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Abstract

Multi-Object Tracking (MOT) is a cornerstone operator for
video surveillance applications. To enable real-time process-
ing of large-scale live video streams, we study an interest-
ing scenario called down-sampled MOT, which performs ob-
ject tracking only on a small subset of video frames. The
problem is challenging for state-of-the-art MOT methods,
which exhibit significant performance degradation under high
frame reduction ratios. In this paper, we devise a sampling-
resilient tracker with a novel sparse-observation Kalman filter
(SOKF). It integrates an LSTM network to capture non-linear
and dynamic motion patterns caused by sparse observations.
Since the LSTM-based state transition is not compatible with
the original noise estimation mechanism, we propose new es-
timation strategies based on Bayesian neural networks and
derive the optimal Kalman gain for SOKF. To associate the
detected bounding boxes robustly, we also propose a compre-
hensive similarity metric that systematically integrates mul-
tiple spatial matching signals. Experiments on three bench-
mark datasets show that our proposed tracker achieves the
best trade-off between efficiency and accuracy. With the same
tracking accuracy, we reduce the total processing time of
ByteTrack by 2× in MOT17 and 3× in DanceTrack.

Introduction
Multi-object tracking (MOT) aims at detecting and tracking
moving objects from video clips or live streams, while main-
taining a unique identifier for each object. Massive research
efforts have been devoted into this domain with fruitful
progress. The proposed trackers have witnessed great suc-
cess in numerous applications, such as smart video surveil-
lance (Xu et al. 2018; Xiao et al. 2023), traffic monitor-
ing (Tian, Lauer, and Chen 2020; Zhang et al. 2023), cus-
tomer behavior analysis (Merad et al. 2016) and sports ana-
lytics (Lu et al. 2013).

In this paper, we study an interesting scenario called
down-sampled MOT, which performs object tracking only
upon a small subset of video frames. Since the processing
time of MOT is positively correlated with the number of
sampled frames, the task has the potential to achieve an ideal
trade-off between tracking efficiency and accuracy, and thus
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Figure 1: We plot the trade-off between tracking efficiency
and accuracy for mainstream MOT methods, by adjusting
the sampling rate in MOT17. When the video frame reduc-
tion ratio is high, the tracking accuracy of existing methods
declines to an impractical level. Our SR-Track is the only
approach to achieve promising HOTA with very small pro-
cessing time (e.g., around 30 seconds to reach HOTA= 66).

is particularly useful in handling large-scale video streams
with limited computing resources. In other words, with the
same amount of GPU cards, a tracker that works well on
a higher frame reduction ratio can support MOT on many
more video streams simultaneously.

Down-sampled MOT is challenging because the motion
dynamics increase and the patterns become non-linear and
more difficult to capture. In addition, the data association
strategy such as IoU that works well in dense frames fails
in the scenario of sparse frames. Therefore, directly ap-
plying state-of-the-art MOT methods on the down-sampled
frames would result in significant performance degradation.
As shown in Figure 1, we report the trade-off between ef-
ficiency and accuracy in terms of HOTA, by adjusting dif-
ferent sampling rates. When the video frame reduction ra-
tio is high, it’s indeed that the processing time can be sig-
nificantly reduced. However, the tracking accuracy also de-
clines to an impractical level. Detailed performance analysis
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of these trackers will be presented in the experiment. These
findings lead to the conclusion that existing MOT solutions
are not sampling-resilient.

To devise a more sampling-resilient MOT model, we pro-
pose SR-Track with a novel variant of Kalman filter (KF)
for accurate motion prediction under sparse observations.
Specifically, we replace the linear motion assumption in con-
ventional KF with a LSTM network to capture the non-
linear motion patterns with high dynamics. Since Gaussian
covariance matrix of traditional KF is not compatible with
the LSTM-based state transition, we introduce new noise
estimation mechanisms based on the Bayesian neural net-
works and derive the optimal Kalman gain to minimize the
discrepancy between the true state and our estimated state.
Furthermore, to robustly associate detected bounding boxes
under enlarged temporal gaps, we propose a comprehensive
similarity metric that integrates multiple matching clues, in-
cluding overlap, center point distance and aspect ratio of the
bounding boxes.

