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Abstract

The task of Composed Image Retrieval (ColR) involves
queries that combine image and text modalities, allowing
users to express their intent more effectively. However, cur-
rent ColR datasets are orders of magnitude smaller compared
to other vision and language (V&L) datasets. Additionally,
some of these datasets have noticeable issues, such as queries
containing redundant modalities. To address these shortcom-
ings, we introduce the Large Scale Composed Image Re-
trieval (LaSCo) dataset, a new ColR dataset which is ten
times larger than existing ones. Pre-training on our LaSCo,
shows a noteworthy improvement in performance, even in
zero-shot. Furthermore, we propose a new approach for an-
alyzing ColR datasets and methods, which detects modal-
ity redundancy or necessity, in queries. We also introduce a
new ColR baseline, the Cross-Attention driven Shift Encoder
(CASE). This baseline allows for early fusion of modalities
using a cross-attention module and employs an additional
auxiliary task during training. Our experiments demonstrate
that this new baseline outperforms the current state-of-the-
art methods on established benchmarks like FashionIlQ and
CIRR.

1 Introduction

Recent progress in the field of multi-modal learning (Rad-
ford et al. 2021; Lu et al. 2019) has been reflected in various
downstream tasks, e.g., VQA (Antol et al. 2015; Levy, Ben-
Ari, and Lischinski 2022), Visual Dialog (Das et al. 2017),
Image captioning (Li et al. 2020), Image Retrieval (in its
variations) (Baldrati et al. 2022; Li et al. 2021) and Com-
posed Image Retrieval (ColR) (Vo et al. 2019; Chen, Gong,
and Bazzani 2020). Image Retrieval (IR) is a longstanding
task that aims to find a desired image in a large corpus, given
a user query. While content-based image retrieval uses a sin-
gle visual modality to convey the user intent (Barz and Den-
zler 2021; Dubey 2021; Zhong, Chen, and Qian 2020), pro-
viding a bi-modal query can mitigate miss-interpretations.
In ColR the gist and attributes are more succinctly described
visually, and further intent is specified via a lingual modal-
ity (Han et al. 2017; Isola, Lim, and Adelson 2015; Vo et al.
2019; Guo et al. 2018; Wu et al. 2021; Liu et al. 2021; Coua-
iron et al. 2022). Some examples of ColR queries and their
results are shown in Figures 1 and 5.
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Despite the progress in foundation models and new ColR
architectures, curating a dataset for ColR remains a chal-
lenging chore, where the samples are triplets of query-
image, accompanying transition-text, and the target image,
serving as the ground-truth answer. There are several ex-
isting datasets for ColR that differ significantly from each
other. Vo et al. (2019) propose a dataset of rendered im-
ages of simple 3D scenes. Other existing datasets suffer
from a small amount of data, and some are domain-specific
(e.g., shoes (Guo et al. 2018)), while in others, the lingual
modality is limited by transition-text used as a class label
(Isola, Lim, and Adelson 2015), or generated based on pairs
of image captions that differ by a single word (Han et al.
2017). Another dataset was labeled based on previous vi-
sion and language (V&L) models (Couairon et al. 2022).
Recently, Wu et al. (2021) introduced Fashionl(Q, another
domain-specific dataset for ColR, which gained popularity
(e.g. (Goenka et al. 2022; Lee, Kim, and Han 2021; Liu et al.
2021) ) and contains human-annotated labels.

In addition to their small scale, shortcomings of these
datasets include: 1) Not all acceptable target images for a
given query are labeled as such, leading to incorrect count
of false-negatives (e.g., Fig. 5); 2) Lack of visual complex-
ity (due to restriction to a specific domain); and 3) Modality
redundancy, i.e. target images may often be retrieved using
solely the query text, when descriptive enough to ignore the
query image. We further refer to this issue as (lack of) com-
positonality: where the target should be determined by its
query constituents combining the lingual and visual cues.

To break out from the previous domain-specific datasets
to general and natural image domain, Liu et al. (2021)
introduced the new CIRR (Composed Image Retrieval on
Real-life images) dataset that contains open domain natu-
ral images, taken from NLVR2 (Suhr et al. 2019). To the
best of our knowledge, CIRR is the only existing dataset
for ColR based on natural images with human annotated
open-language texts. Despite attempts to reduce the false-
negatives and relying on direct human labeling, CIRR still
has two major shortcomings: 1) The image corpus is small,
alleviating retrieval; 2) Modality redundancy still exists (see
Sec. 5), as well as false-negatives (according to our observa-
tions), reflecting the challenge in creating a “clean” dataset.

