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Abstract

Recently, there has been a growing interest in 3D CNN-based
stereo matching methods due to their remarkable accuracy.
However, the high complexity of 3D convolution makes it
challenging to strike a balance between accuracy and speed.
Notably, explicit 3D volumes contain considerable redun-
dancy. In this study, we delve into more compact 2D implicit
network to eliminate redundancy and boost real-time perfor-
mance. However, simply replacing explicit 3D networks with
2D implicit networks causes issues that can lead to perfor-
mance degradation, including the loss of structural informa-
tion, the quality decline of inter-image information, as well
as the inaccurate regression caused by low-level features. To
address these issues, we first integrate intra-image informa-
tion to fuse with inter-image information, facilitating propa-
gation guided by structural cues. Subsequently, we introduce
the Fast Multi-scale Score Volume (FMSV) and Confidence
Based Filtering (CBF) to efficiently acquire accurate multi-
scale, noise-free inter-image information. Furthermore, com-
bined with the Residual Context-aware Upsampler (RCU),
our Intra-Inter Fusing network is meticulously designed to
enhance information transmission on both feature-level and
disparity-level, thereby enabling accurate and robust regres-
sion. Experimental results affirm the superiority of our net-
work in terms of both speed and accuracy compared to all
other fast methods.

Introduction
Stereo matching stands as a crucial technique for 3D per-
ception. It leverages rectified binocular images to compute
disparity through correspondence matching (Hirschmuller
and Scharstein 2007). Deep stereo networks have exhib-
ited significant potential with the aid of large training
datasets (Mayer et al. 2016). While 3D CNN-based ap-
proaches (Chang and Chen 2018; Shen, Dai, and Rao 2021)
and RNN-based methods (Lipson, Teed, and Deng 2021; Li
et al. 2022) have demonstrate great accuracy, they come at
the expense of substantial computational complexity. Con-
sequently, various methods have been proposed to enhance
real-time performance by expediting 3D cost aggregation.
One class of methods (Xu et al. 2021) conducts aggregation
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Figure 1: Left: Comparison of GPU memory cost as in-
put resolution increases. While some fast methods fail with
OOM, our method can process image at extremely high res-
olution. Mid: Comparison of EPE metric between fast meth-
ods on the SceneFlow. Our method achieve both best re-
sults and best efficiency. Right: D1 and Abs metric results
on the Spring benchmark. Our method surpasses all other
fast methods.

at lower resolutions and super-resolves the outcomes. An-
other class (Gu et al. 2020; Yao et al. 2021) constructs cas-
cading volumes and centers on reducing disparity samples
at higher resolutions. Despite the promising temporal effi-
ciency demonstrated by these techniques, striking a balance
between accuracy and speed remains a challenge.

The challenge primarily arises from the retention of ex-
plicit 3D volumes and 3D convolution. While denser sam-
pling and 3D aggregation at higher resolutions enhance ac-
curacy, they introduce substantial time and memory burdens
due to the O(n3) complexity of 3D convolution. Notably,
explicit 3D volume contains huge amount of redundancy due
to the sparsity of ground truth occupancy grids. To tackle
redundancy and alleviate computational overhead, an intu-
itive approach is replacing 3D convolution with implicit 2D
encoder-decoder network.

Nevertheless, the replacement of explicit 3D network with
implicit 2D network causes potential issues. First, the 3D
network serves the purpose of acquiring measurements (Guo
et al. 2019) for local 3D structural patterns. Removal of the
3D network obstructs the acquisition of crucial structural in-
formation, leading to performance decline especially at oc-
clusion or low-texture areas. Second, the 3D aggregation
network plays a pivotal role in noise reduction and accuracy
enhancement. Cost volumes without 3D aggregation tend
to exhibit pronounced noise, making it a challenge to ef-
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ficiently extract high-quality inter-image information. Last,
the capacity of an implicit network diminishes as resolution
increases, primarily due to low-level features and limited re-
ception fields. Deep disparity features struggle to be trans-
mitted effectively to higher resolutions, thereby hindering
the achievement of robust and accurate regression. In this
study, we employ various strategies to address these issues
and enhance the performance. Consequently, we introduce
a novel 2D implicit network as a substitute for the compu-
tationally intensive 3D network. Our approach not only sig-
nificantly reduces time and memory costs but also demon-
strates superior accuracy when compared to other fast meth-
ods.

