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Abstract

Automated Chinese ancient character restoration (ACACR)
remains a challenging task due to its historical significance
and aesthetic complexity. Existing methods are constrained
by non-professional masks and even overfitting when train-
ing on small-scale datasets, which hinder their interdisci-
plinary application to traditional fields. In this paper, we
are proud to introduce the Chinese Ancient Rubbing and
Manuscript Character Dataset (ARMCD), which consists of
15,553 real-world ancient single-character images with 42
rubbings and manuscripts, covering the works of over 200
calligraphy artists spanning from 200 to 1,800 AD. We are
also dedicated to providing professional synthetic masks by
extracting localized erosion from real eroded images. More-
over, we propose DiffACR (Diffusion model for automated
Chinese Ancient Character Restoration), a diffusion-based
method for the ACACR task. Specifically, we regard the syn-
thesis of eroded images as a special form of cold diffusion
on uneroded ones and extract the prior mask directly from
the eroded images. Our experiments demonstrate that our
method comprehensively outperforms most existing methods
on the proposed ARMCD. Dataset and code are available at
https://github.com/lhl322001/DiffACR.

Introduction
Ancient character restoration has traditionally been a spe-
cialized skill reserved for restoration experts. With their in-
depth knowledge in various disciplines, such as archaeology
and art, restoration experts often dedicate days, months, or
even years to meticulously restoring an artifact or even a sin-
gle character (Tétreault 2013). In particular, the restoration
of Chinese ancient characters has garnered widespread at-
tention due to their distinctiveness and severe erosion. As
empires rose and fell, the complex structures and strokes of
various ancient Chinese characters, especially those on the
inscriptions, have been significantly eroded, making their
restoration increasingly challenging. Fortunately, with the
development of computer technologies, automated Chinese
ancient character restoration (ACACR) has become a viable
solution.
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Real Uneroded Eroded Restored
Erosionfication Restoration

Figure 1: Examples of automated Chinese ancient character
restoration through our erosionfication and restoration pro-
cesses.

ACACR is essentially a cross-disciplinary visual inpaint-
ing task aimed at automatically reconstructing ancient Chi-
nese character images with domain-specific knowledge. Ex-
isting methods mostly focus on handwriting (Zhong et al.
2017; Song, Li, and Wang 2020; Wang et al. 2021) or styl-
ized (Li et al. 2021) forms. The former usually use specific
handwriting datasets (Wang et al. 2009; Liu et al. 2011),
while the latter typically employ fonts in standardized for-
mats (e.g. TrueType format) to generate datasets. However,
these large-scale datasets differ significantly from Chinese
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Figure 2: Real anicent characters(Real) compared with
handwriting(HW) and standardized characters(SD).

ancient characters in spatial distribution and local details,
as shown in Figure 2. The remaining ACACR methods are
consistently hindered by insufficient paired data and non-
professional masks. Xing et al. (Xing and Ren 2023) have to
collect data solely from two inscriptions and mask the center
block only. Shi et al. (Shi et al. 2022b) attempt to synthesize
masks using mixed Gaussian noise, but only use 1467 an-
cient characters while training. Using such limited datasets
and non-professional masks may lead to overfitting and poor
performance in restoring real-world ancient characters.

To solve the problem, we are proud to introduce
the Chinese Ancient Rubbing and Manuscript Character
Dataset (ARMCD), which is specifically constructed for the
ACACR task. Rubbings and manuscripts are important car-
riers of Chinese cultural heritage and historical informa-
tion (QIu 2023), which are widely used in the fields of
art, archaeology, historiography, cultural studies, etc. Our
ARMCD is collected from 42 authoritative, well-known, and
representative Chinese ancient rubbings and manuscripts,
including 15,093 real-world images of uneroded ancient
Chinese characters and 460 images of eroded characters.
Our collections from these rubbings and manuscripts record
the works of over 200 calligraphy artists from the Jin Dy-
nasty to the Qing Dynasty. Moreover, we investigate and
analyze the actual effects of erosion on real-world ancient
characters as shown in Figure 4. Based on our research,
we introduce a novel professional mask for the ACACR
task, which is synthesized by overlaying local erosion region
masks from real-world eroded images.