In this work, we introduce a new large scale dataset for
ColR, dubbed LaSCo (Large Scale Composed Image Re-
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Figure 1: An overview of our CASE baseline. The query-image is fed to a ViT encoder. The query-text is handled by our shift
encoder i.e. a BERT encoder with intermediate cross-attention layers, that receives the ViT output and fuses textual and visual
information. The resulting [CLS] token is then pooled and projected into a shared 256D space (circled Q). Finally, the K
nearest cosine-similarity neighbors of () are retrieved. For each training query, we also create a Reverse-Query by switching the
roles of query and target images. A learnable special token [RE'V] in our transformer, handles the prediction of the query-image

(circled R(Q) as the Reverse-Query task.

trieval dataset). To construct it with minimal human effort,
we employ a simple and effective methodology to rephrase
labels from an existing large scale VQA dataset (Goyal et al.
2017) into a form suited for CoIR. LaSCo contains an open
and broad domain of natural images and rich text. Compared
to CIRR, it has x10 more queries, X2 more unique tokens
and x17 more corpus images. We then propose a new ap-
proach for analyzing ColR datasets and methods, which de-
tects modality redundancy or necessity, in queries. Our anal-
ysis demonstrates that LaSCo shows a significantly smaller
bias towards a single modality for retrieval.

SoTA approach (Baldrati et al. 2022) employ CLIP (Rad-
ford et al. 2021) to separately encode the textual and the
visual query, followed by feature vector concatenation and a
learnable projection head. We experiment with an additional
end-to-end learnable baseline, which leverages the layers of
BLIP’s (Li et al. 2022) image-grounded text encoder and
enables early interactions between textual tokens and indi-
vidual areas (patches) in the image. This baseline, dubbed
CASE (Cross-Attention driven Shift Encoder), builds upon
bi-modal Cross-Attention to create an Encoder that Shifts
the query-image towards the target in the embedding space
(see Fig. 1). CASE is trained using a novel bi-directional
objective, which we refer to as Reverse-Query (RQ), where
the query-image is predicted from the target-image and the
query-text. Being based on BLIP, CASE uses a lower di-
mension latent vector of 256D, reducing retrieval complex-
ity by a factor of x2.5 over previous SoTA. Furthermore,
pre-training our baseline on LaSCo improves performance
on CIRR dataset and even surpasses previous SOTA methods
without training on CIRR (at zero-shot).

In summary, our key contributions in this paper are:

e LaSCo: A new large-scale, domain-free ColR dataset, a
few orders of magnitude larger than existing datasets.

* Data Roaming: A simple methodology for automatically
generating ColR triplets from an existing VQA dataset.

* Modality Redundancy: A method for analyzing redun-
dancy between modalities in existing ColR datasets.
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* CASE: A new BLIP-based baseline, featuring early fu-
sion and a novel bi-directional training objective, that
achieves SoTA performance with a large gap on Fash-
ionlQ, CIRR and LaSCo benchmarks.

2 Related Work

Data Roaming: A major challenge in many multi-modal
tasks, such as text-video and text-audio retrieval, is the
lack of large-scale training data. Due to the complexity
involved in creating multi-modal datasets such as text to
image (Young et al. 2014; Lin et al. 2014) or video re-
trieval (Xu et al. 2016; Chen and Dolan 2011), several stud-
ies suggest using raw narrated video footage (Miech et al.
2019) for video retrieval or altering the narration to create a
dataset for Visual Question Answering (VQA) (Yang et al.
2021). Other works try to enhance existing datasets, e.g.,
COCO captioning (Agrawal et al. 2019) to more diversity
and object categories. In this line of work, Nagrani et al.
(2022) propose a new video mining pipeline which involves
automatically transferring captions from image captioning
datasets to video clips, to create a new large-scale, weakly
labelled audio-video captioning dataset. Nevertheless, for
ColR models to ever function in the wild, a much larger va-
riety of visual concepts must be learned, ideally from less
annotated datasets. In this paper (Section 3) we propose a
methodology for leveraging VQAZ2.0 (Goyal et al. 2017), a
large existing and labeled dataset for the VQA task.