To address the issue of performance decline resulting
from the loss of structural information, we delve into
intra-image context information. Numerous monocular stud-
ies (Ming et al. 2021) have established that intra informa-
tion can regress relative depth by modeling structure like
surfaces or edges. While intra information might lack reli-
ability in terms of absolute spatial scale (Su and Ji 2022), it
can help the propagation and rectification of inter-image in-
formation. Meanwhile, the restoration of the absolute scale
can be achieved through inter information. Consequently, by
fusing intra and inter information, we can enhance perfor-
mance of 2D implicit network, particularly in low-texture
and occlusion areas.

Simultaneously, the quality of inter information plays a
critical role in providing accurate and noise-free scale in-
formation. To address this, we propose the Fast Multi-scale
Score Volume (FMSV) and the Confidence Based Filtering
(CBF). Based on the fact that well-textured regions often
yield robust matches, our core idea revolves around boost-
ing accuracy in well-matched regions and filtering out noise
under the premise of high efficiency. The extraction of in-
ter information is achieved through the construction of score
volumes, serving as indicators of occupancy probability. By
integrating the lightweight MLP with the top-k strategy,
we efficiently generate multi-scale score volumes that con-
tribute to heightened accuracy. Moreover, inspired by NP-
CVP-MVSNet (Yang, Alvarez, and Liu 2022), we inject
high-resolution disparity distributions into low-resolution
volumes using a pretrain loss. Subsequently, the CBF is de-
signed to filter noisy initial score volumes and prior dispari-
ties. In contrast to previous methods (Su, Xu, and Tao 2022)
that employ networks to estimate aleatoric uncertainty, we
directly employ average cross-entropy to estimate the un-
certainty, guided by the insight that all cells corresponding
to well-estimated pixels typically exhibit low entropy. Then
confidences are generated with a linear transformation. By
combining the two modules, we obtain accurate and noise-
free inter information.

As to the challenge of implicit networks to regress robust
and accurate disparities at high resolution, we tackle this
by introducing the Intra-Inter Fusing (IIF) network which
enhances information transmission at both feature-level
and disparity-level. The IIF incorporates an U-Net (Ron-
neberger, Fischer, and Brox 2015) to efficiently fuse multi-
scale intra-inter features. Additionally, drawing inspiration
from RAFT (Teed and Deng 2020), we propose the Residual

Context-aware Upsampler (RCU) to facilitate information
transmission at disparity-level. The RCU leverages fused
features and prior disparities to regress disparity residuals
and up-sampling weights. Through cascaded RCUs, dispar-
ities from lower resolution are progressively refined with
details and serve as priors for higher resolution. Benefiting
from the compact network architecture, our method is ca-
pable of producing full-resolution disparities in real-time.
As illustrated in Figure 1, our approach not only achieves
SOTA accuracy but also excels in terms of efficiency among
fast methods. Compared to Fast-ACVNet (Xu et al. 2023b),
our network achieves a 17% improvement in accuracy on
the SceneFlow, while reducing time costs by 33% and mem-
ory costs by 26%. Our contributions can be summarized as
follows:

• We introduce a novel real-time stereo matching net-
work that implicitly integrates intra and inter informa-
tion, achieving remarkable performance in both accuracy
and speed.

• We propose the Fast Multi-scale Score Volume (FMSV)
and the Confidence Based Filtering (CBF) techniques,
enabling efficient extraction of high-quality inter-image
information.

• We present a compact Intra-Inter Fusing (IIF) network
with the Residual Context-aware Upsampler (RCU) that
produce robust and accurate disparities by enhancing
information transmission at both feature and disparity
level.