Furthermore, we propose a Diffusion Model for Auto-
mated Chinese Ancient Character Restoration (DiffACR)
for the ACACR task. Our key insight is that real erosion can
be characterized as a kind of image degradation, called ero-
sionfication. Similar to snowification (Hendrycks and Diet-
terich 2019), erosionfication use local erosion masks to de-
grade an uneroded image to an eroded image, eventually into
a completely black image. Inspired by Bansal et al. (Bansal
et al. 2022), we regard the erosionfication as a form of cold
diffusion. In addition, given the lack of auxiliary informa-
tion such as masks in real-world scenarios (Li et al. 2021),
we propose extracting the prior mask directly from eroded
images rather than relying on synthetic masks provided by
ARMCD. Our approach is simple yet effective: we use the
set of white pixels in the eroded images as the prior mask

to guide the restoration process, since the set of white pixels
remains constant throughout the process.

To sum up, our major contributions can be concluded as:

• We introduce a new automated Chinese ancient charac-
ter restoration dataset ARMCD, including 15,553 real-
world ancient single-character images, and provide pro-
fessional synthetic masks for the ACACR task.

• We propose a diffusion-based method called DiffACR,
which performs erosionfication as a form of cold diffu-
sion and utilizes the prior mask to improve the restoration
performance.

• Our experiments demonstrate that our diffusion-based
method achieves satisfactory restoration results on all
metrics, and our synthetic masks are recognized by ex-
perts.

Related Work
Chinese Character Dataset
Existing Chinese character datasets are mainly used for
Optical Character Recognition (OCR), such as HCL2000
(Zhang et al. 2009), SCUT-COUCH2009 (Jin et al. 2011),
HWDB (Wang et al. 2009), CASIA-AHCDB (Xu et al.
2019), ACCID (Diao et al. 2023), etc. Due to the lack of
a large-scale real-world Chinese ancient character restora-
tion dataset, most current methods for the ACACR task are
still trained on these datasets with common masks in im-
age inpainting (e.g. rectangular block masks). The remaining
methods (Xing and Ren 2023; Shi et al. 2022b) are also lim-
ited to insufficient paired data and non-professional masks.
In contrast, we construct the ARMCD and provide profes-
sional synthetic masks.

Automated Chinese Ancient Character Restoration
Chinese ancient characters are valued and widely studied
in art and archaeology. However, over a long period of
time, they suffer from water, wind, etc. (Tétreault 2013).
In this case, the restoration usually involves a highly com-
plex, time-consuming, and professional workflow. Tradi-
tional methods are mostly based on stroke feature extrac-
tion (Xu et al. 2009; Wang et al. 2012). With the growth of
generative models, VAE-base methods (Lv and Liu 2018;
Shi et al. 2022a) and GAN-based methods (Zhong et al.
2017; Su et al. 2022; Li et al. 2021) have all achieved vary-
ing degrees of success in the ACACR task. Nevertheless,
these methods suffer from poor restoration performance and
disconnection from real scenarios. Different from the above
works, we introduce DiffACR, which, to our knowledge, is
the first diffusion-based method for the ACACR task.

Diffusion Models
Diffusion models (Sohl-Dickstein et al. 2015; Ho, Jain,
and Abbeel 2020; Song, Meng, and Ermon 2020) re-
cently emerged with remarkable results on image generation
(Dhariwal and Nichol 2021; Rombach et al. 2022), image-
to-image translation (Saharia et al. 2022a), image editing
(Hertz et al. 2022), etc. However, these methods rely on the
properties of the Gaussian noise. The cold diffusion method
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Figure 3: Overview of proposed ARMCD and DiffACR. (a) Chinese Ancient Rubbing and Manuscript Character Dataset
(ARMCD) with professional mask synthesis. (b) Diffusion model for automated Chinese Ancient Character Restoration (Dif-
fACR) with the forward erosionfication and the reverse restoration processes. (c) Erosionfication, where an uneroded image is
iteratively degraded into an eroded image, eventually into a completely black image.

(Bansal et al. 2022), which has been applied to other fields
(Yen et al. 2023; Gao et al. 2023), considers a broader family
of degradation processes and constructs a generalized diffu-
sion without previous theoretical limitations. The underlying
properties of cold diffusion make it a promising framework
for the ACACR task, where, in realistic conditions, the ero-
sion is usually non-Gaussian. Moreover, Repaint (Lugmayr
et al. 2022) introduces the mask region as a condition on
unconditional denoising diffusion models. Inspired by these
methods, we propose DiffACR, which follows the cold dif-
fusion framework and uses the prior mask as a condition.

