network output for the ith pixel of the
query image, and ygt

i is the corresponding ground-truth 3D
point.

Pixelwise confidence. Since it is unlikely that all pixels
can get correctly mapped during inference (e.g. background
pixels), it is important to assert the likelihood of correct-
ness of the predicted 2D-3D mapping for each pixel. Follow-
ing Kendall, Gal, and Cipolla (2018), we therefore jointly
predict a per-pixel indicator τi > 0 to modulate the pixelwise
loss Lregr to form the final loss as follows:

L(i)
final = τiL(i)

regr − log τi. (4)

Note that τ can be interpreted as the confidence of the predic-
tion, as if τi is low for pixel i, the corresponding error L(i)

at this location will be down-weighted, and vice versa. For
pixels outside the proxy shape, we set L(i)

regr = E, where E is
a constant representing a large regression error. The second
term of the loss acts as a regularizer, so as to prevent the
model from getting under-confident everywhere.

Training Details
Training data. To ensure the generalization capability of
our model, we train it on a diverse set of datasets covering
a large panel of diversity. Specifically, we choose the large-
scale ABO dataset (Collins et al. 2022), which comprises
580K images from 8,209 sequences, featuring 576 object

categories (mostly furniture) from amazon.com. We also use
for training some datasets of the BOP challenge (Hodan et al.
2018), namely T-LESS, HB, HOPE, YCB-V, RU-APC, TUD-
L, TYO-L and ICMI. We exclude 3 objects from the HB
dataset which exist in the LINEMOD dataset, in order to
evaluate our generalization capabilities on this benchmark. In
total, we consider 150K synthetic physically-based-rendered
images and 53K real images, featuring 153 objects, from
the BOP challenge for training. Additionally, we incorporate
the OnePose dataset (Sun et al. 2022), which includes over
450 video sequences of 150 objects captured under various
background environments.

We consider the convex hull of the 3D object mesh or its
3D bounding box to define the dimensions of the proxy shape
(depending on which one is available).

Memory optimization. During training, we feed the net-
work with batches of 16 × 48 = 768 images, each batch
being composed of 16 objects for which 16 query and 32
reference images are provided (48 images in total). Since
queries of the same object attend to the same set of reference
images, we precompute features {F ′} for these reference
images and share them across all queries. Furthermore, by a
careful reshaping of the tensors in-place in the query decoder,
we can resort to vanilla attention mechanisms without any
copy in memory (see Supplementary material for details). In
addition to considerably reducing the memory requirements,
this optimization significantly speeds up training.

Network architecture and training hyper-parameters.
We use a ViT-Base/16 (Dosovitskiy et al. 2021) for the im-
age encoder. The decoder is identical, except it has addi-
tional cross-attention modules. For the pose encoder, we use
a single-layer ViT to encode the proxy shape rendering, and 4
transformer decoder blocks to inject the pose information into
the visual representation. We use relative positional encoding
(RoPE (Su et al. 2021)) for all multi-head attention modules.
We train our network with AdamW with β = (0.9, 0.95) and
a cosine-decaying learning rate going from 10−4 to 10−6. We
initialize the network weights using CroCo v2 (Weinzaepfel
et al. 2022a), a recently proposed pretraining method tailored
to 3D vision and geometry learning.

Data augmentation. We recale and crop all images to a
resolution of 224 × 224 around the object location. We ap-
ply standard augmentation techniques for cropping, such as
random shifting, scaling and rotation to increase the diver-
sity of our training data. We also apply augmentation to the
input of our pose encoder to improve generalization. We
specifically apply random geometric 3D transformations to
the proxy shape pose and coordinates, including 3D rotation,
translation and scaling. When choosing the set of 32 refer-
ence images for each object, we select 8 reference images at
random across the entire pool of reference images for this ob-
ject, and the remaining 24 views are selected using a greedy
algorithm, i.e. farthest sampling that minimizes blind spots.