ColR datasets consist of triplets of query image, transi-
tion text and a target image. In order to differentiate these
datasets from text-to-image and image-to-image retrieval,
these triplets should ideally satisfy a condition where reach-
ing the target image in the corpus will necessarily require
both modalities. In this paper we further suggest an anal-
ysis tool for the “quality” of certain dataset, measured by
“modality redundancy”. We show that our newly gener-
ated large scale dataset exhibits higher quality, compared
to CIRR on natural images, and is on-par with the domain-
specific manually annotated FashionIQ dataset.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Composed Image Retrieval: ColR methods commonly
learn a shared embedding space between the text and visual
modalities. These methods often differ by encoding mod-
els, e.g., (Vo et al. 2019) that uses ResNet and LSTM and
learns a shift encoder. Other methods suggest different at-
tention mechanisms, e.g., Chen, Gong, and Bazzani (2020);
Hosseinzadeh and Wang (2020). Goenka et al. (2022) fo-
cuses on specific domain characteristics such as the fashion
domain (with FashionlQ dataset). Different fusion strategies
between visual and textual modalities has gained high atten-
tion suggesting early (Hosseinzadeh and Wang 2020) and
late (Delmas et al. 2022) fusion methods.

Recent works leverage VLM foundation models, e.g. Bal-
drati et al. (2022); Couairon et al. (2022) use CLIP features
reaching top performance. Encouraged by (Baldrati et al.
2022) we suggest a strong baseline built from pretrained
BLIP components, finetuned on ColR task.

Lastly, Kim et al. (2021) suggested enforcing cyclic con-
sistency from query/target images back to the transition-text.
To this end, they jointly optimized two separate networks,
one devoted to the ColR task; another predicting the query
text, given the query and target images. The latter is used for
re-ranking the target candidates. In this work, we suggest a
different auxiliary task, dubbed reverse objective, inspired
by the ColR task. Our reverse objective maps the target im-
age, conditioned on the query text, back to the query image.

3 LaSCo Dataset

In this section we introduce LaSCo (Large Scale Composed
Image Retrieval), a new ColR dataset consisting of open-
domain natural images, that elevates the scale of existing
datasets. To construct LaSCo, we leverage the carefully la-
beled datasets that exist for the well-studied VQA task (Yang
et al. 2021). Specifically, we utilize the VQA2.0 (Goyal et al.
2017) dataset to create LaSCo with minimal human effort.
VQA2.0 introduces two important features: 1) A balanced
answer set for VQA; 2) Inclusion of “complementary” sam-
ples, with counter examples. A complementary image I, is
one that is similar to an original image I in VQA, but yields
a different answer for the same question.

3.1 Data Roaming

We generate ColR triplets from VQA2.0 samples and their
“complementary” counterparts, as demonstrated in Figure 2.
For brevity, let us denote VQA2.0 by set D. Consider two
complementary triplets (I, Q, A) € D and (I, Q, A.) € D.
By construction, each I, image was manually selected from
the 24 (visually) nearest neighbors of I such that: 1) any
premise assumed in () must hold in I; 2) it makes sense to
ask @) about I.; and 3) the answer A, to Q about I, differs
from A. The actual answer A. was provided by a different
annotator, in a second round. These properties of D enable
building our new dataset by using the existing (Q, A.) pair
to construct the transition text S, from I to I,..

Transition text: The text conversion task is defined by
G : (Q,A.) — S.. We employ a strong language model,
e.g., G :=GPT-3 due to its few-shot capabilities (Brown
et al. 2020), to perform the conversion. To create an exam-
ple set for the task, we recruit 20 annotators to manually
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Q: How many animals are in this photo?
T

G(Q, Ac)

G(Q, Ac) = "There should be 3 animals in this photo”
G(Q,

) = "There are two animals in this photo"

Figure 2: Generating transition texts from VQAZ2.0 samples.
Given two paired triplets (I, Q, A), (I., Q, A.), where I and
1. are visually similar, but yield different answers A and A,
for the same question (), a transition text from [ to I is gen-
erated by G :=GPT-3 (Brown et al. 2020), based on (Q, A..).

rephrase ~ 300 randomly sampled (Q, A.) pairs to valid
transition texts S.. We then provide G a short description of
the task, with three annotated examples of (Q, A, S.), and
ask the model to perform the task on a new pair (Q, A.).
We further exploit the symmetry in the transition, I — I,
and I < I, to generate more triplets. Finally, we organize
the triplets as (I, S., I..), (I, S, I), with S, and S indicat-
ing the corresponding transition texts. For an extensive list
of examples we refer the reader to our suppl. material.