Chinese Ancient Rubbing and Manuscript
Character Dataset (ARMCD)

In this section, we analyze the difficulties of collecting
paired data and introduce our method of data collection, pro-
fessional mask synthesis, data preprocessing, and statistics
and analysis, as shown in Figure 3 (a).

Data Collection
Intuitively, one appealing approach to constructing a dataset
for ACACR is to directly collect the pairs of eroded and
uneroded (or restored) single-character images. However,
this collection is arduous due to the following limitations:

• It is difficult to collect both uneroded and eroded versions
of the same work. In ancient China, the characters were
mostly recorded on steles and utensils, which have been
eroded over time. The original uneroded copies were of-
ten damaged or lost, while only later records survived.

• The gold-standard restoration results of Chinese ancient
characters are controversial, due to the different perspec-
tives and standards of each individual.

Therefore, we collect both eroded and uneroded single-
character images of Chinese ancient characters from rub-
bings and manuscripts. We then attempt to extract (or syn-
thesize) masks from the real-world eroded images to overlay
on uneroded images, forming a paired dataset that closely
resembles reality.

A total of 15093 uneroded and 460 eroded single-
character images of Chinese ancient characters are collected
from 42 authoritative, well-known, and representative Chi-
nese ancient rubbings and manuscripts, covering the works
of over 200 calligraphy artists spanning from 200 to 1, 800
AD. A detailed introduction to each of our sources is pro-
vided in Section Sources of the supplementary material.

Professional Mask Synthesis
Due to the limitations mentioned above, collecting uneroded
images and providing masks is an alternative. However,
there is an obvious gap between the existing image and char-
acter masks and real-world erosion. Erosion usually mani-
fests as a random mixture of ink smears, noise, interfering
patterns, and excavation damage (Shi et al. 2022b). Even
the most similar irregular masks (Liu et al. 2018) and mixed
Gaussian noise (Shi et al. 2022b) cannot fit correctly. Mean-
while, directly extracting a complete mask can result in in-
accurate extraction and poor generalization. Therefore, we
attempt to synthesize this special mask.

Guided by the expertise of restoration experts, we analyze
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(a) Overlay of local erosion. (b) Similarity of local erosion.

Figure 4: Our key observations of real erosion. (a) The ero-
sion of inscriptions from increasing historical periods is re-
flected in rubbings, which are respectively indicated by the
yellow, red, and blue rectangles. Images from left to right
are collected from LiQi Rubbing Album, DuanFang Rubbing
Album, LiHongYi Rubbing Album of Inscription of Sweet
Spring in Jiucheng Palace. (b) Areas of similar local erosion
from different sources are highlighted by red rectangles.

massive real erosion from various perspectives and arrive at
two key observations:
• Erosion is often a cumulative process of local erosion,

which is consistent with natural laws. In nature, new ero-
sion continues to overlay on the existing erosion rather
than occurring all at once (see Figure 4 (a)).

• Erosion from different sources exhibits similar patterns
of local erosion (see Figure 4 (b)).

We meticulously extract representative local erosion from
collected eroded images as our local masks. These local
masks are subjected to simple data augmentation and then
overlaid. Specifically, given a set of local masks SLM and a
stacking times Ts, the professional mask M is synthesized
in Algorithm 1 by:

M = Syn(SLM , Ts, θl, θu, Scl, Scu, Ht, V t), (1)

where θl and θu denote the random rotation angle lower
bound and upper bound, Scl and Scu denote the random
scaling rate lower bound and upper bound, Ht and V t de-
note the maximum absolute fraction for horizontal and ver-
tical translations.

It is worth mentioning that this professional mask synthe-
sis strategy is also adaptive for other ancient characters, such
as ancient Greek and Egyptian characters, which provides
a feasible means for constructing such restoration datasets.
Moreover, this synthesis strategy supports the expansion of
the existing local mask set to achieve better generalization.

