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Abstract
Text-guided image manipulation has attracted significant at-
tention recently. Prevailing techniques concentrate on image
attribute editing for individual objects, however, encountering
challenges when it comes to multi-object editing. The main
reason is the lack of consistency constraints on the spatial
layout. This work presents a multi-region guided image ma-
nipulation framework, enabling manipulation through region-
level textual prompts. With MultiDiffusion as a baseline, we
are dedicated to the automatic generation of a rational multi-
object spatial distribution, where disparate regions are fused
as a unified entity. To mitigate interference from regional fu-
sion, we employ an off-the-shelf model (CLIP) to impose
region-aware spatial guidance on multi-object manipulation.
Moreover, when applied to the StableDiffusion, the presence
of quality-related yet object-agnostic lengthy words ham-
pers the manipulation. To ensure focus on meaningful object-
specific words for efficient guidance and generation, we intro-
duce a keyword selection method. Furthermore, we demon-
strate a downstream application of our method for multi-
region inversion, which is tailored for manipulating multi-
ple objects in real images. Our approach, compatible with
variants of Stable Diffusion models, is readily applicable for
manipulating diverse objects in extensive images with high-
quality generation, showing superb image control capabili-
ties. Code is available at https://github.com/liyiming09/multi-
region-guided-diffusion.

1 Intoduction
In recent years, text-guided image synthesis (Ruiz et al.
2023; Kawar et al. 2023; Ding et al. 2021) has received con-
siderable attention. It is particularly noteworthy the work of
the diffusion model (Ho, Jain, and Abbeel 2020; Nichol and
Dhariwal 2021; Song, Meng, and Ermon 2020), which has
emerged as the leading approach, renowned for its remark-
able capacity to synthesize images with compelling realism
and diversity. Pre-trained diffusion models (Rombach et al.
2022; Saharia et al. 2022b) offer great potential in the field
of digital content creation, particularly in image manipula-
tion (Kong et al. 2023; Han et al. 2023). In contrast, text-
based operations (Crowson et al. 2022; Li et al. 2019a) strug-
gle to provide users with intuitive control over generated
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Figure 1: Fig.(a) illustrates unexpected changes from re-
gion addition. In the latent space, object additions and
removals incur regional interference, leading to distorted
limbs. Fig.(b) demonstrates that although quality-related
prompts have a significant influence on generation, they are
unrelated to editing. Focusing on object-specific and editing-
related prompts enhances the quality of manipulation.

content. In practice, challenges persist in text-driven image
manipulation within real-world applications (Valevski et al.
2022; Zhu et al. 2020).

Inherited from the superior performance of diffusion
models (Mao, Wang, and Aizawa 2023; Voynov, Aberman,
and Cohen-Or 2022), certain diffusion-based image editing
methodologies (Wang et al. 2022b; Meng et al. 2021; Li
et al. 2019b; Sheynin et al. 2022), were developed to achieve
precise entity-level manipulations. However, these method-
ologies primarily focus on attribute editing for individual ob-
jects, encountering challenges when there are multiple ob-
jects within a real-world scene due to complex spatial lay-
outs among them. For example, face editing (Ju et al. 2023;
Pu et al. 2022) involves editing attributes such as age, ex-
pression, and skin color. Pose transfer (Men et al. 2020) al-
lows editing of attributes like posture, clothing, and texture.
Notably, these manipulations are limited to editing individ-
ual objects and achieving attribute modifications for a single
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object without altering the background and the structure of
the image.

The efficacy of the text-driven image generation/manip-
ulation (Bar-Tal et al. 2022; Couairon et al. 2022) is com-
promised in scenarios containing multiple entities. For ex-
ample, modifying the number of entities frequently induces
substantial modifications in image structure. In certain in-
stances, it even leads to failing generation within StableDif-
fusion. Therefore how to add, edit, or remove entities while
preserving the original image structure is the main challenge
in multi-object image generation/manipulation..

