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Abstract

Real-world data is extremely imbalanced and presents a long-
tailed distribution, resulting in models biased towards classes
with sufficient samples and performing poorly on rare classes.
Recent methods propose to rebalance classes but they un-
dertake the seesaw dilemma (what is increasing performance
on tail classes may decrease that of head classes, and vice
versa). In this paper, we argue that the seesaw dilemma is
derived from the gradient imbalance of different classes, in
which gradients of inappropriate classes are set to impor-
tant for updating, thus prone to overcompensation or under-
compensation on tail classes. To achieve ideal compensation,
we formulate long-tailed recognition as a multi-objective op-
timization problem, which fairly respects the contributions
of head and tail classes simultaneously. For efficiency, we
propose a Gradient-Balancing Grouping (GBG) strategy to
gather the classes with similar gradient directions, thus ap-
proximately making every update under a Pareto descent di-
rection. Our GBG method drives classes with similar gra-
dient directions to form a more representative gradient and
provides ideal compensation to the tail classes. Moreover,
we conduct extensive experiments on commonly used bench-
marks in long-tailed learning and demonstrate the superiority
of our method over existing SOTA methods. Our code is re-
leased at https://github.com/WickyLee1998/GBG v1.

Introduction
Deep learning has significantly progressed and has been
widely applied in many applications (Li et al. 2022). Most of
these excellent achievements rely on large and relatively bal-
anced datasets like ImageNet (Deng et al. 2009). However,
real-world data is often extremely imbalanced, presenting a
long-tailed distribution. Training on long-tailed data usually
results in a serious bias towards classes with sufficient sam-
ples (head classes) and performs poorly on rare classes (tail
classes), giving rise to the field of long-tailed learning.

To address the problem of learning in long-tailed distri-
bution, recent progress in long-tailed learning can be cate-
gorized into three groups. First, the class-rebalancing meth-
ods (Kang et al. 2019) increase the importance of tail classes
via resampling or reweighting directly. Second, the decou-
pling methods (Zhou et al. 2020) use a two-stage training
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Figure 1: Three gradient compensation scenarios in
reweighting for two-class imbalance training. By optimiz-
ing two classes simultaneously at each step, an ideal gra-
dient should step towards the Pareto front without harming
both classes, which means the loss descent (bfinal) should
be suited between two class-independent loss descent direc-
tions (bhead and btail).

scheme to balance the classifier after observing from a pre-
training phase. Third, the representing methods (Cao et al.
2019) design specific loss functions to achieve inter-class
sparsity and a more balanced feature distribution. To sum
up, the key consensus of these methods is to improve the
importance of tail classes in long-tailed training. However,
the existing rebalancing (Kang et al. 2019; Sun et al. 2022)
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methods aiming to increase the importance of tail-class gra-
dients, may suffer from the seesaw dilemma. That is, to in-
crease performance on tail classes may decrease that of head
classes, and vice versa.

In this paper, we study the seesaw dilemma from the per-
spective of gradient imbalance in long-tailed learning, and
we observe that the tail-class gradients are suppressed by
those of head classes. Under this observation, an inappropri-
ate weighting scheme may lead to the overcompensation or
undercompensation on the gradient of tail classes. In gen-
eral, undercompensation refers to a bias towards head class
learning and overcompensation refers to the over-bias to-
wards learning tail classes. Taking an imbalanced two-class
classification as an example, we illustrate the effects of dif-
ferent compensations in Fig. 1. By projecting from param-
eter space to loss space, we find that undercompensation
may result in insufficient learning (Fig. 1(a)) for tail classes,
while overcompensation may hinder the learning of head
classes (Fig. 1(b)). Ideally, a feasible compensation to the
gradients in a long-tailed problem should maintain a Pareto
descent direction (Harada, Sakuma, and Kobayashi 2006),
which should never damage any classes in the imbalanced
distribution, as shown in Fig. 1(c).

