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Abstract

Audio-driven talking head synthesis is a promising topic with
wide applications in digital human, film making and virtual
reality. Recent NeRF-based approaches have shown superi-
ority in quality and fidelity compared to previous studies.
However, when it comes to few-shot talking head genera-
tion, a practical scenario where only few seconds of talking
video is available for one identity, two limitations emerge:
1) they either have no base model, which serves as a facial
prior for fast convergence, or ignore the importance of au-
dio when building the prior; 2) most of them overlook the
degree of correlation between different face regions and au-
dio, e.g., mouth is audio related, while ear is audio indepen-
dent. In this paper, we present Audio Enhanced Neural Ra-
diance Field (AE-NeRF) to tackle the above issues, which
can generate realistic portraits of a new speaker with few-
shot dataset. Specifically, we introduce an Audio Aware Ag-
gregation module into the feature fusion stage of the refer-
ence scheme, where the weight is determined by the sim-
ilarity of audio between reference and target image. Then,
an Audio-Aligned Face Generation strategy is proposed to
model the audio related and audio independent regions re-
spectively, with a dual-NeRF framework. Extensive experi-
ments have shown AE-NeRF surpasses the state-of-the-art on
image fidelity, audio-lip synchronization, and generalization
ability, even in limited training set or training iterations.

Introduction
Audio-driven talking head generation is an essential tech-
nique with broad application scenarios such as digital hu-
man, film making, video conference and virtual reality.
Many literature (Prajwal et al. 2020; Shen et al. 2023; Ye
et al. 2023) have been put forward to learn the audio-to-lip
mapping by using deep generative models, such as GAN,
diffusion model, VAE, etc. Among them, Neural Radiance
Field (NeRF) (Mildenhall et al. 2020) based methods (Guo
et al. 2021; Liu et al. 2022; Shen et al. 2022) have shown
promising results, which map audio features to dynamic
neural radiance fields to model a talking head.

However, NeRF-based methods usually adopt identity-
specific training, i.e., one needs to train a model from scratch
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Figure 1: Our observation. (a) It shows the target/reference
images and their phonetic symbols. The target is more sim-
ilar to the first and last reference image because their pro-
nunciation is closer. (b) We calculate the flow of adjacent
frames, it can be seen the lower half face varies obviously
than other regions.

for each new identity. What’s worse, to make model general-
ize to various mouth shapes, the training set for each identity
should be large, which is difficult to be satisfied in practice
since the data for one identity are often limited. One-shot
talking head generation (Chen et al. 2019; Prajwal et al.
2020; Zhou et al. 2020) may be a solution, which drives
the novel identity from one reference image without train-
ing. But it sacrifices the fidelity of talking head, especially
the teeth consistency and details. To balance data availabil-
ity, training efficiency and generation quality, we focus on
a practical scenario: few-shot talking head synthesis, that is,
we need to train a NeRF model rapidly on a short talking
video of one identity, which is capable of generating high-
fidelity talking head with a given audio. Existing NeRF-
based methods suffer from the following limitations when
applied to this setting:
Lack of a robust prior. In order to quickly generalize to the
few-shot identity, it is necessary to pre-train a base model
across multi-identity to provide a basic audio-to-lip trans-
lation and implicit facial priors, such as color, shape and
texture, which are helpful to restore faithful facial details.
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Current methods either lack the prior or construct a less ro-
bust prior. The former (Guo et al. 2021; Liu et al. 2022) is
trained directly on the dataset of one identity. When the data
is limited, the accuracy of rendering will drop significantly.
The latter (Shen et al. 2022) ignores the correlation of audio
between the target and reference images.
Audio-Face misalignment. In the audio-driven neural radi-
ance field, most methods render the color of each ray con-
ditioned on the audio feature, which means the entire talk-
ing head is considered to be audio related. Actually, we em-
pirically find there exist many audio decoupled regions that
have a weak or no correlation with the audio signal, such as
hairs, ears and wrinkles. Modeling these two regions (i.e.,
audio related and decoupled) with one radiance field will
cause a misalignment between the visual and audio infor-
mation, resulting in sub-optimal synthesis results.

In this work, we propose Audio Enhanced NeRF (AE-
NeRF) to tackle these two issues. Based on a reference
scheme, we introduce Audio Aware Aggregation module and
Audio-Aligned Face Generation strategy, to empower NeRF
models with the ability to synthesize high quality talking
heads with limited training data.