Recent entity-level editing methods (Huang et al. 2023;
Hertz et al. 2022) have been inspired by exerting control over
the latent space or attention maps (Chen, Laina, and Vedaldi
2023). Their constraints on the initial image layout hinder
the ability to make substantial structural modifications, not
to mention the process of object addition or removal. On the
other hand, certain methods (Bar-Tal et al. 2023; Jiménez
2023) have advanced their generation strategies by propos-
ing frameworks for sequential generation and fusion, facil-
itating the integration of disparate regions into a coherent
entity. They can achieve object addition and removal, yet
they suffer from content preservation issues. Some editing
methods (Avrahami, Fried, and Lischinski 2023; Avrahami,
Lischinski, and Fried 2022) reliant on additional input masks
are confined to local modifications and incapable of address-
ing global editing, such as altering the image background.
Besides, the complex input requirements impede their prac-
tical applications.

To address more challenging image manipulation tasks,
we propose a multi-region guided diffusion (MRGD) frame-
work. Firstly, utilizing a pre-trained StableDiffusion (Rom-
bach et al. 2022) model, we employ MultiDiffusion (Bar-Tal
et al. 2023) as the starting point, facilitating the model to dy-
namically generate and fuse different regions. Subsequently,
we introduce an improved attention control scheme into the
generation. Similar to the Prompt-to-Prompt (2022), we se-
lect and inherit attention maps from the source image to the
target image, enabling manipulation while simultaneously
preserving the original structure and composition. However,
a straightforward combination of the aforementioned algo-
rithms results in a notable drawback, where the fusion of
regions introduces interference with each other, thereby dis-
rupting the structural constraints in attention control and re-
sulting in distortions. We term it as “regional interference”,
as shown in Fig. 1. We propose a multi-region guidance
strategy to impose region-level constraints in the spatial di-
mension, enabling the network with the ability to perceive
every region and mitigate regional interference.

Meanwhile, as shown in Fig. 1, practical applications face
inefficiencies due to the inclusion of excessively lengthy
quality-related yet object-agnostic prompts (e.g., StableD-
iffusion often employs extensive textual prompts). On one
hand, quality-related prompts have a significant impact on
the generated results. On the other hand, they are irrele-
vant to the manipulation. Hence, it is important to focus
on object-specific prompts, leading to finer details and en-
hanced editing quality, as shown in Fig. 1. Thus, we propose
a keyword selection method, which is further integrated into

guidance and attention control. We also demonstrate a down-
stream application of our method for multi-region nulltext-
inversion (Mokady et al. 2023), tailored for manipulating
real images containing multiple objects.

With the introduction of MRGD, we achieve flexible and
effective control over image manipulation through provided
region-level textual prompts. Our contributions are summa-
rized as follows:

• We propose a framework for text-guided image manipu-
lation which can be directly plugged into existing diffu-
sion models without additional training. The framework
enables precise control over multiple region-level objects
during high-quality image generation.

• We introduce a multi-region guidance and keyword se-
lection mechanism, endowing the model awareness of re-
gions and keywords. This approach effectively mitigates
regional interference, resulting in improved image qual-
ity, particularly along region boundaries.

• Our approach is tailored for practical applications, with
all experiments conducted on the StableDiffusion WebUI
platform. Additionally, through optimization in existing
inversion techniques, our method preliminarily extends
its applicability to real images.

2 Related Work
Diffusion Model. Diffusion models (Zhang et al. 2023;
Croitoru et al. 2023) have demonstrated state-of-the-art per-
formance in various generation benchmarks, encompass-
ing class-conditional image generation (Zheng et al. 2022;
Dhariwal and Nichol 2021; Ho and Salimans 2022), text-
guided image synthesis (Hinz, Heinrich, and Wermter 2020;
Qiao et al. 2019; Li et al. 2023), and layout-to-image trans-
lation (Zheng et al. 2023; Sun and Wu 2021; Wang et al.
2022a). Concerning generation quality, ADM-G (Dhari-
wal and Nichol 2021) introduces classifier guidance condi-
tioned on class labels. Following this work, SDG (Liu et al.
2023) enhances the dimensions and depth of guidance for
higher synthetic quality and image-text alignment. MultiD-
iffusion (Bar-Tal et al. 2023) facilitates multi-region genera-
tion and fusion, achieving harmonization across various re-
gions in large-scale images. In addition, the establishment of
StableDiffusion (Rombach et al. 2022) and its open-source
community have truly facilitated the practical application of
diffusion models (Ulhaq, Akhtar, and Pogrebna 2022), sig-
nificantly inspiring users’ creativity.
Text-guided Image Manipulation. Recent years have
witnessed significant advancements in text-guided image
manipulation (Brooks, Holynski, and Efros 2023; Saharia
et al. 2022a) using diffusion models. GLIDE (Nichol et al.
2021) and DALL·E 2 (Ramesh et al. 2022) focus on text-
driven open-domain image synthesis and local image edit-
ing. BlendedDiffusion (2022) enables local image editing
guided by hand-drawn masks. RDM (2023) leverages an ad-
ditional model for image-text alignment, thereby automat-
ically obtaining masks. Prompt-to-Prompt (2022) achieves
modifications to synthesized images by utilizing attention
control. However, they are incapable of making substantial
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Figure 2: The proposed Multi-Region Guided Diffusion framework. The left part of the framework illustrates the process of
region-wise denoising and attention control. Based on the preliminary results ẑt−1, the right part shows the details of the
keyword selection and region-aware guidance, utilizing information from various regions. Finally, we optimize and update
latent encodings through gradient optimization.