To achieve feasible compensations in the seesaw
dilemma, we propose formulating the long-tailed learning
into a multi-objective optimization problem (MOO), where
each class holds its class-level training empirical loss. In this
way, our goal is to find a compromising gradient that does
not damage any of these losses at each update from a set
of class-level gradients. Furthermore, it is impractical to ex-
tract gradients for every class independently in each mini-
batch training because of two reasons. On one hand, more
classes lead to more computation time and may also cause
out-of-memory problem. On the other hand, a limited batch
size can not guarantee access to each class, especially tail
classes leading to incompleteness of objectives.

Accordingly, we develop a Gradient-Balancing Grouping
(GBG) algorithm to present a batch-level gradient balance in
long-tailed learning. Specifically, we first compute the gradi-
ents of all classes and obtain the gradient similarity between
classes to build a similarity matrix. Then, we learn to group
the classes with similar gradients according to the similarity
matrix. To obtain a balanced gradient to guarantee the Pareto
descent, inspired by the classic multi-gradient descent algo-
rithm (Sener and Koltun 2018), we take the bundled gradi-
ents from each group as a min-norm optimization, which can
be solved easily via quadratic programming.

Our main contributions are three-fold:
(1) To the best of our knowledge, it is the first time that we

have formulated long-tailed recognition as a multi-objective
optimization problem, to address the seesaw dilemma for the
head and tail classes in previous methods.

(2) We propose a grouping method based on gradient sim-
ilarity to solve the multi-objective optimization efficiently
without compromising accuracy.

(3) Our method is validated to outperform the state-of-the-
arts on the benchmarks datasets including CIFAR10/100-
LT, ImageNet-LT and INaturalist2018, which demonstrate
its capability in solving long-tailed problems efficiently.

Related Work
Long-tailed Learning via Class-Rebalancing. Class-
Rebalancing includes resampling and reweighting. Resam-
pling strategies aim to attain a balanced training data
distribution. They use over-sampling (Buda, Maki, and
Mazurowski 2018) to enlarge the instance number of tail
classes or use under-sampling (He and Garcia 2009) to de-
crease that of head classes. However, they afford the risks
of overfitting tail classes or impairing model generalization.
Reweighting methods assign weights to the loss functions
of each class that are negatively correlated with their sam-
ple sizes, aiming to balance the gradient contribution of dif-
ferent classes (Jamal et al. 2020). However, inappropriate
weights used in reweighting methods may cause problems
such as underfitting or overfitting to the model.
Long-tailed Learning via Grouping Strategy. Grouping
strategies decompose long-tailed classification problem into
multi-task problem or multi-level recognition problem by
grouping the label sets according to certain rules (Yang
et al. 2022) such as grouping based on instance numbers of
classes (Li et al. 2020). Though current grouping strategies
can avoid tail categories being suppressed to some extent,
they could not solve the problem of knowledge interaction
blocking between different groups (Yang et al. 2022).
Multi-Objective Optimization in Deep Learning. Multi-
Objective Optimization (MOO) refers to optimizing multi-
ple objective functions which may be conflicting in opti-
mization problems (Lyu et al. 2021, 2023). The target of
MOO is to find a set of optimal solutions that can simultane-
ously optimize multiple objectives. MOO can be applied to
fields that require simultaneously optimizing multiple tar-
gets such as multi-task learning (Sener and Koltun 2018;
Chen et al. 2023) and recommendation systems (Geng et al.
2015). In this paper, we use MOO to balance the learning of
head classes and tail classes.

The Proposed Method
Gradient Imbalance Problem in LT Learning
LetD={(xi, yi), · · · , (xN , yN )} denote a long-tailed train-
ing set, with N samples and K classes in total. Long-tailed
classification aims to learn a function f (θ) with parame-
ters θ to predict each test sample correctly. For a data point
(xi, yi), xi represents the i-th data point in the training
set and yi represents its ground-truth label. In general, the
model will be trained using an empirical risk loss as follows:

L (x,y) =
1

N

N∑
i=1

L (xi, yi) = −
1

N

N∑
i=1

log

(
ezyi∑K
j=1 e

zj

)
,

(1)
where zj is the predicted logit of class j and zyi

is the logit
of the corresponding ground-truth class.