Specifically, we pre-train a base model on multi-identity
dataset first. For each identity, we input several reference
images to provide visual information from different poses
to help the model render the target image. We find that the
close pronunciations have the similar mouth shapes (see
(a) of Fig. 1). Therefore, when aggregating the visual fea-
tures from the reference images, whose weight should be
higher if its audio is closer to that of the target image. For
an audio-driven application, the Audio Aware Aggregation
module will make the learned prior more robust and accu-
rate.

On the other hand, we employ a dual-NeRF framework to
simultaneously model the audio related and audio decoupled
regions of a talking head. According to our observations in
Fig. 1 (b), the lower half face can be regarded as the audio re-
lated part, whose variations have strong correlations with the
audio signal. This part is modeled with an audio associated
NeRF that conditions on audio features, while the rest parts
are modeled by an audio independent NeRF that requires no
audio features. Thanks to the disentanglement between dif-
ferent face regions and the audio signal, our Audio-Aligned
Face Generation strategy brings better audio-to-lip consis-
tency and finer rendering results.

To summarize, three key contributions are made to im-
prove the practical few shot talking head synthesis.

• We propose an Audio Aware Aggregation module based
on a reference scheme, which takes full advantage of the
audio visual relationships between target and reference
images and yields a strong prior.

• We introduce an Audio-Aligned Face Generation strat-
egy to decouple the face modeling into audio associ-
ated NeRF and audio independent NeRF, achieving better
audio-lip synchronization and facial details.

• Sufficient experiments have proved the superiority of our
AE-NeRF over state-of-the-art on image fidelity, audio-
lip synchronization, and generalization ability.

Related Work
Audio-driven Talking Head Generation
Audio-driven talking head generation aims to animate a
speaker according to input audios. Image based methods
(Prajwal et al. 2020; Zakharov et al. 2019) utilize GANs
(Goodfellow et al. 2020) and Auto-encoders (Kingma and
Welling 2013) to generate talking faces with audio signals as
conditional inputs. Model based methods (Chen et al. 2019;
Thies et al. 2020; Das et al. 2020; Wang, Mallya, and Liu
2021; Zhou et al. 2020; Song et al. 2022) leverage structural
information such as 2D landmarks or 3DMM parameters for
better face modeling. For instance, (Chen et al. 2019) and
(Thies et al. 2020) generate faces with predicted facial land-
marks or 3DMM expression coefficients. These methods can
quickly adapt to an unseen identity. However, the prediction
error of the representations may lead to inferior image qual-
ity, and they usually require hundreds of videos for training.
NeRF based methods (Guo et al. 2021; Liu et al. 2022; Shen
et al. 2022) have brought a new trend of talking head synthe-
sis. They perform optimization on the video clip of a single
person, and can synthesize pose-controllable faces of any
resolution with high fidelity. AD-NeRF (Guo et al. 2021)
use two separated NeRFs to model the head and the torso
part respectively. SSP-NeRF (Liu et al. 2022) performs rays
re-sampling based on the loss magnitude of different seman-
tic regions. Despite the above advantages, the generalization
ability of NeRF based methods to new identities still needs
to be improved, and they suffer from performance drop when
the video clip is relatively short.

Few Shot Neural Rendering
Neural Radiance Fields (NeRFs) (Mildenhall et al. 2020)
combines MLPs with differentiable volume rendering and
achieves photorealistic view synthesis results. Although im-
pressive results are obtained, the original NeRF needs to
be retrained for each new scene, which are both time con-
suming and computational expensive. Moreover, when only
sparse views are available, because of the lack of the prior
knowledge between scenes (Yu et al. 2021), the synthesis
results can suffer from a large degradation in quality.