modifications to the structure of the image and face difficul-
ties in more challenging tasks such as object addition and
removal.

3 Method
In this section, we introduce our multi-region manipulation
framework. Our approach is initiated with MultiDiffusion as
the baseline. In Sec.3.1, we have elaborated on the approach
to implementing multi-region guidance with the awareness
of interacted objects. In Sec.3.2, the attention control strat-
egy for keyword selection is advanced to enhance the model
with manipulation capability in object-related areas. Finally,
downstream task (Roich et al. 2022; Tov et al. 2021) for real-
world image inversion is conducted in Sec.3.3.

3.1 Multi-Region-Guided Diffusion
MultiDiffusion. In order to achieve region-by-region im-
age generation, we adopt the strategy of MultiDiffusion
that binds together multiple diffusion generation processes
with shared parameters. Specifically, we define R =
{rbg, r1, . . . , ri, . . . , rn, rtotal} as a set of regions, where
rbg represents a background region and ri denotes the i-th
region (i = 1, . . . , n). Each distinct region ri = (xi, Pi)
comprises a pair of controlling attributes: bounding box co-
ordinates denoted as xi = (x, y, h, w), and corresponding
textual prompts labeled as Pi. Considering the overall coher-
ence of the generated image, an additional region, denoted
as rtotal, is introduced. The textual prompts for rtotal unified
all individual regions as one entity.

For each region ri in the set R, we define a cropping
function Fi so that Ii = Fi (Ifi), where Ii is the image
for region ri and Ifi is the overall image. After compress-
ing the image I into the latent encoding z (Rombach et al.
2022), we employ MultiDiffusion (Bar-Tal et al. 2023) strat-
egy to combine intermediate diffusion results from multiple
regions, leading to:

zfi
t =

n+2∑
i=1

wi ⊗ F−1
i (zi

t)∑n+2
j=1 wj

, (1)

where zi
t denotes the intermediate diffusion result for the

region ri at time t, and wi are pixel-wise weights. F−1
i de-

notes the inverse function of Fi, serving as the restoration
process for the cropped region ri, as shown in Fig. 2.

MultiDiffusion facilitates the dynamic adaptation of the
diffusion process to various regions, harmonizing multiple
areas into a unified one to mitigate visual dissonance. As
shown in Alg.1, given a source image IS generated from a
set of regions RS , we aim to generate a target image, IT , by
changing the textual prompt of a specific region within RS .
We use RT to denote the set of regions of the target image
IT . Only the selected region to be edited in RT differs from
that of RS , while all other non-editable regions (inherent re-
gions) remain consistent with those in RS . It is challenging
for the manipulation to preserve the intrinsic characteristics
of the source image in the inherent regions while ensuring
alignment between the edited region and its prompts.
Multi-Region Guidance. In cases of overlap between
the edited region and inherent regions, MultiDiffusion in-
evitably gives rise to interference among them, leading to
unpleasing distortions, as shown in Fig.1. To mitigate the
interference issue, we employ a pre-trained CLIP segmenta-
tion model from RDM (Huang et al. 2023), denoted as guid-
ance model Φ, to impose spatial-aware guidance.