Inference Procedure
3D proxy shape. Our pose encoder receives multiple ref-
erence images of the target object and their corresponding
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6D poses. Given a proxy shape template (e.g. a cuboid or an
ellipsoid), we first align the 3D proxy shape centroid with
the object center (according to the ground-truth pose). We
then scale the proxy shape according to the target object di-
mensions. The generated 3D proxy shape is then transformed
according to the object pose and rendered to the camera,
yielding a 3D point map, see Figure 3.

Predicting object poses. To solve the object pose in a given
query image, we sample K reference views among all the
available reference views for this object. We use a greedy
algorithm (Eldar et al. 1997) to maximize the diversity of
viewpoints in the selected pool of views. From this input, our
model predicts a dense 2D-3D mapping and an associated
confidence map, as can be seen in Figure 1. We then filter
out regions for which the confidence is below a threshold τ .
Finally we use an off-the-shelf PnP solver to obtain the pre-
dicted object pose. Specifically, we rely on SQ-PnP (Terzakis
and Lourakis 2020) with 1024 2D-3D correspondences, ran-
domly sampled according to the confidence of the remaining
points, a maximum of 1000 iterations and a reprojection error
threshold of 5 pixels.

Experiments
Dataset and Metrics
Test benchmarks. We use the test splits of the training
datasets explained earlier. In more details, we evaluate on
the LINEMOD (Hinterstoisser et al. 2012b) dataset, a subset
of the BOP benchmark (Collins et al. 2022), a widely-used
dataset for object pose estimation comprising 13 models and
13K real images. For the evaluation, we use the standard train-
test split proposed in (Li, Wang, and Ji 2019) and follow the
protocol defined in OnePose++ (He et al. 2023), using their
open-source code and detections from the off-the-shelf object
detector YOLOv5 (Jocher et al. 2020). In more details, we
keep approximately 180 real training images as references,
discarding the 3D mesh models and only using the pose
annotations, while all remaining test images are used for eval-
uation. For the Onepose (Sun et al. 2022) and ABO (Collins
et al. 2022) datasets, we use the official test splits as well. We
also use OnePose-LowTexture dataset (He et al. 2023), where
there are 40 household low-textured objects for evaluation.

Metrics. We use the cm-degree metric to evaluate the ac-
curacy of our predicted poses on both datasets. The rotation
and translation errors are calculated separately, and a pre-
dicted pose is considered correct if both its rotation error
and translation error are below a certain threshold. For the
LINEMOD dataset, mesh models are available to evaluate
the accuracy, and therefore, we employ two additional met-
rics: the 2D projection metric and the ADD metric. We set
the threshold for the 2D projection metric to 5 pixels. To
compute the ADD metric, we express coordinates of the 3D
model’s vertices in both the ground truth and predicted poses,
and calculate the average distance between the two sets of
transformed points. We consider a pose accurate if the aver-
age pointwise distance is smaller than 10% of the object’s
diameter. For symmetric objects, we consider the average
point-to-set distance (ADD-S) instead (Xiang et al. 2017).

Ablative Study
We first conduct several ablative studies to measure the im-
pact of critical components in our method, such as the choice
of proxy shape, training data and pretraining, or the number
of reference images. For these experiments, we report num-
bers on subsets of the three benchmarks mentioned above.
We uniformly sample 5000 queries from ABO dataset and
report each time a few adequate metrics. Unless specified
otherwise, we use the same training sets, hyper-parameters
and network architecture specified previously.

Impact of different proxy shapes. We first experiment
with two simple proxy shapes: a cuboid or an ellipsoid. As
shown in Table 2, using the cuboid proxy shape yields su-
perior performance on all datasets. To get more insights, we
also try to predict 3D coordinates aligned with the object’s
surface, i.e. we try to predict rendered coordinates of a 3D
mesh model given cuboid proxy shapes as input reference
poses. In this case, we exclude the OnePose dataset from
the training set, since no mesh model is available. Interest-
ingly, this cuboid-to-mesh setting performs much worse than
cuboid-to-cuboid, meaning that it is easier for the network to
regress 3D coordinates of an invisible cuboid (not necessarily
aligned with the object surface) than actually reconstruct the
object’s unknown 3D shape. In other words, the model does
not need to know nor infer the 3D object shape to estimate its
pose. We use the cuboid-to-cuboid setting in all subsequent
experiments.

