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Abstract

Vision transformers (ViTs) quantization offers a promising
prospect to facilitate deploying large pre-trained networks on
resource-limited devices. Fully-binarized ViTs (Bi-ViT) that
pushes the quantization of ViTs to its limit remain largely
unexplored and a very challenging task yet, due to their un-
acceptable performance. Through extensive empirical analy-
ses, we identify the severe drop in ViT binarization is caused
by attention distortion in self-attention, which technically
stems from the gradient vanishing and ranking disorder. To
address these issues, we first introduce a learnable scaling
factor to reactivate the vanished gradients and illustrate its
effectiveness through theoretical and experimental analyses.
We then propose a ranking-aware distillation method to rec-
tify the disordered ranking in a teacher-student framework.
Bi-ViT achieves significant improvements over popular DeiT
and Swin backbones in terms of Top-1 accuracy and FLOPs.
For example, with DeiT-Tiny and Swin-Tiny, our method
significantly outperforms baselines by 22.1% and 21.4% re-
spectively, while 61.5× and 56.1× theoretical acceleration
in terms of FLOPs compared with real-valued counterparts
on ImageNet. Our codes and models are attached on https:
//github.com/YanjingLi0202/Bi-ViT/

Introduction
Transformers, which have gained far-flung fame in natural
language processing (NLP) area (Devlin et al. 2018; Qin
et al. 2022), are also attracting increasing attention in lots of
computer vision (CV) tasks, such as object detection (Car-
ion et al. 2020), image classification (Dosovitskiy et al.
2020) and many others (He et al. 2022; Tian et al. 2022),
impelling the widespread research on vision transformers
(ViTs). There has a natural fit for ViTs to achieve better
performance simply by training a larger model on a larger
data set. For example, historical records show better perfor-
mance of a ViT-H model (Dosovitskiy et al. 2020) accompa-
nying with astonishing 632M parameters and 162G FLOPs.
Such a high model complexity poses a great challenge to
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Figure 1: Performance of real-valued and quantized
DeiT (Touvron et al. 2021) with varying bit-widths. We re-
port results with (a) DeiT-Tiny and (b) DeiT-Small on Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012), respec-
tively. Here 8-bit DeiT is quantized with PTQ method (Lin
et al. 2022) and 2/3/4 bit DeiT is trained with QAT
method (Li et al. 2022). The binarized ViT is conducted with
the baseline method Bi-Real Net (Liu et al. 2018).

deploy models on platforms with short resource supplies.
Therefore, both academia and industry call for an ultimate
compression of these large models, and the past years have
witnessed some promising techniques such as network prun-
ing (Yang et al. 2021; Chen et al. 2023), low-rank decompo-
sition (Denil et al. 2013), knowledge distillation (Hao et al.
2021; Xu et al. 2022b; Li et al. 2023c), and quantization (Li
et al. 2022; Xu et al. 2023a; Li et al. 2023a).

Network quantization, which represents weights and ac-
tivations in a low-bit format, has got great earnestness of
many researchers for its reduced memory access costs and
increased compute efficiency as well as performance bene-
fit. Using the lower-bit quantized data, in particular to the
extreme 1-bit case, requires less data movement, both on-
chip and off-chip, and therefore reduces memory bandwidth
and saves significant energy. Existing documentary records
observe 32× less network size and 58× speedups beneficial
from xnor and bit-count logics for 1-bit networks (Raste-
gari et al. 2016). Earlier attempts (Liu et al. 2021b; Lin
et al. 2022) apply post-training quantization (PTQ) (Banner,
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Nahshan, and Soudry 2019; Zhong et al. 2022) directly to
ViTs without data-driven fine-tuning, causing sub-optimal
performance, in particular to impotent 1-bit ViTs. There-
fore, by quantizing while training, quantization-aware train-
ing (QAT) methods are more congenial to 1-bit ViTs. Ex-
tensive empirical studies (Liu et al. 2020; Xu et al. 2022a;
Qin et al. 2022; Xu et al. 2023b) have well demonstrated the
efficacy of QAT methods in 1-bit convolutional neural net-
works (CNNs) or BERTs, however, the application to 1-bit
ViTs remains not to be fully explored so far.