Few Shot Neural Rendering (Trevithick and Yang 2021;
Yu et al. 2021; Chen et al. 2021; Gu et al. 2021; Xu et al.
2022) are proposed to alleviate these problems with the as-
sistance of different kinds of priors such as 2D image fea-
tures (Trevithick and Yang 2021; Yu et al. 2021; Wang et al.
2021), trainable latent codes (Jang and Agapito 2021; Gafni
et al. 2021) and style inputs (Gu et al. 2021; Chan et al.
2022). Among them, the pixel level feature (Trevithick and
Yang 2021; Yu et al. 2021; Wang et al. 2021) from randomly
chose 2D reference images is the most commonly used prior
to promote the NeRF’s rendering ability when only a few ob-
servations are available. When coming up with a new scene,
the NeRF can perform quick generalization based on the ref-
erence image features from that scene. DFRF (Shen et al.
2022) directly uses the above reference scheme for few shot
talking head generation. But it ignores the importance of au-
dio features in talking head rendering.
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Figure 2: Overview of the proposed AE-NeRF. The reference scheme gathers the audio visual information from reference
images and audio features precisely. Audio Aware Aggregation module fuses these features with cross attention and yields
a strong representation. Audio-Aligned Face Generation strategy models the whole face region with two separated NeRFs,
synthesizing the portrait with high fidelity.

Proposed Method
Overview
The full pipeline of our AE-NeRF is shown in Fig. 2. Both
audio features and visual features are extracted as the ref-
erences. The proposed Audio Aware Aggregation module
fuses these features with cross attention and yields a strong
prior for fully leveraging the limited data. Then, the au-
dio related and audio decoupled regions are modeled by
our Audio-Aligned Face Generation strategy. Finally, the
portrait of the speaker and semantic masks are synthesized
through volume rendering.

NeRF for Audio Driven Talking Head
The original NeRF encodes a static scene as a continuous
volumetric radiance field F , which is modeled by an MLP.
It takes a 3D query point x and its view direction d as in-
put, and outputs the corresponding density σ and color c:
F (x,d) = (c, σ). When applying NeRF to talking head,
one will take the audio feature as an additional input, and
the rendering process can be written as F(x,d,a) = (c, σ).
Reference Scheme. Despite the superior rendering quality,
NeRF-based methods have to optimize each identity indi-
vidually since no prior knowledge is shared between dif-
ferent identities. To improve the generalization ability of
NeRFs on few observations, pixel level features from multi-
view images (dubbed as reference images) (Yu et al. 2021;
Trevithick and Yang 2021) are brought to construct a vi-
sual prior. DFRF (Shen et al. 2022) first utilizes this refer-
ence scheme in talking head generation, improving render-
ing ability on few shot datasets to some extent.

Specifically, given L reference images, let Ii ∈
RHi×Wi×3 and Pi ∈ R3×4 denote the i-th image and cam-
era projection matrix respectively (i ∈ {0, 1, ..., L − 1}).

A shallow convolutional network without downsampling is
employed to extract dense features Fi ∈ RH×W×D from
each image Ii, where H , W and D are the height, width and
the feature channel respectively. To facilitate the rendering
of a 3D point x on target image, we first project x onto i-th
reference image to obtain image features frefi ∈ RD. Then
all extracted features fref1...L are merged as a condition f̃ . So,
an audio-driven NeRF model with reference scheme can be
formulated as

F(x,d,a, f̃) = (c, σ). (1)

In addition, we denote the projection coordinate of the 3D
point x to the i-th 2D reference image as pref

i = (ui,vi).
Since the talking head is dynamic, directly performing pro-
jection may bring some errors. Thus, an image warper is im-
posed to calibrate the 2D coordinate by predicting its offset
∆pref

i on the feature plane. The calibrated coordinate is de-
noted by

pref ′

i = pref
i +∆pref

i . (2)

Audio Aware Aggregation
In a talking head video, if the speakers in the reference im-
age and the target image have similar speech contents, they
tend to have similar mouth shapes, as we mentioned above.
Therefore, we introduce Audio Aware Aggregation module
into the feature fusion process to make the reference image,
whose audio is more similar to target, contribute more. Let
a, aref1...L and fref1...L be target audio feature, reference audio
feature and reference image feature respectively, then we
have

f̃ = AAA(a,aref1...L, f
ref
1...L). (3)
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The Audio Aware Aggregation module utilizes a trans-
former structure with cross attention blocks to fuse the au-
dio and the visual information. To be more concrete, a,
aref1...L, and fref1...L are projected and reshaped to get their cor-
responding tokens Ttar

a ∈ RN×128, Tref
a ∈ RNL×128 and

Tref
f ∈ RNL×128, N is the number of query point samples

in a batch. The audio and image tokens are then modeled by
the Multi-Head Cross Attention (MHCA), along with Layer
Normalization (LN), Residual Connection (RC) and Feed
Forward Network (FFN). The cross attention block, with
Ttar