3.2 Quality Control

We further conduct a data curation process and preliminary
evaluation for the quality of our generated ColR triplets. We
first remove triplets identical query/target image. For text,
we apply automatic rule-based scripts to filter out potentially
wrong conversions (e.g., too short, unexpected characters
such as ‘\n’, etc.). In our manual examination of 1000 ran-
dom text conversions we judged 91.7% of them to produce
well-phrased and reasonable transitions. Next, we conduct
a short user study to compare the quality of our transition
texts to fully human-annotated ones. We sample ~ 300 ran-
dom triplets (Q;, @, T;), of query-image, query-text, and
target image (respectively). Triplets were shown to a total of
30 users, who were asked whether ); “adequately describes
the transition/modification”, from ; to T;, or not. This ex-
periment was conducted on three different ColR datasets.
The results show 82.02% positive rate for LaSCo samples,
compared to 81.15% for FashionIQ, and 82.65% for CIRR.

Finally, we performed a larger scale user study using the
Amazon Mechanical Turk (AMT) platform. We randomly
presented 1000 samples (triplets) from each dataset, and
asked 3 different AMT workers to rate each sample using
a 1-5 rating scale (worst-best, respectively). A mean opin-
ion score (MOS) was computed for each sample as the av-
erage of the three ratings. Binarization of the ratings (con-
sidering 1,2 as ‘Bad’, otherwise as ‘Good’) yields a positive
(Good) rate of 90.9%, 93.8% and 97.1% for LaSCo, Fash-
ionlQ and CIRR, respectively. The overall (relative) gap be-
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tween LaSCo and the other datasets is under 7%, indicating
that the generated texts are on-par with human annotations.
For further information, please see our suppl. material.

T#Query  f#lmage #Unique  Image
Dataset Triplets Corpus Tokens  Domain
CIRR 36,554 19,039 6,880 Natural
FashionlQ 30,132 30,271 4,425 Fashion
LaSCo (ours) 389,305 121,479 13,488 Natural

Table 1: Comparison of LaSCo to existing Composed Image
Retrieval (ColR) datasets, CIRR and FashionlQ.

Table 1 compares statistics of LaSCo to previous ColR
datasets. LaSCo contains over 389K queries, x 10 larger
than previous datasets, with an image set containing 121.5K
different images, compared to previous 19K—41K. The size
of the test image corpus, determining the target search space,
is almost 40K, compared to 2.3K in CIRR and 15.4K in
FashionlQ. In terms of natural language, LaSCo is richer
with 13.5K different language tokens, compared to 4.4K
in FashionlQ and 6.8K in CIRR. Moreover, LaSCo and
VQAZ2.0 are both derived from COCO’s image set; thus, cap-
tions are available for each of LaSCo’s images. Utilizing
captions as an additional cue (see Section 6) allows creat-
ing a rich dataset for training ColR methods to achieve high
performance in both Text-to-Image and ColR tasks.

4 Cross-Attention Driven Shift Encoder

Here we introduce a new strong baseline for ColR that lever-
ages pre-trained BLIP components with early fusion, named
Cross-Attention driven Shift Encoder (CASE).

4.1 CASE Architecture

The CASE architecture, depicted in Figure 1, consists of two
transformer components (Vaswani et al. 2017). The first is
a shift-encoder, based on an image-grounded text encoder,
previously introduced in (Li et al. 2022). It is a BERT (De-
vlin et al. 2019) encoder with additional intermediate cross-
attention layers, to model vision-language interactions. The
second component is a ViT (Dosovitskiy et al. 2021) en-
coder. ViT divides an input image into patches and encodes
them as a sequence of image tokens. The image tokens are
then fed into cross-attention layers, allowing interaction be-
tween the lingual and visual branches. The output, a bi-
modality conditioned sequence (text on image and image
on text), is then pooled to a single vector and projected
to a 256D latent space. CASE allows early fusion between
modalities, in contrast to previous late fusion methods (Bal-
drati et al. 2022; Vo et al. 2019; Kim et al. 2021; Delmas
et al. 2022) or methods that take a middle way (Liu et al.
2021; Goenka et al. 2022; Chen, Gong, and Bazzani 2020;
Hosseinzadeh and Wang 2020), as discussed in Section 2.
Utilizing Vision-Language Pre-training: We initialize
our model’s weights using BLIP (Li et al. 2022) pre-trained
weights, as follows: Our shift-encoder’s Self-Attention,
Cross-Attention and Feed-Forward layers are initialized
with the corresponding layers of BLIP’s image-grounded en-
coder. Our final projection layer is initialized with the final
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projection of BLIP’s text-encoder. Finally, we initialize our
ViT component with BLIP’s image encoder. Our model is
end-to-end trainable (see Figure 1).