Firstly, for each region ri, users can provide several words
as initial keywords K̂i or leave them blank. Then, updating
K̂i with the keyword selection strategy from Sec. 3.2 to ob-
tain the final keywords Ki for region i, which filters out the
object-related keywords from Pi. Next, the guidance model
Φ provides sets of segmentation results, denoted as MS for
IS and MT for IT , corresponding to the keywords of each
region. Finally, we endow the model with region aware-
ness via image-text alignment constraints at region-level and
cross-image levels.

Concretely, a prior mask mi of each region i, except
rtotal, can be obtained from xi = (x, y, h, w). Then, as
shown in Fig. 2, the region-specific (RS) loss requires that
the segmentation results Mi = Φ(Ifi,Ki) from each Ki be
confined within the prior mask mi, denoted as Eq. 2:

LRS =
∑{S,T }

j

∑n+1

i
∥M j

i −M j
i ⊗mi∥22, (2)

Furthermore, the inter-image similarity (IS) loss maximizes
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Algorithm 1: Multi-Region Guided Diffusion
Input: A source input RS , a target input RT

Optional for real-word inversion: A real-word image IR

Output: A source image IS , a target image IT

1: zST ∼ N(0, 1) a unit Gaussian random distribution
2: if inversion then
3: for t = 0, 1, ...T − 1 do
4: zR,i

t+1 = ε(zR,i
t ), for each region i

5: end for
6: for t = T, T − 1, ..., 1 do
7: Null-text optimize for latent ẑRt and each region i

8: min
∅̃i

t

∥∥∥zR,i
t−1 − ẑR,i

t−1

(
ẑR,i
t , ∅̃i

t, Pi

)∥∥∥2
2

9: end for
10: zST ← ẑRT
11: end if
12: zTT ← zST
13: for t = T, T − 1, ..., 1 do
14: ÂT ← EDIT (AS , AT )
15: if inversion then
16: ∅t ← ∅̃t

17: end if
18: ẑS,fi

t−1 , ẑ
T ,fi
t−1 ← ϵθ(z

S,i
t , zT ,i

t |∅i
t, P

i) for region i
19: L ← λrsLRS + λisLIP + λipLIP

20: zS,fi
t−1 , z

T ,fi
t−1 ∼ N (µ+Σ∇ẑt−1L,Σ)

21: end for
22: IS , IT = D(ẑS,fi

0 , ẑT ,fi
0 )

23: return IS , IT

the mutual information between MS and MT with con-
trastive learning, denoted as Eq. 3:

LIS = InfoNCE(MS ,MT ), (3)

where InfoNCE() represents our utilization of In-
foNCE (Oord, Li, and Vinyals 2018), which enforces MS

and MT remain consistent in their corresponding regions
while minimizing similarity in non-corresponding regions.
Additionally, to prevent unintentional changes to inherent
region M, we developed inherent preservation (IP) loss,
which enforces content consistency within M in RGB
and latent space after manipulation, thereby enhancing the
preservation of non-editable objects:

LIP = (∥M⊗ (IS − IT )∥22 + ∥M⊗ (zS − zT )∥22), (4)

We set the diffusion guidance losses as a weighted sum,
which is summarized in Alg. 1.

3.2 Keyword-selected Attention Control
In text-guided image generation, complex textual descrip-
tions are typically necessary for fine-grained image control.
In fact, the visual attention maps of various prompts in Fig.
3 demonstrate that the quality-related but lengthy prompts
are object-agnostic, which may impede the model from dis-
tinguishing the object-specific keywords, potentially lead-
ing to low efficiency and poor comprehension for the entire
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Figure 3: KSSA. We first present object-related prompts
in green words and quality-related prompts in black words
for object 1. Subsequently, based on the entropy of cross-
attention maps, we perform sorting and selection to extract
the top N words (by default, N = 15). Within the cross-
attention block, we identify image features that are highly
similar to the N keywords and assign them higher attention
scores in the self-attention block.

scene. Therefore, we propose a keyword selection mecha-
nism based on cross-attention maps, i.e. extract and enhance
the most important words from the lengthy textual prompt
P . These selected keywords will be used as guidance for
multiple object manipulation in Sec. 3.1.

Our image manipulation algorithm adopts a keyword-
based attention control scheme to enhance Prompt-to-
Prompt, which imposes attention injection from source im-
age to target image for spatial layout control. However, the
strict constraints in Prompt-to-Prompt on the overall lay-
out limit its capacity for substantial structural modifications.
Thus, we propose an enhanced region-aware attention con-
trol strategy to manipulate the generation of multiple object
regions. Distinctive attention control strategies are assigned
to various regions, as illustrated in Eq. 5.