a as query, Tref
a as key, Tref

f as value, can be formal-
ized as

MHCA
(
Ttar

a ,Tref
a ,Tref

f

)
=

Softmax

[
Ttar

a WQ
(
Tref

a WK
)T

√
d

]
Tref

f W V ,
(4)

where WQ ∈ R128×d , WK ∈ R128×d , W V ∈ R128×d

are the projection matrices with hidden dimension d, which
is also set to 128. It can be seen the closer the key (reference
audio) and query (target audio) are, the greater the weight
of value (reference feature) in f̃ will be. When fitting a new
identity, given the reference images and audio features, it
can help the NeRF to quickly model the texture and geom-
etry. Two cross attention blocks are involved in the module
and their output is passed through two Full Connection lay-
ers with a ReLU activation in between, and yields the final
aggregated audio visual feature prior f̃ .

We also introduce the audio aware manner into the im-
age warper module. The warper takes the target query point
x and the target audio a as input, together with the corre-
sponding audio aref and ray direction dref of the i-th refer-
ence, and outputs the coordinate offset, achieving more pre-
cise feature extraction:

∆pref
i = (∆ui,∆vi) = Warper(x,a,aref

i ,d,dref
i ). (5)

Audio-Aligned Face Generation
As stated before, a disentangled modeling of the audio re-
lated reigon and the audio decoupled region is of great sig-
nificance. Our Audio-Aligned Face Generation strategy uses
an audio associated NeRF and an audio independent NeRF
to model these two regions separately, and only the audio
associated NeRF conditions on audio feature. To merge the
rendering results of the two NeRF models, we add an addi-
tional parsing branch to predict mask maa or mai, where
maa has 1 in audio related region (i.e., the lower half face ),
and 0 in audio independent region, mai is otherwise. Then
we have the following two formulations:

Faa(x,d,a, f̃) = (caa, σaa,maa)

Fai(x,d, f̃) = (cai, σai,mai).
(6)

For a query point x, we can input it into two NeRFs and use
the predicted mask to blend the colors or densities of both
outputs, like (Ma et al. 2023). However, it will double the
training time because a batch of rays has to go through the
two NeRFs simultaneously.
Regionwise Ray Sampling. Consequently, we elaborate a
Regionwise Ray Sampling mechanism to sample different

rays in different sub-regions, to mitigate the computational
overhead caused by the dual NeRF. In this mechanism, each
NeRF takes as input only the rays from its own correspond-
ing regions and an overlapping region, improving the train-
ing speed without damaging the rendering quality.

Concretely, for a set of sampling rays Ω, we use ϵ× Ω to
represent a new set that has ϵ × |Ω| rays randomly sampled
from Ω (|Ω| means the number of rays in Ω). The set of the
rays from the audio related region and the audio decoupled
region are denoted as Ωar and Ωad. An overlap region is
defined as Ωoverlap = (ϵ × Ωar) ∪ (ϵ × Ωad), where rays
are fed into two NeRFs simultaneously. While the remaining
parts Ωaa = Ωar \ Ωoverlap and Ωai = Ωad \ Ωoverlap are
rendered by their corresponding NeRFs separately. (∪ and \
denote sets union and subtraction operations). In practice, ϵ
is set to 0.4 for the best lip generation result. More effects of
this Regionwise Ray Sampling mechanism can be found in
the supplementary material.
Volume Rendering. During training, for rays from Ωaa or
Ωai, the color density and the occupancy are obtained di-
rectly from their corresponding NeRFs. For a pixel lying in
the overlapping region Ωoverlap, its color density and the oc-
cupancy become the mixup of the two NeRFs:

c =


maa · caa +mai · cai, r ∈ Ωoverlap

caa, r ∈ Ωaa

cai, r ∈ Ωai

σ =


σaa + σai, r ∈ Ωoverlap

σaa, r ∈ Ωaa

σai. r ∈ Ωai

(7)

During inference, the whole image are regarded as the
overlap region, and rendered by two NeRFs at the same time,
since there is no ground truth mask available. To get the pre-
dicted RGB pixel and the mask, we utilize classical volume
rendering to accumulate the samples on the ray:

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t),a, f̃)c(r(t),d,a, f̃)dt,

m̂(r) =

∫ tf

tn

T (t)σ(r(t),a, f̃)m(r(t),d,a, f̃)dt,

(8)

where T (t) = exp
(
−
∫ t

tn
σ(s)ds

)
denotes for the accumu-

lated transmittance along the ray from tn to t, tn and tf are
the lower and the upper bound of depth respectively. Eq. (8)
shows the rendering process of the audio associated NeRF,
where both the audio signal and the aggregated audio visual
feature take part in the volume rendering process. For audio
independent NeRF, audio signal should be removed.