4.2 Adding a Reverse Objective

A common training approach for image retrieval tasks uses
an objective of contrastive loss with the target image as pos-
itive e.g., (Goenka et al. 2022; Baldrati et al. 2022; Liu et al.
2021; Li et al. 2020). Here, we propose an additional re-
verse objective, where the goal is to retrieve the query im-
age given the transition-text and the target image. One can
view the reverse objective as flipping the shift vector of the
original query (in the latent space) to point in the opposite
direction, from the target image to the embedding of the
query image. Our reverse objective further suggests an ad-
ditional task and can be viewed as a valid augmentation, ef-
fectively enlarging the dataset. We therefore train our model
jointly with the reverse objective (see Figure 1). Namely,
given a triplet (Q;, Q:,T;) of query-image, query-text and
target-image (respectively), our model objective M requires:
M(Q;,Q¢) = T; (standard ColR task), while simultane-
ously enforcing M (T;, [REV]; Q:) = Q;, where [REV] is
a special token provided to the model. Although the reverse
task is not one-to-one (multiple queries may be suitable),
this objective has proven to be beneficial in practice.

4.3 Retrieval Approach

We follow the most common approach for image retrieval:
searching for matches in an embedding space shared by
queries and targets (see Figure 1). First, corpus images (po-
tential targets) are encoded into a single feature vector per
image by a ViT encoder. Then, a given query (composed
of image and text) is projected by CASE to the shared em-
bedding space. Finally, the target candidates are ranked by
cosine-similarity distance w.r.t the shifted query embedding.
By using a relatively small embedding space dimension of
256D, compared to 640D in the previous SoTA (Baldrati
et al. 2022), the retrieval is sped up by x2.5.

5 Modality Redundancy

In this section, we first propose a simple analysis of existing
ColR datasets to examine the degree to which their queries
require both modalities for successful retrieval. Next, a simi-
lar analysis is proposed for assessing the bias of ColR meth-
ods towards modality redundancies.

An ideal composed query should require both modalities
for retrieving the desired target. For example, a transition-
text such “Change the color to be more cream colored” in the
top row of Figure 5, will only succeed in finding the proper
target in conjuction with the query image, since the type of
object cannot be inferred from the text alone. However, in
practice, one of the modalities can become redundant, with
the degree of redundancy depending on the information con-
veyed by the other modality. On one extreme, the query-
image might be completely redundant, reducing the task to
Text-to-Image retrieval; on the other extreme, the query-text
might be redundant, with the task becoming Image-to-Image
retrieval. To quantitatively assess the degree of redundancy
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Figure 3: Modality redundancy level in several datasets
(lower is better). Recall@K values for Text-to-Image and
Image-to-Image retrieval using off-the-shelf CLIP (Radford
et al. 2021). Lower values indicate higher image and text
compositionality. The results for COCO (Lin et al. 2014)
are shown as a reference for a purely text-to-image (single
modality) retrieval task, presenting an upper bound.

in ColR datasets, we measure the Recall @K performance of
naive Text-to-Image and Image-to-Image retrieval using the
embeddings produced by an independent off-the-shelf CLIP
model (Radford et al. 2021). To create a continuous mea-
sure we compute the Recall@K for varying K values. These
measurements computed on several datasets are plotted in
Figure 3. A lower curve indicates that the corresponding
dataset is more challenging for a uni-modal query. Note that
the LaSCo and FashionlQ curves are much lower than CIRR,
implying that more of the queries in CIRR are modality-
redundant. For reference, we also plot the performance of
the CLIP-based Text-to-Image retriever using COCO cap-
tions as query text (a commonly used benchmark for Text-
to-Image retrieval (Li et al. 2022, 2021, 2020; Radford et al.
2021)). While COCO may be viewed as an “upper bound”
for this task, note that the CIRR curve is quite close to it.
Next, we employ a similar analysis for studying the de-
gree to which ColR methods (trained on a certain dataset)
are affected by the presence of modality redundancies in
the dataset. Starting from the full CIRR validation set, de-
noted as V, we generate a sequence of progressively “pu-
rified” subsets V,, C V, with each subset containing fewer
modality redundancies. Specifically, subset V,, is generated
by removing from V' all of the queries for which the naive
CLIP-based Text-to-Image retriever, retrieves the correct tar-
get image among it’s top-n results. In Figure 4 we plot the
average of Recall@{1,5,10,50} as a function of n, mea-
sured by applying our baseline, CASE on each dataset.
Note that the performance of the CLIP-based retriever
(blue line) vanishes at Vg, since by construction, V5o con-
tains only queries for which CLIP failed to retrieve the tar-
get within its top 50 results. A similar trend is observed
with CASE-(Text-Only), a variant of our model trained on
transition-texts only, ignoring the image. CASE-(Text-Only)
exhibits performance degradation with increased n, as it re-
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Figure 4: Average retrieval performance on subsets of CIRR
determined by image-redundancy levels. Higher values of
Average Recall, imply a desirable trend of higher level of
required compositionality between text and image (lower
modality redundancy). See Section 5.