Related Works
Stereo Matching Stereo matching use rectified left and
right images to regress disparities. Traditional methods de-
fine global energy functions, and algorithms like graph-
cut (Hong and Chen 2004), dynamic programming (Ohta
and Kanade 1985; Hirschmuller 2007), or random itera-
tion (Bleyer, Rhemann, and Rother 2011) are employed to
optimize the energy functions. Among deep learning ap-
proaches, PSMNet (Chang and Chen 2018) constructs con-
catenated volumes using siamese features, followed by the
application of 3D convolutions to aggregate costs. GWC-
Net (Guo et al. 2019) uses group-wise correlation to enhance
features, CFNet (Shen, Dai, and Rao 2021) performs multi-
scale fusion of cost volumes, GaNet (Zhang et al. 2019)
adds explicit propagation step in aggregation, ACVNet (Xu
et al. 2022a) utilizes pretrained models to filter out noise in
the cost volumes. More recently, methods based on RNNs
have emerged (Lipson, Teed, and Deng 2021). CRES (Li
et al. 2022) improves pyramid construction, while IGEV (Xu
et al. 2023a) introduces geometry volume for initialization.
Another method STTR (Li et al. 2021) explores Trans-
former (Vaswani et al. 2017) architecture. Although these
methods achieve great performance, they come with signifi-
cant time overhead.
Implicit 3D Network Recently, with the popularity of
techniques like NeRF (Mildenhall et al. 2021) and Trans-
former, implicit 3D methods have been widely studied.
NeuS (Wang et al. 2021) leverages positional encoding
and MLPs to reconstruct surfaces. SMDNet (Tosi et al.
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Figure 2: Overall architecture of IINet. (a) Our Fast Multi-scale Score Volume which efficiently extract inter-image information
from stereo pairs. (b) The procedure of CBF. We first use score volumes to estimate confidence maps, then use them to filter
noisy score volumes and coarse disparities. (c) The Intra-Inter Fusing module which use CNN encoder to fuse features and
Residual Context-aware Upsamplers to refine output disparities. Rectangles of different sizes are used to represent features at
various resolutions. While we use a bus to illustrate data flow for simplicity, the connections are separated across resolutions.

2021) directly regresses disparities from cost volume with
MLPs. MVS2D (Yang et al. 2022) employs attention mech-
anisms to aggregate multi-view information. IIB (Yifan et al.
2022) employs the general Transformer architecture Per-
ceiverIO (Jaegle et al. 2022) to regress depth. SimpleRe-
con (Sayed et al. 2022) uses pretrained image-encoder to
integrate cost volume information. Implicit network helps
eliminate the redundancy and improve feature with non-
local information.
Context Information Context information has been exten-
sively explored in monocular depth estimation (Miangoleh
et al. 2021). It can regress relative depth by capturing the re-
lationships between objects (Ming et al. 2021). Various tech-
niques, including Transformer (Ranftl, Bochkovskiy, and
Koltun 2021), MLP (Yuan et al. 2022), and diffusion (Duan,
Guo, and Zhu 2023), have been employed to explore contex-
tual information. In the field of correspondence matching,
RAFT (Teed and Deng 2020) introduces an additional con-
text encoder to assist the RNN network, while GMFlow (Xu
et al. 2022b) employs cross-attention to extract contextual
information. EP-MVSNet (Su and Tao 2023) uses context
to guide edge-preserving depth map up-sampling. Recently,
stereo matching methods have also leverage context infor-
mation. COEX (Bangunharcana et al. 2021) utilizes contex-
tual features to guide aggregation, while CSTTR (Guo et al.
2022) proposes a context branch to assist the attention mod-
ule.

Method
The comprehensive architecture is illustrated in Figure 2.
Given a pair of image, our process begins by extracting
multi-scale context features. Subsequently, the Fast Multi-
scale Score Volume (FMSV) depicted in Figure 2 (a) effi-
ciently captures multi-scale inter-image information. A pre-
train loss is employed to enhance the details. The Confi-
dence Based Filtering module in Figure 2 (b) is devised to
eliminate noise in both the score volumes and the coarse

disparities. Furthermore, the Intra-Inter Fusing module il-
lustrated in Figure 2 (c) applies an encoder-decoder archi-
tecture to fuse information. The features and priors traverse
through cascaded Residual Context-aware Upsampler mod-
ules, regressing accurate, high-resolution disparities.