Data Processing
To standardize all the single-character images collected from
different sources, we preprocess them, according to Xing et
al. (Xing and Ren 2023) with a few adjustments. Specifi-
cally, given a collected image I , the preprocessing can be
described in Algorithm 2 as:

Ip = Preprocess(I, Ec, Thl, Thu,Ks), (2)

Algorithm 1: Professional Masks Synthesis Algorithm
Input: The Set of Local Masks SLM , Stacking Times Ts

Parameter: θl, θu, Scl, Scu, Ht, V t
Output: professional Mask M

1: M start with an empty image
2: t← 1
3: while t ≤ Ts do
4: Randomly select LM ∈ SLM

5: LM ← RandomRotation(LM, θl, θu)
6: LM ← RandomScaling(LM,Scl, Scu)
7: LM ← RandomHorizontalTrans(LM,Ht)
8: LM ← RandomV erticalTrans(LM,V t)
9: M ←M ⊙ LM

10: t← t+ 1
11: end while
12: return M

Algorithm 2: Data Preprocessing
Input: Image I(= l × l)
Parameter: Ec, Thl, Thu, Ks

Output: Preprocessed Image Ip
1: I ← I × Ec

2: IThl
← {I(i, j) > Thl : i ∈ [0, l), j ∈ [0, l)}

3: IThu ← {I(i, j) < Thu : i ∈ [0, l), j ∈ [0, l)}
4: Ip ← IThl

⋃
IThu

5: Ip ←MedianBlur(Ip,Ks)
6: return Ip

where Ip is prepossed by the input I , with the contrast en-
hancement ratio Ec, dual-threshold binarization (Chen et al.
2008) threshold lower bound Thl and upper bound Thu, and
the kernel size Ks of Median Blur.

Statistics and Analysis

The statistics of ARMCD are presented in Table 1. Specif-
ically, we divide all 15,093 uneroded images into a train-
ing set, validation set, and test set consisting of 10,000,
2,000, and 2,000 images respectively. Additionally, we pro-
vide these datasets with an equal number of synthetic profes-
sional masks and ensure that the distribution of mask ratio
is similar across each dataset. Note that we also provide all
collected images, as these may be used for other purposes.
To provide a comprehensive representation of our ARMCD,
we further analyze the number of regular/non-regular script
images in each dataset and the number of images collected
from manuscripts/rubbings as shown in Table 1.

Total Regular/Non-R Rubbing/Manuscript

Train Set 10000 8879/1121 3952/6048
Validation Set 2000 1782/218 853/1147
Test Set 2000 1767/233 760/1240

Table 1: The statistics of our ARMCD.
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Diffusion Model for Automated Chinese
Ancient Character Restoration (DiffACR)

In this section, we first introduce the original cold diffusion
method (Bansal et al. 2022), and then we propose our key
insights of our DiffACR: erosionfication operator and prior
mask. Based on our insights, we optimize the training and
sampling process, as shown in Figure 3 (b).

Preliminaries: Cold Diffusion
The original cold diffusion method (Bansal et al. 2022) gen-
eralizes classical diffusion models (Ho, Jain, and Abbeel
2020) and extends the diffusion and sampling processes to
arbitrary image transforms or degradation, such as snowifi-
cation (Hendrycks and Dietterich 2019). Specifically, given
an image x0 ∈ RN and a severity t, a customized oper-
ator D is defined to gradually degrade the image x0 into
the degraded image xt = D(x0, t). Note that the operator
D should satisfy D(x0, 0) = x0 and vary continuously in
the severity t. A learnable restoration operator R is also de-
fined to (approximately) invert operator D, which can be ex-
pressed as x̂0 = R(xt, t) ≈ x0. In practice, only the restora-
tion operator R is implemented via a neural network param-
eterized by θ, which is trained via the minimization problem:

min
θ

Ex∼X ∥ Rθ(D(x, t), t)− x ∥1, (3)

where x denotes a random image sampled from distribution
X and ∥ · ∥1 denotes the L1 norm.

When the restoration operator is perfect (i.e. when
Rθ(xt, t) = x0 for all t), the Rθ(·) can directly generate the
restored image x̂0 from the degraded image xt. However,
it should be emphasized that with an imperfect restoration
operator, such direct restoration may produce a blurred im-
age x̂0 instead. Moreover, an improved sampling algorithm
is proposed for cold diffusion. Specifically, given a descend-
ing sequence s = {t, t− 1, ..., 1}, the sampling algorithm to
reduce the accumulated error is defined by:

xs−1 = xs −D(x̂0, s) +D(x̂0, s− 1), (4)

where x̂0 = Rθ(xs, s). The improved sampling algorithm
can produce exact reconstruction (i.e. xs = D(x0, s)) even
when the restoration operator R fails to perfectly invert D.
Although the original cold diffusion method has been shown
to produce high-quality images with common degradation,
it is still not suitable for the ACACR task due to the special
degradation of Chinese ancient characters.