Experiments are conducted on three benchmark datasets,
among which DanceTrack is the most challenging due to fre-
quent crossover and diverse body gestures. The results show
that our proposed tracker outperforms most trackers in terms
of both efficiency and accuracy. For the real-time trackers
that can achieve similar FPS, our SR-Track exhibits clearly
higher accuracy. Compared with ByteTrack, the state-of-the-
art real-time tracker, we can further reduce the total process-
ing time by 2× in MOT17 and 3× in DanceTrack, with the
same level of tracking accuracy.

Related Work
We divide existing multi-object trackers into two cate-
gories, namely tracking-by-detection and joint-detection-
and-tracking, according to whether its object detection net-
work is a separate module or requires joint training.

Tracking-by-Detection Methods
SORT (Bewley et al. 2016), DeepSORT (Wojke, Bewley,
and Paulus 2017), OC-SORT (Cao et al. 2023), Strong-
SORT (Du et al. 2022), BoT-SORT (Aharon et al. 2022) and
ByteTrack (Zhang et al. 2022) are representative tracking-
by-detection methods. They treat MOT as a pipeline of ob-
ject detection and association, and optimize each module
separately. Firstly, an existing object detector is adopted
to locate objects in each video frame. Early trackers (e.g.,
SORT and DeepSORT) use Faster RCNN (Ren et al. 2015)
as the default detector, which is replaced by YOLOX (Ge
et al. 2021) in recent trackers. Secondly, an object associ-
ation mechanism is designed to connect these detected ob-
jects into tracklets. Coherence in motion pattern and similar-
ity in visual appearance are two important factors in object
association. As to motion pattern, almost all the tracking-by-
detection methods adopt Kalman filter for future position es-
timation. A detected object is assigned to an existing track-
let if its spatial matching distance (e.g., IoU distance) be-
tween the two bounding boxes is small. As to visual similar-
ity, DeepSORT (Wojke, Bewley, and Paulus 2017), Strong-
SORT and BoT-SORT integrate appearance features into the

tracker, which requires additional computation cost to derive
visual embedding. The spatial matching score and appear-
ance similarity are combined as the final association metric.

Among these trackers, ByteTrack (Zhang et al. 2022)
achieves the best trade-off between efficiency and accuracy.
It discards visual similarity and only relies on spatial match-
ing to save computation cost. As a compensation, it intro-
duces a robust association strategy to take into account the
detected objects with low confidence.

Joint-Detection-and-Tracking Methods

JDE (Wang et al. 2020) is a pioneering work that allows ob-
ject detection and appearance embedding to be learned in a
single network. Compared with DeepSORT, its low-level vi-
sual features can be shared by the detector and embedding
model to avoid re-computation cost. However, the shared
network in JDE is biased towards the detector task and unfair
to the ReID (Ye et al. 2022; Li et al. 2023) task. To resolve
the competition issue, CSTrack (Liang et al. 2020) devises
a cross-correlation network to learn task-dependent repre-
sentations. RelationTrack (Yu et al. 2023) presents global
context disentangling (GCD) to decouple the learned fea-
tures in the two tasks. FairMOT (Zhang et al. 2021) adopts
another way by implementing two homogeneous branches
for the detection and ReID tasks, rather than performing
them in a two-stage cascaded style. SimpleTrack (Li et al.
2022) is designed to mitigate the issue of object occlusion
and presents a new association matrix that combines embed-
ding cosine distance and Giou distance of objects. Note that
these works still rely on an online data association strategy
based on Kalman filter and appearance similarity to connect
the detected boxes.

To push forward the idea of joint training, the fol-
lowing trackers attempt to further incorporate the estima-
tion of inter-frame object motion in the training frame-
work. In other words, Kalman filter is discarded. Cen-
terTrack (Zhou, Koltun, and Krähenbühl 2020) and Tran-
sCenter (Xu et al. 2021) predict the object offset between
adjacent frames to facilitate object tracking. The models
are trained to minimize the regression loss of the object
offset between adjacent frames. TransCenter (Xu et al.
2021) proposes a Transformer-based architecture, together
with dense but non-overlapping representations for detec-
tion, to globally and robustly infer the offset of objects’
centers. For GSDT (Wang, Kitani, and Weng 2021) and
FUEFT (Shan et al. 2020), motion and appearance features
are fed into a graph neural network (GNN) to predict the as-
sociation matrix of tracklets and detected bounding boxes.
TransTrack (Sun et al. 2020) utilizes the attention mecha-
nism to model the detection and tracking, and outputs the
predicted bounding box of tracked objects. Recently, Track-
Former (Meinhardt et al. 2022) adopts the concept of track
queries and employs the attention mechanism to track the
objects in an autoregressive fashion. In the current stage,
these trackers are computation expensive to achieve high ac-
curacy and not suitable to support large-scale video streams.
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Methodology of SR-Track
Before we present our SR-Track, we first briefly review
Kalman filter (KF), which has been widely adopted in object
tracking to estimate object location in the subsequent frame.
It works as an efficient recursive filter with the stages of pre-
diction and update. KF requires small computational power
and provides satisfactory estimation, rendering it well-suited
for real-time analysis.