lies solely on query-text. While CASE that was trained on
CIRR (orange line) shows better performance, it still suf-
fers some degradation as n grows, implying that some bias
towards modality redundancies might still exist. However,
when CASE is trained or pre-trained on LaSCo dataset (pink
and brown lines, respectively), it achieves the best perfor-
mance, which is roughly constant regardless of n. Thus,
LaSCo appears to be effective at removing bias towards re-
dundancies, and CASE pre-trained on it is better suited for
datasets with high compositionality.

6 Evaluation

We evaluate our baseline on FashionlQ, CIRR, and LaSCo
benchmarks, one domain-specific and the others more gen-
eral and broad, based on natural images. First, we show the
results from our newly suggested baseline, CASE. Next we
examine the effect of using our new LaSCo dataset for train-
ing and pre-training (train/val. split of 92% & 8%). We also
present results with pre-training with a mixture of COCO
captions, that are very descriptive to better handle samples
where the transition text is highly detailed, making the the
query image often redundant (i.e. text-to-Image retrieval).
To this end, we conduct an experiment where we train CASE
on LaSCo, replacing 50% of transition-texts )y, with cap-
tions, corresponding to the target image. Namely, we change
the train distribution to combine both ColR and text-to-
image samples, as discussed in Sec. 3.1. We then explain
the results thru the properties of different datasets in terms
of modality redundancy.

6.1 Datasets

FashionlQ (Wu et al. 2021) contains crowdsourced descrip-
tions of differences between images of fashion products. Im-
ages are collected from the web and divided to three cat-
egories of Shirts, Dresses and Tops&Tees. The query and
target images were automatically paired based on title simi-
larities (crawled from the web). This dataset consists of 30K
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Figure 5: CASE top-4 retrievals (from left to right) for a
query in CIRR (top) and FashionlQ (bottom). The query (im-
age and text) is shown in the left column. The single ground
truth target is framed in green. Arguably, additional images
could be marked acceptable (referred as false-negatives).

queries (see Table 1), annotated on 40.5K different fashion
images. There are 4.4K different tokens in the transition-
texts (according to BERT tokenizer). The validation corpus
contains 15.4K different images, from which target should
be retrieved). Figure 5 (bottom) shows a FashionIQ retrieval
example.

CIRR contains open domain natural images, taken from
NLVR2 (Suhr et al. 2019). It contains a total of 36.5K
queries annotated on 19K different images, with 6.8K
unique tokens in the transition texts. Examples may be seen
in the top two rows of Fig. 5. Its validation corpus is rela-
tively small, with a size of 2.3K. The authors further suggest
two benchmarks, one general, with the target search space as
the entire validation corpus, and a subset, where the search
space is a subgroup of six images similar to the query image
(based on pre-trained ResNetl5 feature distance), demon-
strating a fine-grained retrieval task.

6.2 Implementation Details

We set an AdamW optimizer, initializing learning rate by
5 x 10~° with a exponential decay rate of 0.93 to 1 x 107°.
We train CASE on CIRR with a batch size of 2048 for 6
epochs. For FashionlQ, we train with a batch size of 1024
for 20 epochs (further ablation on the batch size is avail-
able in suppl. material). On LaSCo we train with a batch
size of 3840 for 10 epochs. We use the Recall @K surrogate
loss (Patel, Tolias, and Matas 2022) as the differentiable ver-
sion of the Recall@K metric. Training on four A100 nodes
takes 0.5-6 minutes per epoch, depending on dataset size.