Fast Multi-scale Score Volume
Context Feature Extraction We employ MobileNetV3-
Large (Howard et al. 2019) with pretrained weights and an
FPN architecture as our backbone. The inputs consist of the
original RGB image pairs, designated as IL and IR, while
the outputs constitute a collection of multi-scale features
F i
L, F

i
R, where i = 1, . . . , n, with 1 denoting the highest

scale (1/2 resolution in our approach).
Multi-scale Score Volume Utilizing the siamese features F ,
we create a multi-scale score volume. The features of the
right image are warped to the left image using the target
disparity Dd. For a maximum disparity of 192, the num-
ber of target disparities is 24, 6, and 4 for 1/8, 1/4 and
1/2 resolutions, respectively. Then, the dot productions and
patch features are concatenated to establish the cost vol-
ume. Instead of relying on 3D convolutions, we employ a
lightweight MLP network for feature dimension reduction.

(a) Top-k candidates (b) Argmax candidates

Figure 3: Comparison between candidate selection strate-
gies, e.g., four candidates in this figure, when probability
distributions are ambiguous at low-res discontinue regions.
Assuming GT disparities of adjacent pixels position in sec-
tions marked with circle, (a) top-k strategy selects candi-
dates for both pixels but (b) argmax strategy only covers a
single pixel, which leads to accumulative errors
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The MLP compresses the dimensions of the cost volumes
from Di × C × Hi × W i to Di × Hi × W i, generating
the initial score volumes Ci, i = 1, . . . , L. The weights of
MLPs are shared across scales to enhance consistency. The
process is formulated by:

Ci
d = MLP

(
Cat

(
F i
L(x), F

i
R(x−Di

d), F
i
L ⊙ F i

R

))
, (1)

where ⊙ represents for dot product, and Cat indicates con-
catenating. Multi-scale volumes are efficiently constructed
with top-k strategy to capture accurate inter informa-
tion. Comparison between top-k strategy and argmax up-
sampling is shown in Figure 3. Disparity distributions tend
to be ambiguous at edges due to the down-sampling pro-
cess. The top-k strategy retains candidates with long dis-
tance, thus mitigating the issue of accumulative errors aris-
ing from unimodal distribution assumptions. The top-k score
values are chosen, and the corresponding disparities serve as
seeds. Each seed is expanded into two target disparities at
the higher resolution, yielding Di−1. This process begins at
1/8 resolution and is repeated until reaching 1/2 resolution.
Pretrain Loss Beyond the architecture, we incorporate a
pretrain loss to guide the score volume’s learning process.
Drawing inspiration from NP-CVP-MVSNet (Yang, Al-
varez, and Liu 2022), we employ the soft histogram distribu-
tion of ground truth (GT) disparities as supervision instead
of which obtained through down-sampling. The distinction
between these two operations is illustrated in Figure 4. For
a patch at full resolution in 4(a), soft down-sampling in-
jects hi-res patch information into low resolution volume
through histogram. In contrast, conventional nearest down-
sampling in Figure 4(c) loses high-frequency information.
Specifically, the histogram volume is generated by folding
the patch Φp at full resolution which correspond to a low-
res pixel p. The distances between the GT values GTp′ and
each sampled disparity in Di are computed for each pixel.
These distances are truncated and summed within patches
to form distid(p) for each sampled disparity. This procedure
can be seen as splatting hi-res GT values into low-res vol-
umes. Finally, the histogram volume are obtained by nor-
malizing volumes across the d dimension.

distid(p) =
∑

p′∈Φp

{
1− δ(p′), δ(p′) < 1
0, δ(p′) ≥ 1

,

δ(p′) = |GTp′ −Di
d|, (2)

Histid =
distid∑d=n(Di)

d=1 distid
, (3)

where n(·) denotes the count of a set. After obtaining the
histogram volume Histid, a mask M i is generated to mark
the pixels whose volume cover GT disparities. We use the
Kullback-Leibler (KL) divergence loss LKL to enforce con-
sistency between the estimated score volume and the his-
togram volume.

Li
KL = KLloss

(
Softmax

(
Ci

)
, Histi

)
·M i. (4)

The purpose of the score volume is to represent the prob-
ability that a grid cell covers GT. However, the KL loss im-
poses constraints solely on the histogram distribution, which

14 15 15

1515

15 32

32

33 33

32

32

3333321515

15

15

32

32

15

15

32

15

32

3214 15 15

1515

15 32

32

33 33

32

32

33333215

(a) Full-res Disp.
15 14 32 33

0.06

0.38 0.31
0.25

(b) Soft Down.
15

1

(c) Nearest Down.