Training data ablation. We then conduct an ablation to
measure the importance of diversity in the training data. To
that aim, we discard parts of the training set, still ensuring
that all models trains for the same number of steps in each
setting for the sake of fair comparison. Table 3 shows that
having more diversity in the training set is critical to improve
performance on all test sets. This result suggests that, despite
the great diversity between datasets (for instance, ABO con-
tains mostly furnitures), knowledge can effectively be shared
and transferred between datasets.

Impact of the number of reference images. Increasing
the number of reference views K at test time leads to better
performances. We achieve accuracy scores of 68.4, 75.5 and
78.4% with K = 16, 32 and 64 respectively on LINEMOD.
We observe similar behaviors on OnePose (with 87.8, 88.4
and 88.6% accuracy at 5cm-5deg resp.) and on ABO (74.8,
76.9 and 77.0% accuracy at 5cm-5deg resp.). This is expected
because the model is more likely to find useful information
in at least one reference view if we increase the number of
these. It also shows that a model trained with a given number
of reference views K = 32 at train time can generalize to a
different number of reference views at test time.

Impact of pretraining. We finally assess the benefit of pre-
emptively pretraining the network with a self-supervised ob-
jective. We specifically investigate whether pretraining is ben-
eficial, and in particular, whether it should be geometrically-
oriented or not. We thus compare CroCo pretraining (Wein-
zaepfel et al. 2022b) with MAE pretraining (He et al. 2021).
The latter yields state-of-the-art results in many vision tasks,
and is in addition compatible with our ViT-based architecture.
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Name Object Name Avg.ape benchwise cam can cat driller duck eggbox∗ glue∗ holepuncher iron lamp phone
ADD(S)-0.1d

Gen6D - 62.1 45.6 - 40.9 48.8 16.2 - - - - - - -
OnePose 11.8 92.6 88.1 77.2 47.9 74.5 34.2 71.3 37.5 54.9 89.2 87.6 60.6 63.6

OnePose++ 31.2 97.3 88.0 89.8 70.4 92.5 42.3 99.7 48.0 69.7 97.4 97.8 76.0 76.9
Ours (K = 16) 39.4 64.6 73.1 76.3 63.0 83.5 43.4 99.2 61.3 83.7 72.1 84.1 45.1 68.4
Ours (K = 64) 47.2 73.5 87.5 85.4 80.2 92.4 60.8 99.6 69.7 93.5 82.4 95.8 51.6 78.4

Proj2D
OnePose 35.2 94.4 96.8 87.4 77.2 76.0 73.0 89.9 55.1 79.1 92.4 88.9 69.4 78.1

OnePose++ 97.3 99.6 99.6 99.2 98.7 93.1 97.7 98.7 51.8 98.6 98.9 98.8 94.5 94.3
Ours (K = 16) 96.6 82.9 95.1 92.7 95.4 89.9 89.4 98.6 94.0 98.5 79.1 85.2 76.0 90.3
Ours (K = 64) 97.1 94.1 98.4 98.2 98.4 95.7 96.3 99.0 94.8 99.3 94.6 94.2 88.9 96.1

Table 1: Results on LINEMOD and comparison with other one-shot baselines. Symmetric objects are indicated by ∗.

Proxy shape LINEMOD OnePose ABO
(input→output) ADD(s)-0.1d↑ 5cm-5deg ↑ 5cm-5deg ↑

ellipsoid → ellipsoid 58.0 79.9 70.8
cuboid → cuboid 60.9 88.3 74.4

cuboid → mesh 42.3 40.4 63.7

Table 2: Impact of the 3D proxy shape.