In this paper, we first build a fully-binarized ViT baseline,
a straightforward solution constructed upon popular bina-
rized QAT method of Bi-Real Net (Liu et al. 2018). Through
an empirical study of this baseline, we observe significant
performance drops on the ImageNet dataset (Krizhevsky,
Sutskever, and Hinton 2012), as shown in Fig. 1. For in-
stance, extending Bi-Real Net to binarize DeiT-Tiny (Tou-
vron et al. 2021) incurs a tremendous performance gap of
52.6% in the Top-1 accuracy compared to the 2-bit quantized
counterpart. Similar performance drops occur in DeiT-Small
as well. Delving into a deeper analysis, we find that the in-
compatibility of existing QAT methods mainly stems from
the binarized self-attention module in ViTs, where a simple
application of existing binarization methods (Liu et al. 2018)
leads to severe attention distortion, as plotted in Fig. 2 (a)
and Fig. 2 (b), especially in the diagonal scores of the map
which are supposed to be the most attentive.

In this paper we dig deeper into this attention distor-
tion problem. Through empirical analysis, we find that this
phenomenon is mainly caused by gradient vanishing due
to the straight-through-estimator (STE) (Bengio, Léonard,
and Courville 2013) and non-scaled binarization in self-
attention. Meanwhile, a simple distillation utilizing distilla-
tion token in DeiT (Touvron et al. 2021) and KL-divergence
in ReActNet (Liu et al. 2020) is ineffective in dismissing
the ranking disorder, since it neglects the relative order of
the attention map between the binarized ViTs and their real-
valued counterpart. To address the aforementioned issues,
a fully-binarized ViT (Bi-ViT) is developed by reactivating
the vanished gradients through a learnable scaling factor in
self-attention and a ranking-aware distillation to further ef-
fectively rectify the disordered ranking of attention (see the
overview in Fig. 3). In addition, we also provide both empir-
ical and theoretical analysis about how our method can rec-
tify the distorted attention and thus promote the optimization
of Bi-ViT. The contributions of our work are summarized as:

• We identify the bottleneck of a fully-binarized ViT
through empirical analyses and formulate the problem
in a theoretical perspective. Based on these, we intro-
duce learnable head-wise scaling factor into binarized
self-attention to reactivate the vanished gradients.

• We develop a ranking-aware distillation scheme to elim-
inate attention distortion. Our distillation method fully
utilizes the ranking-aware knowledge from the real-
valued teacher to promote the optimization of Bi-ViT.

• Our Bi-ViT is the first promising way to push the limit
of ViT quantization to the fully-binarized version. Ex-
tensive experiments on the ImageNet benchmark demon-
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Figure 2: Visualization of the attention map before softmax
in the first block of DeiT-Tiny (Touvron et al. 2021) on Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012). From the
left to right, is the baseline method (Liu et al. 2018), previ-
ous binarization method (Xu et al. 2022a), our Bi-ViT and
real-valued counterpart.

strate that Bi-ViT surpasses both the baseline and prior
binarized methods by a significant margin, achieving a
remarkable acceleration rate of up to 61.5×.