Erosionfication Operator
Inspired by the snowification (Hendrycks and Dietterich
2019) degradation, we propose to redefine our process
of overlaying professional synthetic masks on uneroded
images as a special degradation called erosionfication,
where an uneroded image is iteratively degraded into an
eroded image, eventually into a completely black image,
as shown in Figure 3 (c). Specifically, given an uneroded
image x0 with the severity t, our erosionfication operator
DSyn(SLM ,Ts,θl,θu,Scl,Scu,Ht,V t) can be described in Algo-
rithm 3 as:

{x1, ..., xt} = DSyn(SLM ,Ts,θl,θu,Scl,Scu,Ht,V t)(x0, t), (5)

Algorithm 3: Erosionfication Algorithm
Input: Uneroded Image x0, Severity t
Function: Syn(SLM , Ts, θl, θu, Scl, Scu, Ht, V t)
Output: List of Eroded Images with Increasing Severity
{x1, ..., xt}

1: i← 1
2: while i ≤ t do
3: LM ← Syn(SLM , Ts, θl, θu, Scl, Scu, Ht, V t)
4: xi ← xi−1 ⊙ LM
5: i← i+ 1
6: end while
7: return {x1, ..., xt}

where {x1, ..., xt} is a list of eroded images with
increasing severity (t′ ≤ t) synthesized by the
function Syn(·). We have so far used the subscript
DSyn(SLM ,Ts,θl,θu,Scl,Scu,Ht,V t) to emphasize the depen-
dence of the function Syn(·) on the hyperparameters and in-
puts, but we will omit this symbol for simplicity, as DSyn(·)
in the discussion below.

Prior Mask
We propose using the prior mask as a condition to high-
light the unrestored region and provide prior guidance. Note
that the prior mask differs from the professional synthetic
mask in Subsection Professional Mask Synthesis because
the ACACR task is essentially an end-to-end task that re-
quires restoring an eroded image to its uneroded state with-
out utilizing any additional information. We have to directly
extract the prior mask from the eroded images.

Intuitively, the set of white pixels in the eroded image is
a natural constant that should remain unchanged throughout
the whole process. Instead, the set of non-white pixels can be
regarded as unrestored regions, which may be changed dur-
ing restoration. Moreover, we cannot further narrow down
the unrestored regions due to the high fusion of erosion
and strokes on the eroded images. Therefore, we choose
the set of white pixels as our prior mask which can be di-
rectly extracted from the eroded images. Specifically, given
an eroded image x, the prior mask pm is extracted by:

pm = ExactPriorMask(x), (6)

where ExactPriorMask(·) is a simple function that out-
puts the inverted image after exacting all white pixels.

Optimizing Training and Sampling Process
Training with Prior Mask. By using the prior mask re-
gion as a condition, our goal is redefined to predict the un-
known (or unrestored) pixels of an eroded image. Specifi-
cally, we propose reducing the distance on the unknown re-
gion instead of the whole image during training. Following
(Bansal et al. 2022), given the operator DSyn and Rθ, our
training objective is defined in Algorithm 4 by:

min
θ

Ex0∼X ,xt′ ,pm∼DSyn(x,t)

∥ Rθ(xt′ , t
′)⊙ pm− x0 ⊙ pm ∥1,

(7)
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Algorithm 4: Training a Restoration Network Rθ

Input: Training Distribution X , Severity t
Function: ExactPriorMask(·)
Operator: DSyn, Rθ

1: repeat
2: x0 ∼ X
3: x1, ..., xt ← DSyn(x0, t)
4: pm = ExactPriorMask(xt)
5: t′ ∼ Uniform({1, ..., t})
6: x̂← Rθ(xt′ , t