ÂT =


AS for the inherent region
Edit(AT , AS) for rtotal, if time step ≥ τ

AT for rtotal, time step < τ ,
(5)

where τ is a parameter that determines when to cease the
propagation of attention map AS , and Edit(AT , AS) rep-
resents the intuitive approach of Prompt-to-Prompt. Specifi-
cally, for object addition and removal, we utilize the prompt
refinement method in Prompt-to-Prompt, and for attribute
modification, we employ the word swap method. Please re-
fer to the appendix for details.

Aiming at selecting object-specific keywords, we save the
cross-attention map sets CA during the generation of rtotal,
which is normalized to [0, 255], as shown in Fig. 3. Then,
the image entropy is computed for each element CAi ac-
cording to the Eq.6:

HCAi
= −

255∑
j=0

p(j) log p(j), (6)

where p(j) represents the occurrence probability of pixel
value j ∈ [0, 255] in the histogram statistics of CAi. Sub-
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sequently, the N selected keywords Ki with smallest en-
tropy (Hu et al. 2022) in each region i are filtered out.

Currently, each prompt is treated equally without distinc-
tion. This results in a lower level of comprehension for the
scene, especially in overlapping areas. Therefore, to encour-
age the network to pay more attention to key entities in dif-
ferent regions, and thus better understand the relationships
between multiple regions during generation, we propose
Keyword-selected Self-Attention (KSSA). The core objec-
tive of KSSA is to diminish the emphasis of the model on
quality-related yet object-agnostic prompts, thus amplifying
the attention on object-specific representations.

KSSA is divided into two stages. First, as shown in Fig.
3, the highlighted localized areas in attention maps depict
image embeddings with higher activation related to the key-
words Ki. During the cross-attention phase, we need to
record the top half image embeddings with higher similarity
to Ki. Then, we increase the weights of the selected image
embeddings in self-attention, emphasizing their contribution
to the weighted sum result. KSSA enables the network to
focus more on regions with higher responses to the object-
specific keywords, resulting in finer details and heightened
image-test consistency.

3.3 Multi-region Inversion
The further editing of real-world images holds value in ma-
nipulation. When handling multi-object real images, pre-
vailing inversion methods (Mokady et al. 2023; Huberman-
Spiegelglas, Kulikov, and Michaeli 2023; Gal et al. 2022)
guided by textual prompts can only reconstruct and edit in
the global region. However, the presence of multiple objec-
tives in the prompts can disrupt the initial layout, causing
impractical distortions.

To alleviate this impact, we incorporate region-level con-
trol in the inversion. A multi-region inversion is introduced
to map sub-regions into latent space. By extending null-text
inversion (Mokady et al. 2023), we employ source prompts
as controls for reconstruction, yielding initial latent noise ẑT
and a trainable unconditional embedding set ∅̃t at the region
level. Conditioned on multi-region ∅̃t, we engage in manip-
ulation during reconstruction to achieve the edited image.

Multi-region inversion effectively counteracts interfer-
ence from external information for the current sub-region,
providing finer guidance during inversion, which allows for
high-quality reconstruction and editing while maintaining
the real-world image layout.

4 Experiement
4.1 Implementation Details
Dataset. To the best of our knowledge, there exist no stan-
dardized benchmarks for this challenging task of text-guided
image manipulation. Thus, we utilized open-source models
from the StableDiffusion-WebUI community to conduct im-
age manipulation, with a focus on a wide range of subjects
including humans, vehicles, and animals. More specifically,
we sourced a variety of models and prompts from the com-
munity, which we then integrated with manually designated
region coordinates (x, y, h, w) to generate a collection of 61

input pairs (RS ,RT ) for ensuing experimentation. Specifi-
cally, there are 25 pairs for object addition, 24 pairs for ob-
ject removal, and 12 pairs for attribute modification. All ma-
nipulation results were uniformly sized to 512× 512 pixels.