Related Work
Vision Transformer. Unlike traditional CNN-based mod-
els, ViTs are capable of capturing long-range visual rela-
tionships through the self-attention mechanism, and offer
a more generalizable paradigm without inductive bias spe-
cific to images. The starting ViT (Dosovitskiy et al. 2020)
views an image as a sequence of 16 × 16 patches and
uses a unique class token to predict the classification, yield-
ing promising results. Subsequently, many works, such as
DeiT (Touvron et al. 2021) and PVT (Wang et al. 2021),
have improved upon ViT, making it more efficient and appli-
cable to downstream tasks. However, these high-performing
ViTs have also accompanied with a significant number of
parameters and high computational overhead, limiting their
widespread applications. Thus, designing smaller and faster
ViTs has become a new trend. DynamicViT (Rao et al. 2021)
proposes a dynamic token sparsification framework to pro-
gressively and dynamically prune redundant tokens, achiev-
ing a competitive complexity and accuracy trade-off. Evo-
ViT (Xu et al. 2022c) proposes a slow-fast updating mecha-
nism that ensures information flow and spatial structure, re-
ducing both the training and inference complexity. While the
aforementioned works focus on efficient model design, this
paper aims to boost compression and acceleration through
binarization.
Network Binarization. Network binarization is a technique
originally proposed to train convolutional neural networks
(CNNs) with binary weights. BinaryConnect (Courbariaux,
Bengio, and David 2015) is the precursor to BinaryNet,
where the parameters are binary while the activations re-
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Figure 3: Overview of the proposed Bi-ViT framework. We introduce the learnable scaling factor in an architecture perspective
and a ranking-aware distillation scheme incorporated in the optimization process. From left to right, we respectively show the
detailed architecture of single block in Bi-ViT and the distillation framework of Bi-ViT.

main in full-precision states. XNOR-Net (Rastegari et al.
2016) was introduced to improve convolution efficiency by
binarizing the weights and inputs of convolution kernels. Bi-
Real Net (Liu et al. 2018) explores a new variant of resid-
ual structure to preserve the information of real activations
before the sign function, with a tight approximation to the
derivative of the non-differentiable sign function. ReAct-
Net (Liu et al. 2020) replaces the conventional PReLU and
the sign function of the BNNs with RPReLU and RSign
with a learnable threshold, thus improving the performance
of BNNs. RBONN (Xu et al. 2022a) introduces a recurrent
bilinear optimization to address the asynchronous conver-
gence problem for BNNs, which further improves the perfor-
mance of BNNs. DCP-NAS (Li et al. 2023b) proposes an ar-
chitecture with better performance on binarized format than
real-valued counterpart. These techniques improve the effi-
ciency and accuracy of binary neural networks (BNNs) and
allow them to be applied in practical applications. Majori-
ties of these techniques consider non-scaled binarization in
activations, which is beneficial to conventional CNNs while
causing gradient mismatch issue for the pecularity of self-
attention mechanism in ViTs.

Background
Multi-Head Self-Attention and Binarization
For a multi-head self-attention (MHSA) module, we de-
note its query, key, and value set as {a{q,k,v} ∈ Rh×N×d},
where h denotes head number, N and d represent the patch
and channel numbers of each head. Specifically, N =
(Win//W

P
in) × (Hin//H

P
in) where Win and Hin are the

width and height of the feature, WP
in, HP

in are the width
and height of patch maps respectively. Then, the attention
score A and MHSA module output aout are computed as
follows (Vaswani et al. 2017):

A = softmax[(aq · a⊤k )/
√
d],

aout = A · a⊤v ,
(1)

where softmax(·) represents the softmax operation. Intend-
ing to represent query, key, value and attention score, i.e.,
aq , ak, av and A, in a 1-bit format, Eq. (1) changes into:

A = softmax[(baq
· b⊤

ak
)/
√
d],

aout = bA · b⊤
av
.

(2)

We follow the common network binarization meth-
ods (Rastegari et al. 2016) that use the sign function
b· = sign(·) in the binary forward pass, and STE (Ben-
gio, Léonard, and Courville 2013) ∂b·

∂· = 1|·|≤1 to com-
pute the gradient for sign function in its backward pass.
We omit the non-linear function here for simplicity. For
all the projection and linear layers in binarized ViTs, we
conduct binarization following (Qin et al. 2022; Liu et al.
2018) as aout = bain

· (αw ◦ bw)
⊤ = αw ◦ (bain

· b⊤
w)

where αw = {α1
w, α

2
w, ..., α

Cout
w } ∈ RCout

+ is known as the
channel-wise scaling factor vector (Rastegari et al. 2016)
and ◦ represents channel-wise multiplication. The matrix
multiplication process, i.e., bain

· b⊤
w , can be executed by

the efficient XNOR and Bit-count instructions on edge de-
vices.