Training Dataset LINEMOD OnePose ABO
ADD(s)-0.1d↑ 5cm-5deg ↑ 5cm-5deg ↑

BOP 44.2 72.0 3.4
OnePose 4.9 66.2 0.8

ABO 20.6 61.7 70.2

BOP + OnePose 49.5 83.2 5.62
BOP + OnePose + ABO 60.9 88.3 74.4

Table 3: Ablation on training datasets.

Pre-training LINEMOD OnePose
ADD(S)-0.1d ↑ Proj2D ↑ 3cm-3deg ↑ 5cm-5deg ↑

None 16.6 27.3 27.5 54.8
MAE 39.4 56.7 54.0 72.3
Croco 68.4 90.3 76.3 87.8

Table 4: Impact of the pre-training strategy.

Contrary to CroCo, however, MAE has no explicit relation
to 3D geometry. We present results in Table 4. We first note
a considerable drop in performance when the network is
trained from scratch (i.e. no pretraining). We then observe
that, while MAE pretraining does improve a lot over no
pretraining at all, it is still largely behind the performance
attained by CroCo pretraining. Note that there is no unfair
advantage in using CroCo, since CroCo is not trained on any
object-centric data. Rather, CroCo pretraining data includes
scene-level and landmark-level indoor and outdoor scenes,
such as Habitat, MegaDepth, etc. Note that we systematically
measure generalization performance (i.e. testing on unseen
objects), hence clearly demonstrating how geometry-oriented

pretraining is crucial for generalization.

Visualization. To understand how the network works in-
ternally, we visualize interactions happening in the cross-
attention of the decoder in Figure 4. Undeniably, the model
does perform matching under the hood to solve the task,
as we see that all interactions consist of token-level corre-
spondences between their corresponding patches. This is
interesting, because the network is never explicitly trained
for establishing correspondences. This also explains why the
CroCo pretraining is so important, as this latter essentially
consists in learning to establish correspondences between
different viewpoints, see (Weinzaepfel et al. 2022b).

Comparison with the State of the Art
LINEMOD. We compare against Gen6D (Liu et al. 2023),
OnePose (Sun et al. 2022) and OnePose++ (He et al. 2023),
which are one-shot methods similar to our approach on the
ADD(S)-0.1d and Proj2D metrics. As shown in Table 1, our
approach outperforms these one-shot methods. Compared to
the other one-shot methods, it is noteworthy that our method
does not require any knowledge of the 3D object shape as
input, in contrast to OnePose and OnePose++ which recon-
struct 3D SfM model in advance. Our method gives 1.5%
and 1.8% improvements on the ADD-S and Proj2D metrics,
respectively, compared to the best competitor.

OnePose and OnePose-LowTexture. We again compare
our approach with OnePose and OnePose++ (Sun et al. 2022;
He et al. 2023), as well as some SfM baselines, on the chal-
lenging OnePose test set, which has the particularity of not
providing mesh models. Results are provided in Table 6
in terms of the standard cm-degree accuracy for different
thresholds. Note that “HLoc (LoFTR∗)” uses LoFTR coarse
matches for SfM and uses full LoFTR to match the query im-
age and its retrieved images for pose estimation. Our method
lags behind OnePose++ at the tightest 1cm/1deg threshold.
In contrast to methods based on establishing pixel correspon-
dences, such as OnePose++, which can be pixel-precise, and
therefore provide high-precision pose estimates, our method
predicts the coordinates of an ‘invisible’ proxy shape. This
is definitely harder, and as a result, the resulting pose esti-
mate is noisier. However, as the accuracy threshold of the
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K
LINEMOD OnePose dataset OnePose-LowTexture

ADD(s)-0.1d↑ Proj2D ↑ 1cm-1deg 3cm-3deg 5cm-5deg 1cm-1deg 3cm-3deg 5cm-5deg

OnePose++
8

10.3 10.4 36.1 62.4 67.9 4.2 13.9 18.5
Ours 55.5 75.9 25.0 72.6 85.7 9.7 44.8 65.2

OnePose++
16

35.2 57.9 46.6 76.1 82.8 12.1 39.2 51.6
Ours 68.4 90.3 28.5 76.3 87.8 12.4 51.3 71.9