To explore the gradient imbalance in long-tailed learning,
we split the training loss into head and tail losses as follows:

L (x,y) =
1

N

[∑Ntail

i=1
L (xi, yi) +

∑Nhead

j=1
L (xi, yi)

]
,

(2)
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Figure 2: Gradient imbalance in long-tail learning. The bars
denote the mean similarity between class-level and batch-
level gradients in each batch. The dots represent the norm
of mean gradients of classes in epochs. We experiment on
CIFAR10-LT, where (a) uses only cross entropy loss and (b)
uses a resampling strategy. We show the result of the top two
head classes and the last two tail classes.

where we use Nhead and Ntail to represent the numbers of
head-class samples and tail-class samples in a mini-batch.
Thus, the gradient of parameter θ can be denoted as:

∇θ =
∂L (x,y)

∂θ
= ∇tail

θ +∇head
θ , (3)

where∇tail
θ and∇head

θ are the gradients of θ generated by the
tail-class and head-class instances in the mini-batch.

In Fig. 2, we measure the mean gradient similarity be-
tween classes and the whole gradient in each batch in differ-
ent epochs. The similarity measures the contribution of gra-
dients from different classes to the gradient descent process.
A larger similarity means a larger contribution. It is easy to
observe that the gradients of head and tail classes, which
are presented as dots in the figure, are significantly imbal-
anced, where we have ∥∇tail

θ ∥ < ∥∇head
θ ∥ in every epoch.

The reason of the gradient imbalance in long-tailed distribu-
tion, we argue, is the head-class samples make up the ma-
jority of most batches, resulting in the gradient domination
of head classes in magnitude and direction over tail classes,
which can be represented as ∇⊤

θ∇head
θ > ∇⊤

θ∇tail
θ . Finally,

the model cannot obtain enough knowledge from tail-class
data. At the same time, it raises confusion that the imbalance
in Fig. 2(a) is caused by the imbalanced data distribution in
each batch. We conduct a similar experiment with a resam-
pling strategy. In Fig. 2(b), the magnitude of the tail gradient
decreases after resampling because resampling means fre-
quently sample duplicated. That is, the model quickly over-
fits to the tailed categories, leading to a rapid loss decrease in
them, which indicates the gradient imbalance is not caused
by an imbalanced distribution within each batch but the im-
balanced distribution of the dataset.

To solve this problem, previous methods compensate tail-
class gradients by raising the weight of tail-class loss by re-
balancing strategies (Lin et al. 2017; Wu et al. 2020). How-
ever, as shown in Fig. 1, intuitive rebalancing methods en-

counter the seesaw dilemma, where the solutions may suffer
from either overcompensation or undercompensation. Over-
compensation refers to the tail classes being overempha-
sized, while the head classes are underestimated, resulting
in the learning of the head classes being excessively inhib-
ited. Undercompensation is equivalent to no compensation.

In this paper, we seek to find an ideal compensation at
each training iteration in long-tail learning, where the update
should not damage any class in a long-tailed distribution. To
achieve this, for the first time to the best of our knowledge,
we formulate the long-tailed learning into a multi-objective
optimization problem as illustrated in the next subsection.

LT Problem as Multi-Objective Optimization
Multi-Objective Optimization (MOO) means optimizing
multiple objectives simultaneously. Given T different objec-
tives, a deep model with MOO yields the following multi-
objective empirical risk minimization formulation:

minθ {Li (Di) , · · · , LT (DT )} , (4)

where Di is the data of objective i. Because of the conflict
among objectives, the goal of MOO is to achieve Pareto op-
timality via training.
Definition 1 (Pareto Optimality).
(1) (Pareto Dominate) Let θa, θb be two solutions for Prob-
lem (4), θa is said to dominate θb (θa ≺ θb) if and only
if Li(θa) ≤ Li(θb), ∀i ∈ {1, 2, · · · , T} and Li(θa) <
Li(θb), ∃i ∈ {1, 2, · · · , T}.
(2) (Pareto Critical) θ is called Pareto critical if no other
solution in its neighborhood can have better values in all
objective functions.
(3) (Pareto Descent Direction) If θ1 is not Pareto critical and
can be updated to θ2 by gradient g. If θ2 ≺ θ1, say g is a
Pareto descent direction.