Bottleneck of Fully-Binarized ViTs
The high-performing ViTs are built on premise of trans-
former’s supreme ability to model the long-range relation-
ships thanks to the attention mechanism within the MHSA
module. Unfortunately, a binarized version of weights and
inputs significantly weakens the representation ability. In ad-
dition, the sign function and clamp operation also damage
the optimization of backpropagation. To be more evident, we
perform quantitative ablative experiments where we replace
weights or activations in each module of the real-valued
DeiT-Tiny (Touvron et al. 2021) with a binarized one and
report the resulting Top-1 accuracy drop on the ImageNet
dataset (Krizhevsky, Sutskever, and Hinton 2012) after a to-
tal of 50 training epochs. Fig. 4 reports the results and we go
on a deeper analysis below.
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Figure 4: Performance of fully-binarized DeiT-Tiny on Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012) with dif-
ferent binarized/real-valued settings.

Module Degradation. By gradually replacing the multi-
layer perceptron (MLP) and MHSA modules with real-
valued weights or activations, we have discovered that main-
taining the MLP as “w1a1” (all weights and activations in
the MLP are binarized) still results in satisfactory perfor-
mance. For instance, keeping MLP as “w1a1” while keeping
MHSA as “w1a32” obtains 26.3% Top-1 accuracy, which
might be acceptable comparing to the 55.2% of real-valued
DeiT-Tiny when taking into consideration 47.3× accelera-
tion rates. On the contrast, when maintaining MHSA mod-
ule as “w1a1”, we observe a significant drop in performance.
To be more specific, even when the MLP was maintained
as “w32a32”, we still observe a significant 50.8% decrease
in Top-1 accuracy (from 55.2% to 4.4%). This result in-
dicates that using binarized weights and activations in the
MHSA module can have a substantial negative impact on
the model’s performance, even when other parts retain in
real-valued states.
Operation Degradation. To better understand the impact of
fully-binarized ViT’s performance, we conduct further anal-
yses by examining the operations within the MHSA module.
Specifically, when we maintain the self-attention activations
in Eq. (1) as real-valued (“a32”), we observe only a rela-
tively small decrease in performance from 48.8% to 37.6%.
However, when the self-attention activations in Eq. (2) are
binarized, significant drops in accuracy occur from 48.8%
to 7.6%. This finding highlights the importance of the self-
attention process within the MHSA module and suggests
more efforts to mitigate the negative impact of binarization
on the MHSA module.

Our Bi-ViT
In this section, we propose to dismiss the affect of gradient
mismatch mentioned in Sec. 4.1 from perspectives of gradi-
ent approximation in Sec. 4.2 and intermediate distillation in
Sec. 4.3.

Gradient Mismatch in Self-Attention
With conclusion from the experimental results in Sec. 3.2
that self-attention process, i.e., Eq. (2), is the most critical
part causing the performance drops. We attempt to analyze
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Figure 5: Gradient mismatch between Eq. (5) and Eq. (7).

the underlying reasons for this phenomenon from an opti-
mization perspective. For simplicity, we derive the gradient
mismatch in aq as an example, and the analysis can be ap-
plicable to explain ak as well. We first represent the features
before softmax(·) in Eq. (2) as:

p = (baq
· b⊤

ak
.)/

√
d. (3)

The gradient of ahi,n,c
q w.r.t. A is formulated as:

∂A

∂ahi,n,c
q

=
∂A

∂phi,n,n′ · ∂p
hi,n,n′

∂bhi,n,c
aq

·
∂bhi,n,c

aq

∂ahi,n,c
q

, (4)

where hi ∈ Rh, n & n′ ∈ RN , c ∈ Rd and the gradient of
ak is likewise. The explicit form of the first item ∂A

∂phi,n,n′

in Eq. (4) is:

∂A

∂phi,n,n′
=
∂ softmax(phi,n,n′)

∂phi,n,n′

= Ahi,n,n′ ⊗ (1−Ahi,n,n′),

(5)

where ⊗ denotes Hadamard product. And the second item is
formulated as:

∂phi,n,n′

∂bhi,n,c
aq

=
∂bhi,n,c

aq
· b⊤hi,c,n

′
ak

∂bhi,n,c
aq

= b⊤hi,c,n
′

ak
/
√
d,

(6)

result of which is therefore correlated with bak
. The third

item is solved through STE (Bengio, Léonard, and Courville
2013) as:

∂bhi,n,c
aq

∂ahi,n,c
q

= 1|ahi,n,c
q |≤1

. (7)

Combing Eq. (5)−Eq. (7), we have the final gradient form
in fully-binarized ViTs as:

∂A

∂ahi,n,c
q

=
∂A

∂phi,n,n′ · ∂p
hi,n,n′

∂bhi,n,c
aq

·
∂bhi,n,c

aq

∂ahi,n,c
q

= Ahi,n,n′(1−Ahi,n,n′) · bhi,c,n
′

ak
· 1|ahi,n,c

q |≤1
/
√
d.

(8)
Considering bhi,n,:

aq
= [1, · · · , 1] and ·bhi,n

′,:
ak

=

[1, · · · , 1] as the extreme condition, bhi,n,:
aq

· b⊤hi,:,n
′

ak
= d.

Therefore, a specific element in baq
·b⊤

ak
is ∈ {−d, · · · , d}.
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We plot the curve of a specific element in the first item be-
tween [−64, 64] in Fig. 5 (a) as d = 64 in DeiT-Tiny (Tou-
vron et al. 2021). We observe ∂A

∂phi,n,n′
sharply magni-

fied when phi,n,n′ increases. As shown in Fig. 5 (b), when

phi,n,n′ has a large magnitude, |aq| > 1 and
∂b

hI,n,c
aq

∂a
hi,n,c
q

=

0 . Thus the multiplication of these two items leads to
∂A

∂a
hi,n,c
q

= 0, likewise for ak. Therefore we formulate the

gradient mismatch phenomenon in the aforementioned the-
oretical analysis. And such gradient mismatch leads to dis-
torted gradient in the optimization of aq & ak and therefore
degrades performance of fully-binarized ViTs.

Learnable Head-wise Scaling Factor
As one of the solution to the above mentioned problem,
we propose a head-wise scaling factor binarization scheme
for the self-attention process, where the scaling factors are
learned during training to first modify the gradient clip range
in Fig. 5(b). Eq. (2) is changed into:

Ã = softmax(p̃),

p̃ = (αq ⊗αk) ◦ (baq
· b⊤

ak
)/
√
d

= αq;k ◦ (baq
· b⊤

ak
)/
√
d,

(9)

and
ãout = (αA ◦ bA) · (αv ◦ bav )

⊤

= (αA ⊗αv) ◦ (bA · b⊤
av
)

= αA;v ◦ (bA · b⊤
av
),

(10)

where ba· = sign( a·
α·

), αq , αk, αv and αA are the head-
wise learnable scaling factors in binarized MHSA, where
α{q,k,v,A} = {α1

{q,k,v,A}, α
2
{q,k,v,A}, · · · , α

h
{q,k,v,A}} ∈

Rh
+. The second rows in Eq. (9) & Eq. (10) are established

since the scaling factors are aligned with the head dimen-
sion, which is independent with the matrix multiplication
operation. Thus, αq;k = {α1

q;k, α
2
q;k, · · · , αh

q;k} ∈ Rh
+ and

αA;v = {α1
A;v, α

2
A;v, · · · , αh

A;v} ∈ Rh
+.

Consequently, the gradient ∂Ã
∂a:,n,c

q
in Eq. (8) is further for-

mulated in our Bi-ViT as:

∂Ã

∂ahi,n,c
q

= Ãhi,n,n′
(1− Ãhi,n,n′

)︸ ︷︷ ︸
∂Ã

∂phi,n,n′

·αhi
q;k ◦ bhi,c,n

′
ak︸ ︷︷ ︸

∂phi,n,n′

∂b
hi,n,c
aq

·1|ahi,n,c
q |≤αq︸ ︷︷ ︸
∂b

hi,n,c
aq

∂a
hi,n,c
q

.