Let x̂k−1 be the object state at the (k− 1)th frame and F
be the state transition matrix. In the prediction step, the state
at the kth frame x̂′

k and state estimated covariance matrix
P ′

k are predicted via the following equations, where Qk is
the process noise covariance matrix. Qk consists of the er-
rors caused in the motion process. For example, if the veloc-
ity of the detected object changes rapidly, KF can determine
an appropriate Qk matrix to reflect the unreliability of the
system at this moment.

x̂′
k = F x̂k−1 (1)

P ′
k = FP k−1F

⊤ +Qk (2)

In the update step, KF blends the new observation with the
old information from prior state with the Kalman gain ma-
trix Kk. The estimation of Kk is shown in Eq. (3), where
H is the observation matrix and Rk is the observation noise
covariance matrix. In Eq. (4), the actual observation zk is
obtained to generate a posterior state estimate of x̂′

k. The
residual zk −Hx̂′

k reflects the divergence between the pre-
dicted state and the observed state. Finally, in Eq. (5), the
estimation state covariance matrix P ′

k is also updated ac-
cording to the Kalman gain Kk.

Kk = P ′
kH

⊤
(
HP ′

kH
⊤ +Rk

)−1

(3)

x̂k = x̂′
k +Kk

(
zk −Hx̂′

k

)
(4)

P k = (I −KkH)P ′
k (5)

In the scenario of down-sampled MOT, the observations be-
come sparse and each object appears in fewer number of
video frames. Consequently, the uncertainty is amplified and
it becomes more challenging to capture the model pattern.
The traditional KF as well as its improved variants in Strong-
SORT and OC-SORT fail to address these unique chal-
lenges. Therefore, we are motivated to devise a new variant
KF for sparse observations.

Sparse-Observation Kalman Filter
The pipeline of our proposed Sparse-Observation Kalman
Filter (SOKF) is illustrated in Figure 2, with the following
three key components.
LSTM-Based Position Prediction. Linear motion assump-
tion has been commonly adopted by existing KF-based
MOT models and yields satisfactory results even in datasets
with obviously non-linear motion patterns (e.g., Dance-
Track (Sun et al. 2022) with dancers performing on the
stage). The reason is that cameras typically possess high
frame rates and the motion between two neighboring frames
can still be approximated as linear. Nevertheless, in down-
sampled scenarios, the enlarged temporal gap between

(a) Original Kalman filter

(b) Sparse-Observation Kalman filter

Figure 2: Pipelines of KF and SOKF.

neighboring frames introduces more intricate motion dy-
namics, rendering the linear motion assumption untenable.

There are some works (Li et al. 2008; Wei et al. 2019;
Zhang et al. 2015) studying object tracking for cameras in-
herently with low frame rate. Their algorithm pipelines are
focused on robust tracking, and often incur higher compu-
tation overhead. For example, (Zhang et al. 2015) adopts a
complex matching mechanism based on particle swarm op-
timization. There are also several studies within the MOT
domain have focused on the influence of non-linear motion.
(Yang and Nevatia 2012; Lu et al. 2019) use visual factors
for collecting nonlinear motion patterns to predict object po-
sitions. Since the goal of this paper is to achieve real-time
tracking by purposely reducing the number of frames, the
above solutions cannot be applied to down-sampled MOT.