A MOO problem may have multiple solutions, consist-
ing of a Pareto set, whose projection in loss space is called
Pareto Front. To approach the Pareto front in the loss space
for all classes in a long-tailed distribution, we need to make
each update under a Pareto descent direction that does not
damage any class’s performance. To this end, we convert
the single objective loss function in Eq. (1) into a multi-
objective optimization problem, which yields a gather of
loss functions for each category

L (θ;D) = {L1 (θ;D1) , · · · , LK (θ;DK)} , (5)

where Lk (θ;Dk) and Dk ⊆ D represent loss function of
class k and the samples from class k respectively.

Let us review the seesaw dilemma under the MOO setting.
After splitting training loss, we have K different losses w.r.t.
K classes. Subsequently, we obtain task-specific gradients
{∇1, · · · ,∇K} via derivation, where∇i = ∇Li

θ and update
only once. That is, we need to aggregate all gradients into
one. A simple aggregation way is to set weights and sum
class-level gradients. At the iteration n, the problem can be
reformulated as follows:

min
{α1,··· ,αK}

{
Li

(
θ(n−1) − τ

∑K

i=1
αi∇i ; Di

) ∣∣∣∣∀i} .

(6)
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Figure 3: Illustration of our proposed method. In the first stage, we use GBG to gather the classes with high gradient similarity
together. In the second stage, we use an averaging strategy to merge the gradients of the categories in the same group, and then
solve a MOO problem to obtain an approximate Pareto descent direction in each iteration.

To avoid the damage for all classes, we prefer to have
Li

(
θ(n);Di

)
≤ Li

(
θ(n−1);Di

)
for any i ∈ [1,K]. How-

ever, the multiple gradients may have large conflicts in terms
of magnitude and direction. Inappropriate weighting may re-
sult in overcompensation and undercompensation that some
classes may decrease. In contrast, the goal of multi-objective
optimization is to achieve Pareto descent direction in each
step, which will damage no class.

Intuitively, using the losses of each category as opti-
mization objectives can achieve better performance. How-
ever, more objectives do not necessarily mean better perfor-
mance. Multi-objective optimization problems can pose sig-
nificant challenges due to the increase in the dimensionality
of search space and the complexity of Pareto fronts as the
number of objectives increases. Therefore, it is impractical
to directly solve Problem (6) to achieve accurate Pareto de-
scent direction, especially when the label space has a large
dimension. Furthermore, the batch size is limited by the re-
stricted size of hardware memory so it is difficult to cover
all classes and store the gradients from all classes into the
memory. In the next subsection, we propose a simple yet
effective gradient-balancing grouping strategy to obtain an
approximate Pareto descent direction.

Gradient-based Class Grouping
Class grouping (Li et al. 2020) is one of the effective solu-
tions in long-tailed learning. However, most of them rely on
heuristic ideas and they can not guarantee a good compensa-
tion. In this paper, we propose a Gradient-Balancing Group-
ing (GBG) strategy to solve the gradient conflict and ob-
tain an approximate Pareto descent direction. GBG assigns
classes with similar gradient descent direction into a group
to make their gradients form a resultant force, which rep-

resents the approximate no-conflict direction to those of all
corresponding classes in the group. Specifically, given class
gradient in a batch {∇1, · · · ,∇c}, where c denotes the con-
tained class numbers of the batch. Let the category set be
C = {1, · · · ,K}. We first compute a similarity matrix A to
measure the similarity between any two gradients, and the

element Ai,j =
∇i

θ∇
j
θ

∥∇i
θ∥∥∇

j
θ∥

.