(11)
Since softmax(.) and ◦ are aligned with different

dimensions, the value of Eq. (5) remains unchanged
(softmax(p) = softmax(αq;k ◦ p)). As can be seen, the
threshold of gradient clip in Eq. (7) changes from 1 into αq ,
which means that we can surpass the occurance of gradient
mismatch by modifying the value of αq . Note that the scal-
ing factor (αq) is to imitate the magnitude of the latent ac-
tivations. When p̃ has a large magnitude, i.e., in the circled
part of Fig. 5 (a), αq also tends to be larger and ahi,n,c

q lo-

cates in the field that
∂b

hi,n,c
aq

∂a
hi,n,c
q

> 0. Thus the vanishing gradi-

ents are reactivated through the introduced learnable scaling
factor.

Ranking-aware Distillation for Bi-ViT
Fig. 2 illustrates a significant difference in the attention
map’s relative order between Bi-RealNet (a) and its real-
valued counterpart (c). This difference could result in a no-
table decrease in performance. To address this issue during
binarized training, a ranking-aware distillation in a teacher-
student framework is introduced:

Lranking =
L∑

l=1

∥ψ(AT )− ψ(AS)∥2, (12)

where AT and AS represents the attention scores from the
real-valued teacher and binarized student. ψ(·) denotes the
function for obtaining the ranking, i.e., relative order of an
attention score, which is formulated as:

ψ(A:,n,:) =

{
A:,n,: −A:,n−1,:, if 0 < n ≤ N − 1

A:,0,: −A:,N−1,:, otherwise .
(13)

Detailed relative order computation can be seen in the right
part of Fig. 3. We implement our Bi-ViT under the teacher-
student framework (Touvron et al. 2021), thus the final ob-
jective of our method is formulated as:

L = Ldist + λLranking, (14)

where λ is a hyper-parameter to balance these two loss func-
tions.

Experiments
In this section, we evaluate the performance of the proposed
Bi-ViT model for image classification task using popular
DeiT (Touvron et al. 2021) & Swin (Liu et al. 2021a) back-
bones and object detection task using Mask R-CNN (He
et al. 2017) & Cascade (Cai and Vasconcelos 2018) Mask
R-CNN with Swin-Tiny (Liu et al. 2021a) backbone. To the
best of our knowledge, there is no publicly available source
codebase on fully-binarized ViTs at this point, so we re-
implement the baseline i.e., Bi-Real Net (Liu et al. 2018)
methods.

Datasets and Implementation Details
Datasets. The experiments are conducted on the ImageNet
ILSVRC12 dataset (Krizhevsky, Sutskever, and Hinton
2012) for image classification task. The ImageNet dataset is
challenging due to its large scale and greater diversity. There
are 1000 classes and 1.2 million training images, and 50k
validation images in it. In our experiments, we use the clas-
sic data augmentation method described in (Touvron et al.
2021).
Experimental settings. In our experiments, we initialize
the weights of binarized model with the pretrained real-
valued model. The binarized model is trained for 300 epochs
with batch-size 512 and the base learning rate 5e−4 with-
out warm-up scheme. For all the experiments, we apply
LAMB (You et al. 2020) optimizer with weight decay set as
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Figure 6: Effect of hyper-parameter λ on Ima-
geNet (Krizhevsky, Sutskever, and Hinton 2012).

0, following DeiT III (Touvron, Cord, and Jégou 2022). Note
that we keep the patch embedding (first) layer and the clas-
sification (last) layer as real-valued, following (Esser et al.
2019).
Backbone. We evaluate our binarized method on two pop-
ular vision transformer networks: DeiT (Touvron et al.
2021) and Swin Transformer (Liu et al. 2021a). The DeiT-
Tiny, DeiT-Small, DeiT-Base, Swin-Tiny and Swin-Small
are adopted as the backbone models, whose Top-1 accuracy
on ImageNet dataset are 72.2%, 79.9%, 81.8%, 81.2%, and
83.2% respectively. For a fair comparison, we utilize the of-
ficial implementation of DeiT and Swin Transformer.