Details. For the guidance model, we utilized CLIP ViT-
B/16 (Radford et al. 2021). All experiments were executed
on one RTX 3090 GPU with PyTorch. Additionally, we set
the default parameter to λrs = 1000, λis = 2000, λip =
300, τ = 0.5. To ensure result quality and parameter consis-
tency, we employed a diffusion step T with a DDIM-solver
of 20 in all experiments. An introduced hyperparameter, de-
noted as Ttotal, governs the incorporation of rtotal into the
generation process after Ttotal steps, serving to avert unex-
pected disturbances to the initial layout. The more detailed
settings are reported with analysis in the appendix.

Evaluation Metrics. Image manipulation tasks primar-
ily focus on harmonizing the target image while preserving
its original components. As a result, we conduct a compre-
hensive dual-quality assessment. On one aspect, focusing
on editing objectives, we assess the post-manipulation qual-
ity and coherence. To this end, we employ CLIP similar-
ity (Kim, Kwon, and Ye 2022) to evaluate image-text align-
ment in the edited region. Meanwhile, we use SSIM (Hore
and Ziou 2010) between IS and IT in the neighborhood of
the editing region to measure the fidelity degree within the
propagation areas, denoted as SSIM-e. SSIM-e serves to re-
flect the impact of regional interference around the edited
region. An approach incapable of mitigating regional inter-
ference would lead to reduced SSIM-e due to layout distor-
tion. On the other aspect, we employ SSIM to evaluate the
preservation between IS and IT within the inherent region,
denoted as SSIM-i. These two metrics measure the degree of
structural consistency around and outside the edited regions.

4.2 Results
To evaluate our method, we conducted a comparative anal-
ysis of the three aforementioned manipulation tasks on our
constructed dataset. Considering that Prompt-to-Prompt is
not directly applicable to the task, we have re-implemented
and applied it to multi-region generation through indepen-
dent control of multiple regions, denoted as P2P*. During
experimentation, we maintained consistent random seeds
across different methods, resulting in comparable outcomes.

Qualitative Comparison. For different methods, the
fixed random seed introduced the same input latent noise,
leading to similar layouts and structures in their outcomes.
MultiDiffusion results in significant structural alterations to
the inherent regions during manipulation. In some instances,
it even leads to notable distortions, such as unrealistic limb
deformations as indicated by the yellow box in Fig. 4. It
lacks the capacity to preserve inherent structures, rendering
it vulnerable to regional interference. P2P* exhibits consid-
erably better structural preservation compared to MultiDif-
fusion, including spatial layout and texture patterns. How-
ever, the observed discrepancies emphasize our approach’s
notable superiority in image coherence and preservation of
the inherent components.

In contrast, MRGD exhibits region awareness through
selection and guidance, which enhances the model to dis-
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Figure 5: Visual results for the real-world image inversion.

tinguish between edited and inherent regions, thereby sup-
pressing mutual interference between different regions. On
one hand, our method preserves better identity consistency
of inherent objects, as indicated by the red box in Fig.4. On
the other hand, our approach produces more harmonious re-
sults at region boundaries, as shown in the blue box.

Quantitative Comparison. In Tab.1, we observed a
marginal difference among the three methods in CLIP
similarity, with even higher scores for comparison meth-
ods. We posit that this phenomenon highlights a bias in
multi-region diffusion, wherein it excessively prioritizes
image-text alignment while neglecting inter-region interac-

tions. Conversely, our approach outperforms the compara-
tive methods in both SSIM-e, which reflects the coherence
of manipulation, and SSIM-i, which gauges the preserva-
tion of inherent objectives. Quantitative results underscore
the high-quality and precision of MRGD. Subsequent anal-
yses will be conducted in conjunction with specific tasks.

Object Addition. In addition to preserving inherent ob-
ject details, a crucial aspect of object addition lies in the
harmonious interaction between the newly added object and
its surroundings. Compared to IS , the latent space of IT

encompasses an additional region, unavoidably introducing
interference into inherent regions. Moreover, semantic infor-
mation within the editing region may leak into other regions,
leading to semantic shifts or distortions. Several instances
from MultiDiffusion illustrate the severity of such interfer-
ence. In contrast to P2P*, our approach seamlessly inte-
grates new objects into the overall image, preventing abrupt
background shifts and promoting a more natural fusion.