Network Training
Following the original NeRF (Mildenhall et al. 2020), we
use a reconstruction loss term to optimize the coarse and the
fine network (we still take audio associated NeRF as exam-
ple if not specified), which can be written as

Lp =
∑
r∈R

[∥∥∥Ĉc (r)−C (r)
∥∥∥2

2
+

∥∥∥Ĉf (r)−C (r)
∥∥∥2

2

]
,

Lm =
∑
r∈R

[
∥m̂c (r)−m (r)∥22 + ∥m̂f (r)−m (r)∥22

]
,

(9)
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where Ĉc (r) and Ĉf (r) are the predicted pixels from the
coarse and the fine model respectively, R denotes for a batch
of rays, and C (r) is the ground truth pixel color correspond-
ing to each sampled ray. Similarly, m̂ (r) and m (r) are the
predicted mask and ground truth. For the audio associated
NeRF, the ground truth mask is defined as

m (r) =

{
1, r ∈ Ωar

0, r ∈ Ωad
(10)

while the ground truth mask for the audio independent NeRF
is the opposite. Besides, we use an l2 loss term to regularize
the magnitude of the predicted offset of the warper, which
can be written as

Lo =
1

L · |P|

L∑
i=1

∑
x∈P

√
∆u2

i +∆v2
i , (11)

where P is the collection of all the 3D query points.
Our final loss term can be given as

L = Lp + λmLm + λoLo, (12)

where λm and λo are weight parameters.

Experiments
Experimental Setup
Dataset Preparation. We use the videos provided by AD-
NeRF (Guo et al. 2021), DFRF (Shen et al. 2022), and
HDTF dataset (Zhang et al. 2021) to conduct our experi-
ments. Videos are all resampled to 25 fps and resized to a
resolution of 512× 512. For each video, the first half of it is
used for training and the second half is used for inference.
Baseline Methods. We compare our method with one im-
age based method Wav2Lip (Prajwal et al. 2020), two model
based methods ATVG (Chen et al. 2019) and MakeitTalk
(Zhou et al. 2020), and two NeRF based methods AD-NeRF
(Guo et al. 2021) and DFRF (Shen et al. 2022). For the first
three methods, we use their official code and provided pre-
trained models. For AD-NeRF and DFRF, we retrain them
on each video on the same number of iterations as our
method for fair comparison. DFRF also has a base model
like our method, and we have tried to pre-train a base model
for AD-NeRF like DFRF and our method, but it fails to gen-
erate plausible results for the lack of generalization ability.
Comparison with another SOTA NeRF-based method SSP-
NeRF (Liu et al. 2022) whose training code is not provided,
more implementation details, the limitation of our method
and the ethical consideration can be found in the supplemen-
tary material.
Evaluation Metrics. We employ evaluation metrics that
have been previously used in talking head generation. We
use PSNR and SSIM to evaluate the image level quality of
generated results, LPIPS (Zhang et al. 2018) to evaluate the
feature level quality. We also use Landmark Distance (LMD)
(Chen et al. 2018) and SyncNet Confidence (Chung and Zis-
serman 2017) to further measure the mouth shapes and the
audio visual synchronization.

Testset A Testset B Testset C

Methods PSNR ↑SSIM ↑LPIPS ↓LMD ↓Sync ↑ Sync ↑ Sync ↑
gt ∞ 1 0 0 8.545 8.406 8.873

ATVG 19.12 0.646 0.523 2.591 5.657 4.726 6.315
Wav2Lip 29.64 0.843 0.423 2.612 9.750 7.824 10.715

Makeittalk 22.28 0.655 0.480 10.720 5.945 4.378 5.556
AD-NeRF 27.73 0.881 0.202 2.603 4.274 4.230 4.656

DFRF 32.30 0.949 0.080 3.023 5.219 4.859 5.321
AE-NeRF 32.63 0.949 0.078 2.425 6.904 6.217 6.690

Table 1: Method comparison under self-driven (Testset A)
and cross-driven (Testset B and C) setting. The best and the
second results are in bold and underlined respectively.