According to the similarity matrix A, we then build a
graph G = {V, E}. V denotes the set of nodes in the graph,
and each node represents a class. E = {Ai,j}, i ≤ j ≤ K
denotes the set of edges, where each edge represents the
gradient similarity between class i and class j. Our target
is to find a way of grouping categories so that categories
with high similarity in the direction of gradient descent are
placed in the same group. Then, we define the affinity be-
tween groups as follows:

a (Vm,Vn) =
∑

i∈Vm,j∈Vn

Ai,j , (7)

where Vm,Vn ⊂ V represent two different groups and
Vm∩Vn = ∅, ∀m ̸= n. Inspired by spectrum-clustering (Ng,
Jordan, and Weiss 2001), our target is equivalent to finding
a graph cutting P = {V1,V2, · · · ,VG} that minimizes the
summation of affinity between groups, where G is the num-
ber of groups. We formulate the problem as follows:

minP∈P
∑

V′∈P
a (V ′,V)− a (V ′,V ′) , (8)

where P is the searching space for possible grouping strat-
egy. Then, we use NCut (Shi and Malik 2000) to transform
the optimization problem into the form of minimizing the
Rayleigh entropy to obtain the partitioning result P .

The grouping resultP obtained through the above method
ensures that the categories in the same group have simi-
lar update habits. Then, during the model training process,
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Algorithm 1: Gradient-balanced grouping

Input: Training set D, Model parameters θ.
1: for k = 1→ K do
2: Calculate average gradient∇k

θ of class k;
3: end for

// Compute gradient similarity matrix A
4: ∇ ← [∇1

θ, · · · ,∇K
θ ]⊤;

5: A←
(
∇ ·∇⊤

)
/{∥∇∥ · ∥∇∥⊤};

6: Build the graph G = (V, E) according to A;
// Generate groups by solving Eq. (8)

7: P∗ ← argmin
P∈P

∑
V′∈P

a (V ′,V)− a (V ′,V ′);

Output: Group partitioning result P∗.

the gradients of each group we obtained in each batch are
equivalent to the average of the gradients of the categories
in their corresponding group, as shown in Fig. 3 (Stage 2).
In other words, the gradients obtained from each group are
as similar as possible to the gradients of any category within
the group, which enables the gradients within each group
to work together and implicitly increase the contribution of
the tail class during training. Our grouping strategy is de-
signed to improve both head and tailed classes. 1) We group
gradient-similar classes instead of semantic-similar classes.
2) By ideal compensation, both head and tailed classes can
be improved. Because in a group, similar gradients as tailed
classes will not be ignored.

The group memberships are calculated one time only at
the start of training. The overall class grouping procedure
of GBG in the LT problem is summarized in Algorithm 1.
First, we fix the parameters of the initialized or pre-trained
model f (θ). Next, we calculate the average gradients of
each class and obtain the gradient similarity between each
class through cosine similarity to build a symmetrical gra-
dient similarity matrix A. Eventually, we solve the graph-
cutting problem Eq. (8) and get the final grouping result P .
However, the gradient conflicts between each group still ex-
ist. In the following, we show how to solve the group-level
MOO problem.

Solving Group-level MOO Problem
Following previous studies (Zhou et al. 2020), our method
is split into 2 stages as shown in Fig. 3. In the first stage,
we calculate the average gradients of each class and form a
gradient similarity matrix. Then we divide categories into G
groups according to their gradient similarity. In the second
stage, we bundle the gradients of each group in each batch
and form an MOO problem. Then, we solve the MOO prob-
lem to approximate a Pareto descent direction, achieving op-
timization of all groups at each iteration. Based on the class
grouping P∗ = {V1,V2, · · · ,VG}, the optimization goal of
the long-tail problem can be converted into the training loss
of G groups

minθ (L1 (θ) , · · · , LG (θ)) . (9)

To efficiently solve the MOO problem, we adopt Multi Gra-
dient Descent Algorithm (MGDA) (Sener and Koltun 2018)

Algorithm 2: Update model by grouping MOO

Input: Training setD, Group results P∗, Model parameters
θ, Learning rate η.

1: Sample a mini-batch B = {B1, · · · ,BG} from the train-
ing set D;

2: for i = 1→ G do
3: Compute group-level loss Li = L (θ;Bi);
4: Back-propagation and compute gradients∇θLi;
5: end for
6: α∗

1, · · · , α∗
G ← Solve Eq. (10);

7: θ ← θ − η
∑G

i=1 αi∇θLi;
Output: Updated parameters θ.

that leverages the Karush-Kuhn-Tucker (KKT) conditions
and transforms the MOO problem into a min-norm single
objective optimization as follows:

min
α1,··· ,αG

∥∥∥∥∑G

i=1
αi∇θLi (θ)

∥∥∥∥2 ,
s.t.