Object Removal. Visual results demonstrate that MultiD-
iffusion and P2P* often yield lower-quality source and target
images. Furthermore, region removal also induces variations
in the latent space. P2P*, limited to localized attention con-
trol within a single region, can only maintain the basic layout
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Addition Removal Attribute
Method CLIP↑ SSIM-e↑ SSIM-i↑ CLIP↑ SSIM-e↑ SSIM-i CLIP↑ SSIM-e ↑ SSIM-i↑

MultiDiffusion 27.14 0.4365 0.5277 27.95 0.4111 0.5333 27.58 0.5415 0.6529
P2P* 27.11 0.5281 0.6905 28.2 0.4936 0.5832 27.25 0.7226 0.8688
Ours 27.02 0.5998 0.7559 27.52 0.5559 0.7834 27.53 0.7514 0.8700

Table 1: Quantitative results.

(a) (b)

(c) (d)

Figure 6: (a) represents the source and target images. (b)
showcases the two object segmentation outcomes of guid-
ance model on IT after 5 steps. (c) displays the outcomes at
the final step with guidance. (d) displays the outcomes at the
final step without guidance.

of the source image, which lacks fine-grained control. Fig.
4 illustrates the inconsistent outcomes of P2P*. In contrast,
our approach better mitigates disturbances in the latent space
and retains a majority of inherent object details. In contrast,
our approach mitigates regional disturbances better and re-
tains a majority of inherent object details.

Attribute Modification. The preservation of details in
images after manipulation is of primary concern in attribute
modification. Compared to our approach, both MultiDiffu-
sion and P2P* exhibit notably more non-inheritable details,
such as sweater textures, hand positions, and background de-
tails, as shown in Fig. 4.

Inversion. A preliminary real image inversion is illus-
trated in Fig. 5. As observed, our approach not only achieves
acceptable reconstruction quality but also maintains a high
level of editability. MRGD effectively accomplishes object
addition (“apple”) and attribute modification (from “apple”
to “orange”). This demonstrates the versatility of our manip-
ulation capabilities, which are applicable not only to text-
guided synthesized images but also to real-world images.

4.3 Ablation Study
In this section, we validate the contributions of each compo-
nent of our algorithm through ablation studies, providing a
qualitative analysis of the effectiveness of each component.
The quantitative analysis of different variants of StableDif-
fusion models and more details are placed in the appendix.

Multi-Region Guidance. As the critical point of our
method, multi-region guidance efficiently mitigates interfer-
ence from regional noise. As shown in Fig. 6, two adjacent
girls that were initially unable to be correctly identified are

street street
1man, 
blue 
jeans,
...

1girl,  
blue 
jeans, 
...

w/o KSSA 

w/o region total MRGD output

Input pair MRGDW/O

Figure 7: The left side shows the input and outcomes. The
right side displays the ablation visual results.

accurately distinguished through guidance, which also leads
to improved manipulation quality.

Total Region. The introduction of rtotal is crucial for the
coherence of manipulations. As shown in Fig. 7, an addi-
tional generation of rtotal can facilitate the smoother inte-
gration of the editing area into the context, thereby reducing
unstable background shifts and unrealistic distortions.

Entropy-based selection. As shown in Fig. 3, we ob-
serve that attention maps with higher entropy are uniform
and dispersed, corresponding to quality-related prompts.
While attention maps with lower entropy focus more on spe-
cific regions about object-related nouns. KSSA can adap-
tively filter out keywords from lengthy prompts and provide
more tailored guidance focused on keyword regions. Thus,
MRGD frequently demonstrates enhanced details and im-
proved image-text alignment, as illustrated in Fig. 7. Fur-
thermore, from an application perspective, it enhances user
experience by streamlining interactions, eliminating the re-
quirement for exhaustive object-specific keywords.

5 Conclusion
In this work, we developed an image manipulation frame-
work with the powerful capabilities of multi-region gener-
ation. We have investigated two major challenges encoun-
tered by existing models in practical application: regional
interference and lengthy object-agnostic prompts. Corre-
spondingly, we demonstrated how to mitigate interference
and achieve efficient manipulation using multi-region guid-
ance and keyword selection mechanisms. Furthermore, we
have preliminarily applied our approach to the downstream
task of real image inversion. We provide a viable framework
for future image manipulation tasks that aim to be more ap-
plicable. Moving forward, we aspire to expand upon the cur-
rent work to achieve more flexible, natural, and faithful im-
age manipulations.
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