6.3 Results

We start by showing the performance of our CASE base-
line on Fashionl(Q, in Table 2. The results are broken down
to different clothing categories and Recall@K values. For
demonstrating modality redundancies, we train two base-
lines only on query-image (Image-only) or query-text (Text-

2996

only). Interestingly, CASE achieves SoTA results, surpass-
ing the previous top performing method (LF-CLIP (Baldrati
et al. 2022)) by a large margin (13.4% and 11.6% absolute
points at Recall@10,50 respectively). The poor results for
CASE (Image-only) baseline, show that visual information
is not sufficient for FashionlQ, as often the transition text
asks for a certain change in the image (see Section 5). How-
ever, the CASE (Text-only) baseline results are close to the
previous method of LF-CLIP, indicating the high level of
redundancy in the image, as the single text modality is suffi-
cient to reach the previous SoTA performance.

Table 3 shows results on CIRR. At the top we present
the results from previous methods. The right columns
Ryupser QK correspond to the fine-grained retrieval task (in-
troduced originally in (Liu et al. 2021)). Here, we show five
different variants of our model. As in FashionlQ, the poor
results for CASE (Image-Only) imply that the query-image
alone is not sufficient for retrieval also on CIRR. Interest-
ingly, CASE (Text-only) reference surpass previous meth-
ods in most metrics, further demonstrating the high level of
modality redundancy in CIRR as shown in Sec. 5. This base-
line is also top performing in the subset benchmark. We be-
lieve this is caused by the existing image similarity in the
subset, making the query image redundant for the task (see
visual examples in suppl. material).

Next, we observe the performance of CASE, which con-
sistently outperforms previous methods. We further show vi-
sual and textual explainability maps in the suppl. material.

Now we examine the impact of our LaSCo dataset in two
main aspects 1) Pr-training and 2) Zero-Shot inference. The
results are shown under CASE Pre-LaSCo, gaining ~0.5-
1% improvement. We found that this relatively small im-
provement is due to the modality redundancy in the CIRR
dataset. We justify this assumption by the analysis shown
in Fig. 4, and by shifting CASE towards the distribution
of CIRR. Specifically, we train CASE on a mix of LaSCo
transition-texts with full target captions (taken from COCO
captions), which we denote LaSCo.Ca, thus biasing the
model towards highly descriptive texts. As shown in Tab. 3,
it further boosts performance on CIRR, a fact that we at-
tribute to improvement of the Text-to-Image (T2I) search ca-
pability (see Section 5). The use of LaSCo.Ca significantly
boosts performance also in zero-shot on CIRR test set (i.e.
without even training on CIRR), surpassing previous meth-
ods in most metrics, indicating again the impact of modality
redundancy on the results.

Finally, in Table 4, we benchmark on LaSCo. To this end,
we apply the two CASE variants (Text-Only, Image-Only)
that result in poor performance, implying the necessity of
both modalities in this dataset. We further test LF-CLIP
(Baldrati et al. 2022) trained on LaSCo, and observe its sig-
nificant drop in performance (compared to CIRR), imply-
ing that LaSCo dataset introduces a higher true ColR chal-
lenge. Finally, CASE performs best also here, raising e.g.,
Recall@1 from 4.01% (by prior LF-CLIP) to 7.08%, and
Recall@50 from 32.08% to 50.25%.

Ablation Study: First, we construct a reference by re-
placing pre-trained encoders of CLIP, with BLIP’s, pre-
sented in Tables 2 to 4, named LF-BLIP. Next, we ablate
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Shirt Dress Toptee Average

Method R@10 R@50 R@10 R@50 R@10 R@50 | R@10 R@50
MAAF (Dodds et al. 2020) 21.3 44.2 23.8 48.6 279 53.6 243 48.8
FashionVLP(Goenka et al. 2022) | 31.89 5844 3242  60.29  38.51 68.79 | 3427 6251
LF-BLIP 2539 4357 2531 4405 2654 4448 | 2575  43.98
LF-CLIP (Baldrati et al. 2022) 36.36 58.00 31.63 56.67 3819 6242 | 3539 59.03
CASE 4848 70.23 4744 69.36 50.18 72.24 | 48.79  70.68
CASE (Image-only) 6.72 17.52  8.02 18.6 7.93 18.05 | 7.43 17.95
CASE (Text-only) 3484 5693 3347  55.81 3599 5852 | 3489 57.18

Table 2: Recall@K comparison, on FashionIQ validation set. Best performance is in bold and second best is underlined. CASE
outperforms previous results in all metrics by a large margin. CASE(Text-only) results indicate high modality redundancy.