′)
7: Take a gradient descent step on

∇θ∥ x̂⊙ pm− x0 ⊙ pm ∥1
8: until converged

where pm = ExactPriorMask(xt), xt′ and xt is the t′th
and the last image of the output list of DSyn(x0, t), with
the uneroded image x0 randomly sampled from the train-
ing distribution X and a random severity t′ selected from
Uniform({1, ..., t}).
Sampling for Restoration. Considering the prior mask
pm, we denote the ground truth restored image x, consist-
ing of the unknown pixels as pm ⊙ x and the known pixels
as (1−pm)⊙x. Since every restoration step from xs to xs−1

depends solely on xs, we can alter the unknown regions as
long as we keep the correct prediction of the correspond-
ing regions. Inspired by (Lugmayr et al. 2022), we sample
the known regions from our forward operator DSyn. Thus,
using xknown

s−1 and xunknown
s−1 for the known and unknown

regions for the time step s, the xs−1 is defined by:

xknown
s−1 = DSyn(x̂0, t)s−1, (8a)

xunknown
s−1 = xs −DSyn(x̂0, t)s +DSyn(x̂0, t)s−1, (8b)

xs−1 = pm⊙ xunknown
s−1 + (1− pm)⊙ xknown

s−1 , (8c)

where x̂0 = Rθ(xs, s) and DSyn(·)i denotes the ith im-
age of the output list of DSyn(·). Moreover, due to the
natural constant of the prior mask mentioned in Subsec-
tion Prior Mask, the known region 1 − pm of the image
xknown
k = DSyn(x̂0, t)k constantly represents a white re-

gion. Therefore, given a fixed pm, the calculation of xs−1

simplifies in Algorithm 5 to:

xs−1 = pm⊙ xunknown
s−1 + (1− pm)⊙ xknown

s−1

= pm⊙ xunknown
s−1 + 1− pm. (9)

Architecture. Our DiffACR uses a U-Net architecture
(Ho, Jain, and Abbeel 2020) as the operator Rθ. The net-
work architecture is based on the 224× 224 ConvNeXt (Liu
et al. 2022) with time embeddings.

Experiments
In this section, we first describe the experimental settings.
Then we perform extensive experiments, compare to the
state-of-the-art solutions, and conduct an ablation study. A
user study (2AFC) is also introduced to assess the profes-
sionality of our synthetic masks.

Algorithm 5: Improved Sampling for the ACACR Task
Input: Eroded Image xt, Severity t
Function: ExactPriorMask(·)
Operator: DSyn, Rθ

1: pm = ExactPriorMask(xt)
2: s← t
3: while s ≥ 0 do
4: x̂0 ← Rθ(xs, s)
5: x̂1, ..., x̂t ← DSyn(x̂0, t)
6: xunknown

s−1 ← xs − x̂s + x̂s−1

7: xs−1 ← pm⊙ xunknown
s−1 + 1− pm

8: s← s− 1
9: end while

Experimental Settings

Implementation Details. We evaluate all the experiments
on our proposed ARMCD. All images are resized and
cropped to 224×224, and all the experiments are conducted
with one NVIDIA Tesla V100 SXM2 32GB GPU.

Evaluation Metrics. The mean absolute error (MAE),
peak signal-to-noise ratio (PSNR), and structural similarity
(SSIM) index are used to quantitatively evaluate the restora-
tion performance. We additionally introduce Fréchet Incep-
tion Distance (FID) and perceptual metric LPIPS (Zhang
et al. 2018), which is a learned distance metric based on the
deep feature space of AlexNet.

Performance Comparison

We compare our DiffACR with nine state-of-the-art open-
source inpainting methods on our ARMCD, including
DNCNN (Zhang et al. 2017), Cycle-Dehaze (Engin, Genç,
and Kemal Ekenel 2018), VDN (Guo et al. 2019), CIDG
(Zhang, Guo, and Fan 2020), SCCGAN (Liu et al. 2021),
SGGAN (Li et al. 2021), SwinIR (Liang et al. 2021), IPT
(Chen et al. 2021), and CharFormer (Shi et al. 2022a). Note
that we modify the code of these methods provided by the re-
searchers and make them trainable on ARMCD. As shown in
Table 2, our DiffACR method achieves the best and second-
best performance on most metrics. Moreover, we addition-
ally synthesize an equal number of masks (not included in
ARMCD) with varying mask rates by adjusting the stacking
times Ts. We then test our DiffACR under different mask
ratios as shown in Table 3. Interestingly, we achieve satis-
factory results under 21%-40% and 41%-60% mask ratios,
which matches the distribution of our masks in ARMCD.