Figure 4: Difference between soft and nearest down-
sampling. (a) Disparity distribution of a 4 × 4 patch at full
resolution (b) Soft down-sampling utilizes the redundancy
in low-res volume to store the histogram distribution for a
hi-res patch, while (c) Nearest down-sampling directly use
the center pixel’s value as low-res ground truth. As a result,
soft down-sampling contains more high frequency details
and avoids misaligned supervision at lower resolution.

can lead to diminished response within cells. Thus, we pro-
pose an additional binary cross-entropy (BCE) loss, denoted
as LBCE . Firstly, we employ the sigmoid function to map
the score volumes to probability volumes, yielding P i

d. Sub-
sequently, we designate all grid cells covering the GT as
positive samples, and the remaining cells as negative sam-
ples. Given that a majority of positive samples tend to cluster
around a few disparity values, we use the Focal loss to bal-
ance the quantity differences. Additionally, we utilize Histi

as weights for positive samples to model visibility. The BCE
loss is formulated as follows:
Li

BCE = −
∑
d

Histidαt

(
1− P i

d,t

)γ
log

(
P i
d,t

)
·M i, (5)

P i
d = sigmoid(Ci

d). (6)
Our final pretrain loss is weighted sum of the two items:

Lpre =

L∑
i=1

λi

(
Li

KL + Li
BCE

)
. (7)

We use the pretrain loss to pretrain our FMSV module to
provide priors, then drop the loss and use the total loss to
train the whole network end to end.

Confidence Based Filtering
We tackle noise by assessing confidence. The confidence
is achieved by uncertainty estimation. Cross-entropy is uti-
lized to represent the uncertainty of each grid cell. Then, to
measure the uncertainty of a pixel, we calculate the average
cross-entropy across the d dimension. The process can be
formulated as:

U i =
1

n(Di)

n(Di)∑
d=1

(
−P i

d log
(
pid
)
− P i

d log
(
P i
d

))
, (8)

where P represents 1−P . U i represents for uncertainty map
at each resolution. By computing the average noise, this un-
certainty quantifies the noise level of a pixel. We further uti-
lize a linear transformation to convert the uncertainty into
confidence Conf i for each resolution:

Conf i = a
(
U i − b

)
·max

d
(P i

d), (9)
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Figure 5: Illustration of a single residual context-aware up-
sampler module. We use same color to mark channels that
correspond to the 2× disparity map after reshaping. The
module is repeated for three times to output full resolution
disparity.

where b = −0.5 log(0.5) represents the maximum uncer-
tainty, and a is a coefficient that makes confidence reach 1
when P ≥ Pth. To prevent excessive filtering that could lead
to sparsity, we set Pth to 0.9 and limit the maximum value
to 1. The confidence estimation module generates low con-
fidence values for occluded and low-texture regions. For the
former, these regions exhibit low uncertainty alongside low
probability. For the latter, these regions feature high proba-
bility paired with high uncertainty. By multiplying the esti-
mated confidences with the score volumes, the filtered score
volumes Ci

F are derived. The prior disparity map disp3P is
obtained by excluding regions with low confidence. This
procedure is formulated as:

Ci
F = Ci · Conf i, (10)

disp3P = argmaxd(P
3) ·

(
Conf3 > th

)
, (11)

where · represents for the Hadamard product and th repre-
sents for a threshold.

Intra-Inter Fusing Module
The Intra-Inter Fusing module employs an U-Net (Ron-
neberger, Fischer, and Brox 2015) for information fusion.
In the decoder part, features and priors are passed through
cascaded RCUs to regress full-resolution disparities.
Intra-Inter Encoder The inter features after filtering have
holes in invalid areas. To address this, we introduce intra in-
formation to facilitate the propagation of the score volumes
with local context. For efficiency, we employ a simple 2D
convolution network to fuse the intra feature F i

L with the
filtered inter feature Ci

F . The multi-scale fusion network is
established in a top-down manner to yield the fused features
F i

fuse.