∑G

i=1
αi = 1 and αi ≥ 0, ∀i.

(10)

As a min-norm single objective optimization, this problem
can be easily solved by quadratic programming. With the
solution to this optimization problem, we obtain the final
gradient for the long-tailed learning

d∗ =
∑G

i=1
αi∇θLi. (11)

According to (Sener and Koltun 2018), vector d∗ is either
zero or a feasible Pareto descent direction for all groups.
We show the multi-objective optimization-based gradient
descent steps in Algorithm 2. Specifically, in every iter-
ation, we compute the loss of each group and conduct
backward over the model parameters for each loss to get
∇θLi (θ). Then we acquire the weights {α1, · · · , αG} by
solving 10 and use it carrying out weighted summation∑G

i=1 αi∇θLi (θ) to get the final gradients which are used
to update model parameters. Moreover, we propose a simple
but effective resampling method Group-Aware Completion
(GAC) Sampler to guarantee that each batch contains sam-
ples from all groups, i.e., we have data from all groups in
every mini-batch. For each iteration, if the data of a group is
missing in the mini-batch, we sample from the missing train-
ing data of the missing group with probability based on the
class-balanced term (Cui et al. 2019), so that the number of
samples reaches 1/10 of the batch size. This can ensure that
each batch contains samples from all groups and to some
extent improve the contribution of tail-class samples.

Compared with the original optimization problem con-
taining a large number of objectives, our method greatly re-
duces the number of optimization objectives and can com-
plete the training relatively efficiently.

Experiment
Datasets
CIFAR10/100-LT. CIFAR10/100-LT are the long-tailed
version of CIFAR10/100. Specifically, they are generated by
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Method CIFAR10-LT CIFAR100-LT
Imbalance Factor 100 50 100 50
CE 70.36 74.81 38.32 43.85
CB (Cui et al. 2019) 74.57 79.27 39.60 45.17
LDAM (Cao et al. 2019) 77.03 - 42.04 -
BBN (Zhou et al. 2020) 79.82 82.18 42.56 47.02
PaCo (Cui et al. 2021) - - 50.00 56.00
RISDA (Chen et al. 2022) - - 50.16 53.84
xERM (Zhu et al. 2022a) - - 46.90 52.80
FDC (Ma et al. 2023) 83.40 86.50 50.40 54.10
DisVar (Tian et al. 2023) 78.87 83.69 48.07 52.35
BCL† (Zhu et al. 2022b) 84.07 86.98 51.52 56.23
GBG (Ours) 85.05 87.73 52.31 57.18

Table 1: Top-1 accuracy comparison on the CIFAR10/100-
LT . † indicates the results reproduced by ourselves. The best
results are presented in bold. The indicates are the same in
other tables.

downsampling CIFAR10/100 with different Imbalance Fac-
tor (IF) β = Nmax/Nmin where Nmax and Nmin are the in-
stance size of most frequent and least frequent classes in the
training set (Cui et al. 2019; Cao et al. 2019).
ImageNet-LT. ImageNet-LT is sampled from vanilla Ima-
geNet following a Pareto distribution with the power value
α = 6. It contains 115.8K training images of 1,000 cate-
gories with Nmax = 1, 280 and Nmin = 5. We use the
balanced validation set of vanilla ImageNet which contains
50 images per class.
iNaturalist 2018. iNaturailist 2018(iNat) is a large-scale
real-world dataset that naturally presents a long-tailed dis-
tribution. It consists of 437.5K images from 8,142 classes
with β = 512. The validation set contains 24.4K images
with 3 images per class to test our method.

Experiment Setting
We perform experiments on CIFAR10/100-LT (IF =
100,50), ImageNet-LT and iNaturalist. We use ResNet-32
as the backbone for CIFAR, ResNet-50, ResNeXT-50 for
ImageNet-LT, and ResNet-50 for iNaturalist 2018. We use
SGD for all datasets. For CIFAR and ImageNet-LT, weight
decay (wd) is 5e-4 and momentum (m) is 0.9. For iNat, wd
is 1e-4. We set batch size as 256 for all datasets. We use a
fully-connected layer as classifier for all models. We train
all the above models on NVIDIA GeForce RTX 3090 GPU.