We employ LSTM network to support more accurate
position prediction with sparse observations and substitute
Eq. (1) with Eq (6) for non-linear state transition. Besides
x̂k, the input of LSTM includes the observation outcome zk

and temporal gap ts between neighboring frames so that the
prediction can be adaptive to different sampling rates.

x̂′
k+1 = Flstm([x̂k, zk, ts]) (6)

BNN-Based Noise Estimation. In Eq. (1) and (2), the state
and covariance matrix are recursively updated via a shared
linear transition matrix F . Since we have discarded the lin-
ear motion assumption and replaced F with a LSTM net-
work for state transition, we also need to devise a new mech-
anism for noise estimation update. Specifically, we discard
the Gaussian noise assumption and adopt Bayesian Neural
Network (BNN) (Shalileh 2021) to directly estimate the pre-
diction error of LSTM. As depicted in Eq. (7), the input con-
tains the prediction error p̂k and the current hidden feature
hk+1 in the LSTM network. The prediction error estima-
tion p̂k+1 is derived through a two-layer fully connected
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Bayesian neural network Q, which outputs the distribution
by treating its weights as a probability distribution, allowing
derivation of the error margin of the LSTM.

p̂k+1 = Q(p̂k,hk+1) (7)

To estimate the observation noise, we argue that state-of-
the-art object detection models have exhibited outstanding
performance and we should focus on the error derived from
the object association module, which has been neglected by
existing KF-based MOT models. Again, we adopt BNN for
error prediction and its input consists of the distance vector
sk+1 and the observation result zk+1. sk+1 consisting of
the distances between the observed track and the five closest
detection boxes, measures the impact of nearby tracks on the
observed track associated to the correct detection.

r̂k+1 = R(sk+1, zk+1) (8)

Optimal Kalman Gain. The Kalman gain details the de-
gree to which each measurement is incorporated into the
new state estimate. Our objective is to derive the Kalman
gain that minimizes the discrepancy E between xk and x̂k.

E = ||xk − x̂k||2 (9)

= ||xk − x̂′
k +Kk(zk −Hx̂′

k)||2 (10)

E is a convex function and we can show that its hessian
matrix HE can be formed by multiplying a non-zero vector
with its transpose, and is thus a positive definite matrix.

HE = 2(Hp̂k + r̂k)(Hp̂k + r̂k)
T = 2AAT (11)

Therefore, we can derive the optimal Kk that minimizes E
by setting the derivative of E to zero.

∂

∂Kk
||xk − x̂′

k −Kk(zk −Hx̂′
k)||2 = 0 (12)

⇒ ∂

∂Kk
||(I −KkH)p̂k −Kkr̂k||2 = 0 (13)

⇒ −2(p̂k −Kk(Hp̂k + r̂k))(Hp̂k + r̂k)
T = 0 (14)

⇒ Kk = p̂kA
T (AAT )−1 (15)

Model Training. Our novel KF variant incorporates LSTM
and BNN that require training. For LSTM, we construct the
ground truth of xk+1 with varying sampling rates from the
object tracks in the training data of MOT benchmark. The
network is trained via the mean square error loss between
xk+1 and x̂′

k+1. For BNN training in noise estimation, we
utilize the difference between the LSTM predicted state and
the ground truth state as the training target of Q. Likewise,
for the BNN R, the training loss is set to the difference be-
tween the detected bounding box associated with the track
and the bounding box represented by the ground truth state.

Robust Data Association (RDA)
Data association is also a key component in the tracking-
by-detection paradigm. The mainstream metrics estimate the
spatial matching score according to either IoU (Intersection
of Union) (Zhang et al. 2022; Cao et al. 2023) or center point
distance between two bounding boxes (Wojke, Bewley, and
Paulus 2017; Du et al. 2022). On the other hand, there also

exist certain factors that have been adopted in the loss of
object detection (e.g., aspect ratio in CIoU loss (Zheng et al.
2020)), but they are not leveraged by object tracking.

Inspired by (Zhao et al. 2022), we perform an experimen-
tal analysis on these metrics when applied to object tracking
across down-sampled video frames. We denote the sample
reduction ratio by RR, which implies that 1

RR frames are
sampled. When RR = 1, all the frames are preserved. We
vary RR from 1 to 9 for each setting and randomly collect
10, 000 bounding box association cases that can be success-
fully solved by at least one of the following metrics, includ-
ing the overlap, center point distance, and aspect ratio of the
bounding boxes, denoted by IoU, DIST, and SCALE.