Ablation Study
Hyper-parameter Selection. We λ of Eq. (14) in this
part, with experiments conducted on ImageNet (Krizhevsky,
Sutskever, and Hinton 2012) dataset. We show the model
performance (Top-1 accuracy) with different setups of
hyper-parameter λ in Fig. 6, in which the performances in-
crease first and then decrease with the uplift of λ from left
to right. Since λ controls the importance of Lranking , we
show that the vanilla baseline (λ = 0) performs worse than
any versions with Ranking-aware Distillation loss (λ > 0),
showing the proposed distillation scheme is necessary. With
the varying value of λ, we find λ = 5 boost the perfor-
mance of our Bi-ViT, achieving 28.7%, 40.9% and 50.7%
Top-1 accuracy on ImageNet (Krizhevsky, Sutskever, and
Hinton 2012) with DeiT-Tiny, DeiT-Small and Swin-Tiny
backbone, respectively.
Effectiveness of components. We conduct the ablative ex-
periments regarding the proposed components on DeiT-Tiny
network. Firstly, we compose the baseline network using
the binarization method following Bi-Real Net (Liu et al.
2018). As shown in the third row of Tab. ??, the baseline
networks only obtains 6.6% Top-1 accuracy, which is far
from satisfactory. With the introduction of our first novelty,
i.e., learnable scaling factor (LSF), the baseline network is
boosted by 17.8%, achieving 24.4% Top-1 accuracy. We also
observe the other contribution Ranking-aware Disitllation
(RD) singly promotes the baseline network by 5.9%, which
is also significant on ImageNet dataset. By combining the
two main contributions together, we get Bi-ViT, outperform-

ing the vanilla baseline by 22.1%.

Method #Bits Top-1(%)

Real-valued 32-32 72.1
Baseline (Bi-Real Net) 1-1 6.6
+ Learnable Scaling Factor (LSF) 1-1 24.4+17.8

+ Ranking-aware Distillation (RD) 1-1 12.5+5.9

+ LSF + RD (Bi-ViT) 1-1 28.7+22.1

Table 1: Evaluating the components of Bi-ViT based on
DeiT-Tiny (Touvron et al. 2021) backbone. “#Bits” denotes
the bit-width of weights and activations.

Results on Image Classification
The experimental results are shown in Tab. ??. We compare
our method with 1-bit methods including BiBERT (Qin et al.
2022), RBONN (Xu et al. 2022a), and Bi-Real Net (Liu et al.
2018) based on the same frameworks for the task of im-
age classification with the ImageNet dataset. We also report
the classification performance of the low-bit training-aware
quantization method Q-ViT (Li et al. 2022) for further ref-
erence. We use model size and OPs following (Liu et al.
2018) in comparison to other bit-width models for further
reference. We firstly evaluate the proposed method on DeiT
models. For DeiT-Tiny backbone, compared with other bi-
nary methods, our Bi-ViT achieves significant performance
improvements. For example, our Bi-ViT surpasses the base-
line Bi-Real Net (Liu et al. 2018) by 22.1% Top-1 accuracy,
which is significant and meaningful for real-world applica-
tions. And it is worth noting that the proposed 1-bit model
significantly compresses the DeiT-Tiny by 61.5× on OPs.
The proposed method also boosts the performance of base-
line by 21.7% with the same architecture and bit-width us-
ing DeiT-Small bacobone, a significant improvement on the
ImageNet dataset. For larger DeiT-B, as shown in Tab. ??,
the performance of the proposed method outperforms the
Bi-Real Net by 20.8%, a large margin. Also note that the
proposed 1-bit model significantly compresses the DeiT-B
by 60.2× on OPs and 28.6× on model size.

Also, our method obtains convincing results on Swin-
transformers. As shown in Tab. ??, the performance of the
proposed method with Swin-Tiny outperforms the baseline
method by 21.4%, a large margin. For larger Swin-Small, the
performance of the proposed method outperforms the 1-bit
baseline by 21.5%. Also note that our method theoritically
accelerates the network by 58.3×, which demonstrates the
effectiveness and efficiency of our Bi-ViT.