Main Results
We compare our method with state-of-the-art methods. We
use top-1 accuracy as metric in all experiments. The com-
parison results are shown in Tables 1, 2 and 3.

Our method achieves the best performance compared with
recent SOTA methods on three benchmarks. On ImageNet-
LT, our method gets 57.6% in top-1 accuracy, which is 1.2%
over BCL with ResNet-50 and achieves 58.7% which sur-
passes the second-best method for 1.8%. Our method ob-
tains 0.4% over BCL on iNat. Because GBG gathers classes
with similar gradient directions, it makes the gradients of
the groups represent those of classes within the group which
implicitly increases the contribution of tail-class gradients.

Method ImageNet-LT
Backbone ResNet-50 ResNext-50
CE 41.6 44.4
Decouple (Kang et al. 2019) - 49.9
RIDE (Wang et al. 2020) 54.4 55.9
LADE (Hong et al. 2021) - 51.9
LA (Menon et al. 2020) 51.1 -
RISDA (Chen et al. 2022) 50.7 -
WD (Alshammari et al. 2022) - 53.9
xERM (Zhu et al. 2022a) - 54.1
FDC (Ma et al. 2023) - 55.3
DisVar (Tian et al. 2023) 49.4 -
BCL† (Zhu et al. 2022b) 56.4 56.9
GBG (Ours) 57.6 58.7

Table 2: Top-1 accuracy comparison on ImageNet-LT.

Methods iNatualist 2018
CE 63.8
LDAM (Cao et al. 2019) 68.0
BBN (Zhou et al. 2020) 69.6
RIDE (Wang et al. 2020) 71.4
LADE (Hong et al. 2021) 70.0
LA (Menon et al. 2020) 66.4
RISDA (Chen et al. 2022) 69.2
WD (Alshammari et al. 2022) 70.2
DisVar (Tian et al. 2023) 69.3
BCL† (Zhu et al. 2022b) 71.5
GBG (Ours) 71.9

Table 3: Top-1 accuracy comparison on iNatutalist 2018.

To gain deeper insights into the impact of our methods
on various categories, we have partitioned the ImageNet-
LT classes into three distinct subsets, following (Zhu et al.
2022b). These subsets are characterized as Many (>100 im-
ages), Medium (20∼100 images) and Few (<20 images) ac-
cording to the instance number of classes The results pre-
sented in Table 4 unequivocally demonstrate notable perfor-
mance enhancements across all three subsets. This observa-
tion underscores the effectiveness of our approach in ele-
vating the performance of both tail and head categories. The
MOO strategy employed in our method effectively addresses
the challenge of imbalanced datasets, allowing for a harmo-
nious training dynamic between the head and tail categories.

Grouping Strategy Comparison
In Table 5, we compare our strategy with another two
grouping rules, i.e., random grouping strategy and instance-
numbers-based grouping strategy. Random grouping strat-
egy partitions the category set into 4 groups randomly. We
use several random seeds to get different random grouping
results and show the average test results for a fair compari-
son. For instance-numbers-based grouping strategy, we fol-
low (Li et al. 2020) to divide all categories into 4 groups
according to their instance numbers, which means classes
with similar instance numbers are in the same group. The re-
sults show that our grouping strategy achieves the best per-
formance among all grouping strategies, which proves the
effectiveness of grouping via gradients.
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Methods (ResNext-50) Many Medium Few All
τ -norm (Kang et al. 2019) 59.1 46.9 30.7 49.4
BS (Ren et al. 2020) 62.2 48.8 29.8 51.4
Dec (Kang et al. 2019) 60.2 47.2 30.3 49.9
RIDE (Wang et al. 2020) 68.2 53.8 36.0 56.8
LADE (Hong et al. 2021) 62.3 49.3 31.2 51.9
Dis (Zhang et al. 2021) 62.7 48.8 31.6 51.8
FDC (Ma et al. 2023) 65.5 51.9 37.8 55.3
BCL† (Zhu et al. 2022b) 66.9 54.3 37.6 56.9
GBG (Ours) 69.6 55.8 38.1 58.7

Table 4: Comparison on three subsets of ImageNet-LT.
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Figure 4: Comparison results of different group numbers.