Face Quality Comparison

To compare the quality of the generated talking head thor-
oughly, two different settings are taken into account: Self
driven setting, where the video and the audio are from the
same person. Cross driven setting, where the audio from one
person is used to drive another identity. Each video is about
two minutes in length.
Results under Self-driven Setting. Key frames generated
according to the Obama video in (Guo et al. 2021) and the
broadcaster videos in (Shen et al. 2022) are shown in Fig.3.
NeRF based methods have shown superiority image qual-
ity against image based methods and model based methods,
and have managed to generate high fidelity synthesis results.
But AD-NeRF suffers from head-torso misalignment as the
red arrows pointed out, while DFRF fails to generate some
face details correctly. Besides, both AD-NeRF and DFRF
tend to generate lips misaligned from the ground truth. Our
AE-NeRF has shown the best lip-alignment with the ground
truth frames, as well as the facial details.

Quantitative comparison results on AD-NeRF and DFRF
videos are shown in Testset A part of Tab.1. Wav2Lip (Pra-
jwal et al. 2020) uses a pretrained SyncNet (Chung and Zis-
serman 2017) as the optimization objective and it achieves a
SyncNet score even better than the ground truth. However,
the quality of its generated images is relatively low. NeRF-
based methods have shown their superiority not only at the
pixel level (PSNR and SSIM) but also at the feature level
(LPIPS). AD-NeRF performs slightly worse than DFRF and
our method in image quality metrics due to the head-torso
misalignment. It can be seen that our AE-NeRF surpasses
baseline methods by a large margin in SyncNet confidence
and LMD, which indicates the effect of learning aggregated
audio visual features for lip synthesis.
Results under Cross-driven Setting. Cross driven results
are shown in Testset B and Testset C of Tab.1. Audios from
HDTF dataset are used to drive other identities. We only cal-
culate the SyncNet score since there is no ground truth for
other metrics. AD-NeRF and DFRF fail to synthesize accu-
rate lip shapes according to audios from different speakers.
We attribute this to the lack of aggregated audio visual in-
formation. Our AE-NeRF have shown competitive perfor-
mance in audio-lip consistency.
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Figure 3: Qualitative comparison with other baseline methods for generated key frame results. We use the blue arrow to denote
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Figure 4: Qualitative comparison against other methods with
1k and 40k finetuning steps. 15s video clip is available for
training.

Few Shot Talking Head Synthesis
We compare our AE-NeRF with other NeRF based talking
head methods under a more challenging setting, few shot
talking head synthesis, which further validate the generation
ability of our method.
Synthesizing Talking Head with Short Videos. Firstly, we
show the performance of different NeRF based methods on
very short videos, with each model from a different method

Method Length PSNR ↑ SSIM ↑ LPIPS ↓ LMD ↓ Sync ↑

AD-NeRF
10s 22.83 0.846 0.156 2.427 1.587
15s 23.37 0.867 0.138 2.116 3.528
20s 23.01 0.856 0.142 1.684 4.102

DFRF
10s 28.87 0.926 0.076 1.971 3.512
15s 29.60 0.938 0.066 1.804 3.688
20s 31.32 0.942 0.069 1.84 4.459

AE-NeRF
10s 28.93 0.930 0.072 1.944 6.102
15s 29.52 0.938 0.067 1.766 6.217
20s 31.49 0.946 0.064 1.528 6.743

Table 2: Method comparison with different training data
length under 40k iterations.

being fine-tuned by 40k steps. Metrics calculated with train-
ing data lengths of 10s, 15s, and 20s are shown in Tab. 2. It
can be seen that when training under a few shot setting, our
method still maintains high image generation quality and au-
dio visual alignment. Comparison of different faical details
are shown in Fig. 4. Our method keeps the best of the origi-
nal facial details, especially at the mouth region, while AD-
NeRF and DFRF sometimes generate incorrect lip shape.
We attribute this phenomenon to the lack of feature prior
and the naive visual feature fusion process without consid-
ering the audio information. This further validates the face
modeling ability of our AE-NeRF.
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0.0425 0.06520.97920.7583
0.2177 0.21750.28570.2446DFRF

AE-NeRF

0.0119 0.95470.00710.9088
0.2463 0.24630.24610.2612DFRF

AE-NeRF

Figure 5: Attention score between the target feature and dif-
ferent reference features in the cross attention block. Similar
audio visual contents bring higher attention scores.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ LMD ↓ Sync ↑
ground truth ∞ 1 0 0 8.065