Ablation Study

We compare our erosionfication operator with other degra-
dation (e.g. the Gaussian noise and snowification) and exam-
ine the effectiveness of the prior mask by removing its guid-
ance in different stages. Table 4 shows the ablation study
results. The results demonstrate that using erosionfication
operator and the prior mask region enhances performance.
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Method MAE ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
DNCNN (Zhang et al. 2017) 0.0873 21.04 0.9065 75.12 0.3925
Cycle-Dehaze (Engin, Genç, and Kemal Ekenel 2018) 0.1025 16.97 0.8862 92.19 0.4215
VDN (Guo et al. 2019) 0.0619 21.46 0.9457 64.65 0.3078
CIDG (Zhang, Guo, and Fan 2020) 0.0567 21.88 0.9271 49.96 0.2623
SCCGAN (Liu et al. 2021) 0.0324 17.72 0.8976 36.59 0.1914
SGGAN (Li et al. 2021) 0.0308 19.92 0.9673 33.24 0.0842
IPT (Chen et al. 2021) 0.0169 23.73 0.9727 22.68 0.0777
SwinIR (Liang et al. 2021) 0.0195 24.08 0.9983 18.53 0.0483
CharFormer (Shi et al. 2022a) 0.0226 24.38 0.9886 15.44 0.0557

DiffACR(Ours) 0.0187 22.25 0.9988 12.87 0.0494

Table 2: Performance comparison with state-of-the-art methods and our DiffACR on the ARMCD. The best and second-best
results are highlighted and underlined.

Mask Ratio MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
0-20% 0.0234 20.08 0.9780 0.0738
21%-40% 0.0169 22.22 0.9984 0.0509
41%-60% 0.0151 24.16 0.9990 0.0371
61%-80% 0.0524 16.35 0.9513 0.1533
81%+ 0.2165 8.35 0.9109 0.4546

Table 3: Performance under different mask ratios.

Method MAE ↓ SSIM ↑ LPIPS ↓
Gaussian noise 0.0563 0.9677 0.2127
Snowification 0.0356 0.9809 0.0832

w/o prior mask in all stages 0.0287 0.9577 0.0925
w/o prior mask in training stage 0.0259 0.9632 0.0782
w/o prior mask in sampling stage 0.0236 0.9643 0.0665

Ours(Erosionfication) 0.0187 0.9988 0.0494

Table 4: Ablation study results on the ARMCD. The upper
part compares our erosionfication with other degradation,
while the lower part compares the effects of removing the
prior mask guidance at different stages.

Deception Rate Recognition Rate

Graduate Students 55% 45%
Restoration Experts 63% 37%

Table 5: User study results of 2AFC test. The deception rate
represents the proportion of synthesized images that are re-
garded as real erosion among the combinations by partici-
pants, while the recognition rate is the opposite.

User Study

We introduce the forced-choice method of selecting the bet-
ter of two options (2AFC) to assess the professionality of our
synthetic masks mentioned in Subsection Professional Mask
Synthesis, which has been widely applied in psychophysics,
neuroscience, and cognitive science (Saharia et al. 2022b).
For each participant, we randomly selected 60 synthetic
masks overlaying on the uneroded images and 60 real eroded
images from our collection. All images were combined and
then randomized. The participants were presented with these
combinations one by one and asked, ”Which one do you
think is the real damaged image?” They were allowed to ob-
serve the images for 3 seconds (Zhang et al. 2018) before
making a choice within 5 seconds after observation. Finally,
the proportion of synthesized images being mistaken for real
eroded images was calculated. This proportion represents
the deception rate of participants, which indirectly reflects
the professionality of our synthetic masks. We invited a total
of 37 manual restoration experts and 200 graduate students
in related majors to participate in the test and aggregated the
results from all the participants. The results in Table 5 re-
veal that, on average, 63% of the eroded images synthesized
by our masks were recognized by restoration experts, while
55% by graduate students.

Conclusion

In this paper, we introduce the ARMCD for the ACACR
task, which is, to our knowledge, the largest publicly avail-
able ACACR dataset, surpassing existing datasets in both
the diversity and quantity of ancient Chinese real-world ar-
tifacts. We also provide synthetic masks, which have been
verified for professionality through our user study. We fur-
ther introduce DiffACR, which introduces erosionfication as
a form of cold diffusion and uses the prior mask to guide
the restoration process. To our knowledge, DiffACR is also
the first diffusion-based method for the ACACR task. We
believe the proposed ARMCD and DiffACR can serve as a
foundation for future ACACR works and stimulate research
with a broader perspective.
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