Recall@K Riubset @K
Mode Method K=1 K=5 K=10 K=50 | K=1 K=2 K=3
TIRG (Vo et al. 2019) 14.61 4837 64.08 90.03 | 22.67 4497 65.14
MAAF (Dodds et al. 2020) 10.31 33.03 48.30 80.06 | 21.05 41.81 61.60
Train ARTEMIS (Delmas et al. 2022) | 19.96 46.10 61.31 87.73 | 39.99 6220 75.67
LE-BLIP 20.89 48.07 61.16 83.71 | 50.22 73.16 86.82
LF-CLIP (Baldrati et al. 2022) 33,59 6535 7735 9521 | 6239 81.81 92.02
CASE 48.00 79.11 87.25 97.57 | 75.88 90.58 96.00
Zero CASE Init. 16.63 3354 42.65 6530 | 55.74 77.10 88.48
Shot CASE - LaSCo 30.89 60.75 73.88 92.84 | 60.17 80.17 90.41
CASE - LaSCo.Ca. 3540 65.78 78.53 94.63 | 64.29 82.66 91.61
Pre-Train CASE Pre-LaSCo 48.68 7998 88.51 9749 | 76.39 90.12 95.86
CASE Pre-LaSCo.Ca. 4935 80.02 88.75 9747 | 76.48 90.37 95.71
Modality CASE (Image-only) 0.00 0.19 0.41 2.12 | 19.78 39.49 59.87
Redundancy  CASE (Text-only) 39.01 6953 7924 9132 | 78.68 91.70 96.08

Table 3: Recall@K comparison on CIRR test set. CASE shows state-of-the-art results in all cases. The methods in the “Train”
mode were all trained on the CIRR train set, in contrast to “Zero-shot” mode. CASE (Text/Image-only) was trained solely on a
single modality (text/image, respectively), while ignoring the other.

Method R@] R@5 R@10 R@50 R@500
CASE (Img.-Only)  2.21 7.39 11.82  30.62 72.64
CASE (Txt.-Only) 239  6.89 10.39  24.92 61.23
LF-CLIP 4.01 1023 14.68  32.08 72.69
LF-BLIP 426 1201 17.11 36.54 74.62
CASE 7.08 18.50 26.16 50.25 85.46

Table 4: Results on LaSCo validation set.

various key-components of CASE to examine their impact
on performance. We report ablation results on the frequently
used FashionlQ dataset (also on CIRR) in the suppl. mate-
rial). We train CASE without the reverse queries (RQ) ob-
jective described in Sec. 4.2. We observe that RQ improve
performance by 0.5-1.2% (~5% relative performance boost
at R@1). Using surrogate Recall@K loss instead of com-
mon contrastive loss, further improves results by roughly
0.5%. Finally, we examine the influence of fine-tuning the
ViT where results vary depending on the dataset. On LaSCo,
all R@K metrics were improved by an absolute 0.4 — 2%.
On CIRR and FashionlQ, which contain fewer images, some
metrics improved but with trade-offs in others.

7 Discussion

We shed more light on the task of ColR. Data labeling for
ColR appears to be difficult and costly, exposed to serious
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biases (e.g., redundancy of the image-query), bounded by
inevitable flaws (e.g., false-negatives), and eventually end-
ing up with a low quality and size of data. We suggest a
remedy for most of these shortcomings via an inexpensive
solution: leveraging labels from a popular related task, to
create a new labeled dataset, LaSCo. We extensively analyze
current ColR datasets, in order to show their effectiveness,
generalization and the capability of a certain model (trained
on specific dataset) in handling the desired compositional-
ity in the ColR task. We also suggest the CASE baseline,
that relies on early fusion of the query modalities through
a cross-attention module. We demonstrate the effectiveness
of CASE by achieving top results on labelled ColR bench-
marks from two different domains. To the best of our knowl-
edge, our new baseline, also leverages the smallest dimen-
sion of the search space (shared embedding space) among
the methods being compared, resulting in a further reduction
in computational expenses. We believe this work, including
our newly introduced dataset, might serve as a useful and
practical tool not solely limited to the intricate ColR task but
also extending to the broader realm of multi-modal learning.
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