F i
fuse = Conv

(
Cat

(
Ci

F , F
i
L,DsConv

(
F i−1

fuse

)))
. (12)

Residual Context-aware Upsampler Subsequently, we uti-
lize the fused features to implicitly predict multi-scale dis-
parities. We employ latent variables to predict weights and
disparity residuals. Instead of iterative optimization at the
same resolution, we combine up-sampling with residual op-
timization, introducing high-frequency features while reduc-
ing computational overloads. We select 1/8 resolution as the

lowest resolution for regression. The fused features F i
fuse un-

dergo an initial update through a U-Net (Ronneberger, Fis-
cher, and Brox 2015). Subsequently, as depicted in Figure 5,
these fused features are concatenated with the prior dispar-
ities dispiP and encoded into latent variables Hi. Leverag-
ing these latent variables Hi, we predict disparity residu-
als ∆dispi and up-sampling weights W i. These weights are
4×9 vectors that up-sample the disparity map by a factor of
2 using 9 neighboring pixels. The disparities are optimized
using the residuals, resulting in dispi, which are then up-
sampled using W i to generate priors dispi−1

P for higher res-
olutions. The process can be formulated as:

Hi = Conv
(
Cat

(
F i

fuse, disp
i
P

))
. (13)

W i = Softmax
(
Conv

(
Hi

))
. (14)

∆dispi = Conv
(
Hi

)
. (15)

dispi = dispiP +∆dispi. (16)

dispi−1
P = Unfold(W i) · dispi. (17)

Finally, the lightweight decoding network outputs full-
resolution disparity through cascaded Residual Context-
aware Upsamplers.

Loss Function
L1 Loss We employ a loss function similar to SimpleRe-
con (Sayed et al. 2022). Our multi-scale disparity loss is
constructed using L1 loss due to its stability. The multi-scale
ground truth disparity Gi is derived through nearest interpo-
lation. The L1 loss can be expressed as:

Ldepth =

3∑
i=0

λi,disp

∣∣dispi −Gi
∣∣ . (18)

Grad and Normal Loss To ensure the smoothness of the
disparity surface, we establish a multi-scale gradient loss
and a normal loss at the full resolution. The gradient and
normal losses can be defined as follows:

Lgrad =
3∑

i=0

λi,grad

∣∣∇dispi −∇Gi
∣∣ . (19)

Lnormal = λnormal
1

HW

∑
i,j

1− N̂i,j ·Ni,j . (20)

Total Loss Our final end to end training loss is weighted
sum of the three losses:

Ltotal = Ldepth + Lgrad + Lnormal. (21)

Experiments
Datasets We use four datasets in our experiments. The
SceneFlow (Mayer et al. 2016) is a large synthetic dataset
consisting of 35, 454 training pairs and 4, 370 testing pairs.
The Spring (Mehl et al. 2023), a novel large-scale dataset
rendered from a Blender movie, includes 5,000 training
pairs and 1,000 testing pairs, characterized by high reso-
lution and high details. The KITTI (Geiger, Lenz, and Ur-
tasun 2012), a real-world benchmark of driving scenarios,
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Method EPE
(px)

D1
(%)

3px
(%)

Time
(ms)

DPF (Duggal et al. 2019) 0.97 - - 61
AANet (Xu and Zhang 2020) 0.89 - - 62
BGNet+ (Xu et al. 2021) 1.17 - - 32
CoEx (Bangunharcana et al. 2021) 0.69 - 4.00 27
FastACV (Xu et al. 2023b) 0.64 2.49 2.82 39
HitNet (Tankovich et al. 2021) 0.55 2.26 2.69 47
IINet (ours) 0.54 2.18 2.73 26

Table 1: Results on the SceneFlow. We compare our results
with recent fast or real-time methods. Time metric refers to
the GPU latency.