Analysis on Different Group Numbers
In Fig. 4, we present the impact of different group numbers
within our gradient-based class grouping mechanism. We
conduct experiments across CIFAR10-LT, CIFAR100-LT,
and ImageNet-LT datasets, varying the number of groups
to determine the optimal configuration. The outcomes of
these experiments reveal that the use of four groups yields
the most favorable results. This finding suggests that em-
ploying an excess number of objectives does not necessar-
ily enhance performance in the MOO problems. Moreover,
assigning each class as an individual objective in CIFAR10-
LT significantly undermines performance. This outcome is
likely attributed to the heightened complexity of the opti-
mization space when confronted with numerous objectives.
The resulting increased likelihood of encountering local op-
tima could lead to performance degradation.

Ablation Study
We perform several experiments to demonstrate the valid-
ity of each component. We split our methods into two parts
including gradient-balanced grouping strategy (GBG) and
multi-objective optimization (MOO) in Table. 6. We choose
CIFAR10-LT (IF=100) for experiment and use ResNet-32 as
backbone. We set the number of groups as four, and use the
average strategy to merge the gradients of groups. To vali-
date the compatibility of the proposed method, we add our
method to the naive model, Cross-Entropy (CE). The results
show a significant improvement when our method is applied
to CE, indicating its compatibility.

Strategy ImageNet-LT
Backbone ResNet-50 ResNext-50
Random 56.37±0.41 56.96±0.24
Instance number 56.61±0.27 57.44±0.38
GBG 57.49±0.29 58.61±0.37

Table 5: Grouping strategy comparison on ImageNet-LT
(Avg±Std over 5 fixed seeds).

Method Accuracy
CE 71.36
CE+GBG+MOO 75.53
BCL 84.07
BCL+GBG 84.20
BCL+MOO 74.58
BCL+GBG+MOO 85.05

Table 6: Ablation study for our proposed method with BCL
as the baseline on CIFAR10-LT (IF = 100).

By utilizing GBG, we implicitly enhance the impact of
tail-class gradients. Therefore, GBG achieves a modest ac-
curacy improvement of 0.13% when adding GBG to BCL.
On the other hand, directly employing the MOO method sets
the loss of each category as an optimization objective. How-
ever, due to the limited batch size, data from tail classes
are often absent in batches, resulting in the absence of cer-
tain optimization objectives in each iteration. Consequently,
solely relying on MOO significantly decreases performance,
which is only 74.58%. In other words, the optimization ob-
jectives for the MOO problem are not fixed, considerably
influencing the resolution of the MOO problem.

Our method combines grouping and MOO. Through
GBG, we put categories with high gradient similarity into a
group, fixing the optimization objectives for MOO problem.
We further solved the gradient conflicts between different
groups through MOO, which enabled us to obtain approxi-
mate Pareto descent directions in every descent step. Build-
ing on this, we achieve an improvement of 0.85% compared
with only using Grouping.

Conclusion
In this paper, we identified gradient imbalance as a key issue
in long-tailed learning. We thoroughly analyzed the inappro-
priate compensation on the gradients of different classes re-
sulting in the seesaw dilemma of previous methods. We ad-
dressed this problem by formulating the long-tailed recog-
nition as a MOO problem and introducing the GBG algo-
rithm to balance the gradient contributions of head and tail
classes. Then, GBG makes classes with similar gradient di-
rections form more representative gradients. With GBG, we
approximately made every update of model parameters un-
der a Pareto descent direction and provided ideal compensa-
tion to the tail classes. GBG outperformed existing methods
on commonly used benchmarks which demonstrated the su-
periority of our methods. Future work will focus on refining
the grouping strategy for more efficient hyperparameter tun-
ing, enabling more efficiently applied to different datasets.
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