OnePose++
32

56.7 82.1 49.7 78.6 85.4 16.8 52.9 67.0
Ours 75.5 94.7 29.6 77.6 88.4 14.1 53.6 73.4

OnePose++
64

56.8 90.2 50.6 80.0 86.6 16.8 56.2 71.1
Ours 78.4 96.1 30.0 78.0 88.6 14.1 54.3 74.2

OnePose++ All 76.9 94.3 51.1 80.8 87.7 16.8 57.7 72.1

Table 5: Comparison of our model and OnePose++ with restricted numbers of reference images K.

OnePose dataset OnePose-LowTexture
SfM 1cm-1deg 3cm-3deg 5cm-5deg 1cm-1deg 3cm-3deg 5cm-5deg

HLoc (SPP + SPG) yes 51.1 75.9 82.0 13.8 36.1 42.2
HLoc (LoFTR∗) yes 39.2 72.3 80.4 13.2 41.3 52.3

OnePose yes 49.7 77.5 84.1 12.4 35.7 45.4
OnePose++ yes 51.1 80.8 87.7 16.8 57.7 72.1

Ours (K = 16) no 28.5 76.3 87.8 12.4 51.3 71.9
Ours (K = 64) no 30.0 78.0 88.6 14.1 54.3 74.2

Table 6: Comparison with One-shot Baselines. Our method is compared with HLoc (Sarlin et al. 2018) combined with different
feature matching methods (Sarlin et al. 2019; Sun et al. 2021), OnePose (Sun et al. 2022) and OnePose++ (He et al. 2023). We
denote as ‘SfM’ methods relying on an explicit 3D reconstruction of the objects.

performance metric increases (5cm/5deg), our method outper-
forms correspondence-based methods, demonstrating better
robustness overall to challenging conditions.

Limited number of reference images. We also compare
with OnePose++ in scenarios where the number of available
reference images is limited. We experiment with various set-
tings by altering the number of reference images (K) and
report results in Table 5. In the case of OnePose++, the ‘All’
configuration entails using 170 and 130 reference images
on average on the LINEMOD and OnePose datasets, respec-
tively. It is noteworthy that as K decreases to values below
32, the performance of OnePose++ significantly drops on
both LINEMOD and OnePose-LowTexture datasets. In con-
trast, our method exhibits a steady performance with only
marginal degradation in accuracy. This result demonstrates
the superior robustness of our approach in situations where
the number of available reference images is limited.

We point out that our method is more practical than
OnePose++, since it indiscriminately takes videos or small
image sets with camera poses as raw inputs. In comparison,
OnePose++ relies on videos and SfM pre-processing to build
3D object representations (we note they also rely on ground-
truth poses from ARKit-scene), which is slow, complex and
prone to failure – all of this strongly impairing scalability.

Detailed Timings
We report median computation times obtained with a
NVIDIA V100 GPU, repeating measures 10 times for ro-

bustness. At inference, our model takes 20.66ms to process a
single query image assuming K = 16 pre-encoded reference
views (62.64ms for K = 32 respectively). This is 3 4 times
faster than OnePose (Sun et al. 2022) and OnePose++ (He
et al. 2023) whose 2D-3D matching modules take 66.4 and
88.2ms respectively.

Conclusion
We propose a novel approach, called MFOS, for model-free
one-shot object pose estimation. In contrast to existing one-
shot methods, MFOS does not need any 3D model of the
target object, such as a mesh or point-cloud, and only requires
a set of reference images annotated with the object poses and
its approximate dimensions. It is able to implicitly extract
3D information from reference images, jointly matching,
combining and extrapolating pose information with the query
image, using only generic modules from a ViT architecture.
In contrast to all existing methods, our approach is inherently
simple, practical and scalable. In an extensive ablative study,
we have determined good practices with this novel type of
architecture in the field. Experiments show that our approach
outperforms existing one-shot methods and show significant
robustness in scenarios with a limited number of reference
images.
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