is divided into KITTI12 and KITTI15 subsets, comprising
394 training pairs and 395 testing pairs. Lastly, the Middle-
bury2014 (Scharstein et al. 2014) is created from real-world
images, we use its training set which contains 15 image pairs
to test our generalization ability.
Metrics EPE (End-point Error) or Absolute Error refers to
the absolute difference between the estimated and ground
truth disparities. It serves as a measure of the overall numer-
ical accuracy of the estimation. The N-px Error is a percent-
age error metric that calculates the proportion of pixels for
which the EPE exceeds N pixels. The D1 error relaxes the
3px Error restriction by excluding pixels for which the Rel-
ative Absolute Error is less than 5 %. These two percentage
error metrics evaluate the structural accuracy of the estima-
tion.
Implementation Our model is developed using PyTorch
and executed on an RTX 3090 GPU. For pretraining on
the SceneFlow, we incorporate image augmentation with a
probability of 0.2. The augmentation includes color adjust-
ments, brightness enhancements, and contrast modifications
to simulate varying exposure conditions. Furthermore, ran-
dom vertical and rotation shifts are applied to the right im-
age, followed by random cropping to resolution of 512×384.
We employ the Adam optimizer and train for 105 epochs.
The first 13 epochs use the pretrain loss to train the FMSV.
Subsequently, the full network is trained using the total loss
for the remaining epochs. The initial learning rate is set to
0.001, then reduced to 0.0001 at epoch 10, and halved at
epochs 50, 70, 85, 95, and 100. For the Spring, we fine-tune
the pretrained model using the training set for 65 epochs.
The initial learning rate is set to 0.00005 and reduced by
half at epochs 40 and 55.

Evaluation on SceneFlow
We first evaluate our method on the SceneFlow, the results
are shown in Table 1. Among all the fast methods, ours
achieve the best accuracy. Although our method’s time cost
is comparable to BGNet (Xu et al. 2021) and CoEx (Ban-
gunharcana et al. 2021), it significantly outperforms them
in terms of EPE and pixel-based metrics. Our accuracy per-
formance surpasses that of Fast-ACVNet (Xu et al. 2023b)
and closely aligns with HitNet (Tankovich et al. 2021), all

Method Fast 1px
total(%)

D1
(%)

Abs
(px)

FastACV (Xu et al. 2023b) ✓ 15.75 4.26 0.96
ACVNet (Xu et al. 2022a) 14.77 5.35 1.52
CoEx (Bangunharcana et al. 2021) ✓ 10.21 3.96 0.86
IINet (ours) ✓ 10 3.78 0.76
CroCo (Weinzaepfel et al. 2023) 7.13 2.71 0.47

Table 2: Comparative results on the Spring Benchmark. We
mark fast methods using ✓. The Abs metric equals to the
EPE metric.

while reducing computational time by 30% and 44%, re-
spectively. The experimental results on SceneFlow demon-
strate that our method can well balance efficiency and per-
formance. Leveraging purely 2D convolution networks, our
approach achieves multi-scale fusion, enabling the learning
of both high-frequency and low-frequency components. By
transmitting information at both feature-level and disparity-
level with skip connection, our method progressively yields
robust, fine-detail disparity maps.

Evaluation on Spring
We proceed to evaluate our method on the Spring dataset,
and the benchmark results are presented in Table 2. Our
method has now rank the second on the leaderboard. No-
tably, the Spring benchmark is relatively new, leading to the
inclusion of only recent methods in the comparison. To com-
pare with other fast methods, we fine-tune CoEx (Bangun-
harcana et al. 2021) and Fast-ACVNet (Xu et al. 2023b)
on the train set, utilizing their pretrained models from
the SceneFlow. Subsequently, we submit the results to the
Spring benchmark. These outcomes underscore the effec-
tiveness and efficiency of our pipeline. Even without the use
of Transformer architecture and extensive pretraining like
CroCo-Stereo (Weinzaepfel et al. 2023), our approach still
achieves commendable accuracy on high-detail datasets. As
demonstrated in Figure 6, our implicit structural informa-
tion integrated with contextual details contributes to stability
in smooth regions. Meanwhile, our high-resolution decoder

Figure 6: Visual results of hero frames from the Spring
benchmark. Our network outperform other fast methods not
only in high frequency details but also in low frequency
smooth regions.
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Method KITTI12
D1(%)

KITTI15
D1(%)

Middle
2px(%)

DPF (Duggal et al. 2019) 16.8 15.9 30.83
BGNet (Xu et al. 2021) 24.8 20.1 37
CoEx (Bangunharcana et al. 2021) 13.5 11.6 25.51
FastACV (Xu et al. 2023b) 12.4 10.6 20.13
IINet (ours) 11.6 8.5 19.57

Table 3: Generalization performance on multiple datasets.
The model is only trained on the SceneFlow.

enhances accuracy in intricate areas such as grass or hair,
contributing to our advantages in 1px metric over other fast
methods.