Conclusion
In this paper, we present Bi-ViT, an improved version of
fully-binarized ViTs that offers a high compression ratio and
acceptable performance. Initially, we establish a empirical
framework for fully-binarized ViT and analyze the bottle-
necks of the baseline. Our empirical analysis shows that at-
tention distortion in MHSA is the primary cause of the sig-
nificant drop in ViT binarization, which results from gra-
dient vanishing and ranking disorder. To address these is-
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Network Method #Bits Size(MB) OPs(108) Top-1(%) Top-5(%)

Real-valued 32-32 22.8 12.3 72.2 91.1
4-4 3.0 1.6 74.3 91.7
3-3 2.3 0.8 71.5 91.2Q-ViT (Li et al. 2022)
2-2 1.7 0.4 59.0 81.8

BiBERT (Qin et al. 2022)
1.0 0.2

5.9 16.0
RBONN (Xu et al. 2022a) 6.3 16.9
Bi-Real Net (Liu et al. 2018) 6.6 17.1

DeiT-Tiny

Bi-ViT
1-1

28.7+22.1 51.7+34.6

Real-valued 32-32 88.2 45.5 79.9 95.0
4-4 11.4 5.8 80.9 94.9
3-3 8.7 3.0 79.0 94.2Q-ViT (Li et al. 2022)
2-2 6.0 1.5 72.1 90.3

BiBERT (Qin et al. 2022)
3.4 0.8

17.4 29.7
RBONN (Xu et al. 2022a) 18.5 30.0
Bi-Real Net (Liu et al. 2018) 19.2 30.3

DeiT-Small

Bi-ViT
1-1

40.9+21.7 65.0+34.7

Real-valued 32-32 346.2 174.7 81.8 95.6
4-4 44.1 22.0 83.0 96.1
3-3 33.4 11.1 81.0 95.1Q-ViT (Li et al. 2022)
2-2 22.7 5.7 74.2 92.2

BiBERT (Qin et al. 2022)
12.1 2.9

24.5 36.3
RBONN (Xu et al. 2022a) 26.1 38.6
Bi-Real Net (Liu et al. 2018) 26.5 38.8

DeiT-Base

Bi-ViT
1-1

47.3+20.8 72.8+34.0

Real-valued 32-32 114.2 44.9 81.2 95.5
4-4 14.6 5.8 82.5 97.3
3-3 11.2 3.0 80.9 96.1Q-ViT (Li et al. 2022)
2-2 10.0 1.6 74.7 92.5

BiBERT (Qin et al. 2022)
4.2 0.8

34.0 46.9
RBONN (Xu et al. 2022a) 33.8 46.7
Bi-Real Net (Liu et al. 2018) 34.1 46.9

Swin-Tiny

Bi-ViT
1-1

55.5+21.4 79.4+32.5

Real-valued 32-32 199.8 87.5 83.2 96.2
4-4 25.3 11.1 84.4 98.3
3-3 19.2 5.6 82.7 97.5Q-ViT (Li et al. 2022)
2-2 13.0 2.9 76.9 94.9

BiBERT (Qin et al. 2022)
6.9 1.5

39.4 53.0
RBONN (Xu et al. 2022a) 39.0 52.7
Bi-Real Net (Liu et al. 2018) 39.2 52.8

Swin-Small

Bi-ViT
1-1

60.7+21.5 83.9+31.1

Table 2: Experiments with DeiT (Touvron et al. 2021) and Swin (Liu et al. 2021a) on ImageNet (Krizhevsky, Sutskever,
and Hinton 2012). “#Bits” denotes the bit-width of weights and activations. We report the Top-1(%) and Top-5(%) accuracy
performances. The bold denotes the best result with binarized weights and activations.

sues, we introduce a learnable scaling factor that reactivates
vanished gradients, which we illustrate through both theo-
retical and experimental analysis. Additionally, we propose
ranking-aware distillation for Bi-ViT, which rectifies dis-
ordered ranking in a teacher-student framework. Our work
provides a comprehensive analysis and effective solutions
for the crucial issues in ViT full binarization, paving the way
for the extreme compression of ViT.
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