AD-NeRF
1k 22.13 0.777 0.305 9.158 0.291
10k 23.72 0.868 0.143 2.148 3.697
40k 23.37 0.867 0.138 2.116 3.528

DFRF
1k 29.39 0.931 0.086 1.918 2.995
10k 29.47 0.936 0.073 1.905 2.985
40k 29.60 0.936 0.070 1.804 3.688

AE-NeRF
1k 29.18 0.930 0.087 1.893 5.552
10k 29.32 0.937 0.072 1.765 6.044
40k 29.52 0.938 0.067 1.766 6.217

Table 3: Method comparison with 15s training clip under
different training iterations.

Synthesizing Talking Head with Few Iterations. We fur-
ther explore the generation ability of different methods with
few training iterations. We utilize video clips released from
DFRF (Shen et al. 2022) to carry out our experiment. Each
video is 30s in length. We compare the portraits generated
after 1k and 40k training steps to further show the synthesis
results of different methods, which is also shown in Fig. 4.
Within 1k steps, DFRF and our method can fit the new iden-
tity, which AD-NeRF fails to generalize on. In 40k steps,
our method can generate portraits with higher fidelity than
DFRF. Quantitatively, results with different training steps
are shown in Tab. 3, where our AE-NeRF achieves similar
image quality metrics with DFRF under the same training
step, but it has shown superiority in SyncNet confidence and
LMD, indicating better lip synthesis results.

Ablation Study
An ablation study is conducted to show the function of each
proposed module. We replace our Audio Aware Aggrega-
tion with a slot attention module (Locatello et al. 2020)
which simply fuses the visual feature without considering
audio signals, denoted as w/o AAA. We also test the per-

GT w/o Warperw/o AAA AE-NeRFw/o AAFG

Figure 6: Qualitative ablation study

Methods PSNR ↑ SSIM ↑ LPIPS ↓ LMD ↓ Sync ↑
GT ∞ 1 0 0 8.545

w/o AAA 31.25 0.929 0.092 3.646 4.570
w/o AAFG 32.30 0.940 0.080 3.938 6.282
w/o Warper 32.49 0.949 0.076 2.779 6.952
AE-NeRF 32.64 0.950 0.076 2.613 7.813

Table 4: Quantitative ablation study on different modules.

formance of the model without Audio-Aligned Face Gener-
ation, where an audio associated NeRF is used to model the
whole face area, denoted as w/o AAFG. The model trained
without the warper is denoted as w/o Warper. The qualita-
tive and quantitative results are shown in Fig. 6 and Tab. 4.
The Audio Aware Aggregation module brings better quality
in both pixel and feature level. Model obtained without this
module has less awareness of the audio signal, resulting in
inferior image quality. Our Audio-Aligned Face Generation
strategy brings more correct lip shapes and more natural ex-
pressions. The warper can bring more accurate visual feature
points, which can also affect the audio lip synchronization.

To further study the effect of the Audio Aware Aggre-
gation module, we calculate the average attention scores
between different references and the target feature in the
first attention block of our Audio Aware Aggregation mod-
ule, shown in Fig. 5. As a comparison, scores in the fea-
ture aggregation module used in DFRF are also taken into
account. The inner product between target-reference pairs
with similar audio visual contents is significantly higher than
those with distinct contents in our cross attention block. This
proves that the audio visual interaction process assists the
rendering of the target pixel, resulting in better generation
results.

Conclusion
This work presents Audio Enhanced Neural Radiance Field
(AE-NeRF) for few shot talking head synthesis. Our method
consists of an Audio Aware Aggregation module which
learns a strong prior for improving the generalization abil-
ity and an Audio-Aligned Face Generation strategy to bet-
ter model the audio related and the audio decoupled face
regions. Comparisons between SOTA methods confirm that
our AE-NeRF achieves better image quality and fidelity un-
der the custom scenario and a few shot setting.
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Ethical Statement
Our AE-NeRF is capable of generating vivid speech por-
traits with high fidelity, and can be applied to various situa-
tions such as virtual human, digital games and film making.
On the other hand, the misuse of the talking head synthesis
technique can lead to moral and legal issues, such as craft-
ing malicious DeepFake videos. We are committed to fight-
ing against this kind of egregious behavior and use our code
and models in the development of the DeepFake detection
models.
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