Generalization Ability
We proceed to assess the generalization capability of our
model on the KITTI and Middlebury datasets. The corre-
sponding results are presented in Table 3. The results af-
firm the good generalization capability of our model to
real-world datasets. Our approach integrates a robust mod-
ule based on confidence and leverages both inter and intra-
image information for prediction. Consequently, our model
demonstrates superior generalization ability. The results un-
derscores the potential of our model for real-world applica-
tions.

Ablation Study
We conduct ablation studies on our network by systemati-
cally removing these components from the full model. These
experiments are carried out using the SceneFlow with the
same training parameters. The experimental results are pre-
sented in Table 4.
Intra Information We initiate our ablation study by inves-
tigating the impact of fusing inter and intra information. In
this process, we remove the intra feature from the encoder.
Notably, the pixel error metric experiences a huge degra-
dation. We speculate that the inclusion of intra information
aids in reconstructing low-confidence regions. Conversely,
the network continues to exhibit good performance in terms
of the EPE metric. This outcome highlights the efficacy of
the implicit architecture for subpixel regression.
Residual Context-aware Upsampler For the ablation study
on the RCU, we make two modifications to the compo-
nents. Firstly, we substitute the context-aware upsampler
with nearest interpolation, and this yields a considerable
drop in performance. We speculate the high-resolution de-
coding network plays a role in regressing small residuals.
It struggles to rectify large errors in this setting. Employing
nearest interpolation directly would lead to the accumulative
errors. Secondly, we replace the residual disparity optimiza-
tion with independent regression, which further exacerbates
the performance degradation. Our speculation is rooted in
the fact that low-level features have limited receptive fields.
Directly regressing disparities is more susceptible to texture
influences, resulting in the emergence of artifacts.

Module EPE
(px)

D1
(%)

3px
(%)

Time
(ms)

Full 0.54 2.18 2.73 26

Ablation on Intra Information

w\o Intra 0.62 2.54 3.13 24

Ablation on RCU and Filter

w\o CU 0.69 2.72 3.27 25
w\o CU, F 0.73 2.82 3.42 25
w\o RCU 0.74 2.83 3.45 25

Ablation on FMSV

MSV3 0.74 2.83 3.45 25
MSV2 0.78 2.9 3.53 21
MSV1 0.84 3.03 3.7 19

Table 4: Ablation study results. CU represents for context-
aware upsampler. F represents for the confidence based fil-
tering. MSV represents for multi-scale score volume, the
number indicates the scales the volumes are constructed on.

Confidence Based Filtering We proceed the ablation study
on the confidence based filtering module. Removing this
module causes a decline in performance. Upon observing
the uncertainty maps, we find that low-confidence regions
are predominantly concentrated in the central areas of oc-
clusions and low-texture surfaces. Our speculation is that
noisy score volumes introduce randomness during the en-
coding phase. Subsequently, these noisy coarse disparities
directly impede the efficacy of the residual decoding mod-
ule. Thus, the application of a filtering operation becomes
important in rectifying these areas.
Multi-scale Score Volume Lastly, we perform ablation on
the FMSV by progressively diminishing the scale of score
volumes, starting from 1/2, then to 1/4, and finally down
only volume at 1/8 resolution is constructed. As the levels re-
duced, the results consistently degrade, with the EPE metric
showing a more pronounced decline. This trend underscores
the essential role of inter information for accurate disparity
prediction. It is impractical to discard the score volumes and
rely solely on the context features for disparity prediction,
as demonstrated by empirical evidence.

Conclusion
We introduce a novel real-time stereo network based on ef-
ficient implicit 2D network instead of intricate 3D CNN. To
counter degradation, we adopt a multi-pronged approach.
Initially, we incorporate intra-information to facilitate in-
formation propagation. Subsequently, the Fast Multi-scale
Score Volume and Confidence Based Filtering modules are
developed to enhance the quality of inter-information. Fur-
thermore, we elevate the accuracy and resilience of the 2D
network by enhancing fusion at both feature and disparity
levels. As a result, our network strikes a well balance be-
tween accuracy and efficiency.
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