Interesting findings can be derived from the results re-
ported in Table 1. The set Smetric includes the cases that can
be correctly matched by the associated metric. PSCALE rep-
resents the cases that can only be solved by SCALE, i.e., IoU
and DIST fail in these cases. With RR = 1, the IoU or DIST
are able to correctly identify around 99% of the matching
cases. The metric SCALE is inferior to the two metrics as it
generates many false negatives. Its complementary effect to
IoU and DIST can be negligible because only 0.31% of cases
can be uniquely solved by SCALE. This may explain why
SCALE is not adopted by the state-of-the-art MOT meth-
ods. However, when RR increases, IoU and DIST become
less reliable as the sizes of |SIoU | and |SDIST | reduce. It is
interesting to find that the factor of SCALE plays a more im-
portant role and its size of PSCALE increases with RR. This
finding motivates us to devise a comprehensive association
metric that incorporates all metrics.

RR 1 3 5 7 9

|SIoU | 9899 9504 9169 8812 8565
|SDIST | 9891 9579 9320 8999 8797
|SSCALE | 7886 6928 6444 6191 6010
|PSCALE | 31 118 174 234 275

Table 1: distance metrics analysis on the MOT17 dataset.

Let Diou denote the overlap distance between two bound-
ing boxes and Ddist denote the distance between two center
points of the bounding boxes, which is further normalized
by dividing by the diagonal length of the smallest enclosing
box covering the bounding boxes. For the factor of aspect
ratio, we define Dscale as

Dscale =
4

π2

(
arctan

w1

h1
− arctan

w2

h2

)2

(16)

where wi and hi are the width and height of the two bound-
ing boxes, respectively. To integrate these three distances,
we define Drda as follows. The idea is to first use IoU and
DIST if these two metrics can provide confident matching
results. This is because as revealed in Table 1, these two fac-
tors normally provide better results than SCALE. We use
µ(Ddist,Diou) to reversely approximate for the confidence.
The function denoted by µ represents the arithmetic mean
(average) of a given set of values. This is a reasonable esti-
mation because it implies that the estimated bounding box

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3300



is close to the region of the detected object. If this value is
smaller than a threshold σ, the tracking confidence is high
and we directly set Drda = µ(Ddist,Diou). Otherwise, we
need to incorporate Dscale as a complementary factor and
set Drda = µ(Ddist,Diou,Dscale).

Experiment
Experimental Setup
Benchmark Datasets. We use three benchmark datasets
for performance evaluation, including MOT17 (Milan et al.
2016), MOT20 (Dendorfer et al. 2020) and DanceTrack (Sun
et al. 2022). MOT17 contains 14 videos (7 for training and 7
for testing) of pedestrians in both indoor and outdoor scenes.
MOT20 contains 8 videos (4 for training, 4 for testing) in
crowded environments such as train stations, town squares
and a sports stadium. DanceTrack is a recent dataset pro-
posed to emphasize the importance of motion analysis. The
frequent crossover and diverse body gestures bring particu-
lar challenges. It provides 100 videos and the split ratio for
training, validation and test dataset is 40 : 25 : 35.

Since the testing videos of these datasets are not anno-
tated and the focus of this paper is down-sampled MOT, we
directly use the annotated videos for performance evalua-
tion. For MOT17 and MOT20, we split the videos into two
parts of equal length and used them for training and test-
ing, respectively. For DanceTrack, we use the training set
for training and report the performance on its validation set.
Performance Metrics. To evaluate the overall tracking ac-
curacy, we adopt MOTA (Bernardin and Stiefelhagen 2008),
IDF1 (Ristani et al. 2016) and HOTA (Luiten et al. 2021).
Generally, the MOTA is biased towards measuring the qual-
ity of object detection and IDF1 emphasizes the effect of
accurate association. HOTA is a recent metric proposed to
explicitly balance the effect of detection and association.

As to efficiency, we adopt FPS as a straightforward met-
ric. It refers to the number of video frames that can be pro-
cessed per second. In addition, we propose a new metric
called Time@HOTA. The motivation is that we can ad-
just RR to generate a trade-off curve between processing
time and HOTA, as shown in Figure 1. It can be expected
that with a larger processing time (i.e., smaller RR), we can
obtain higher HOTA. Time@HOTA measures the process-
ing time required to reach a specified HOTA. For example,
Time@62 = 19 for our SR-Track at dataset MOT17 implies
that it takes 19 seconds for SR-Track to process the testing
videos in MOT17 with an accuracy level of HOTA = 62.
Comparison Methods. We compare SR-Track with rep-
resentative and open-sourced trackers in all paradigms.
Among these competitors, we consider ByteTrack (Zhang
et al. 2022), OC-SORT (Cao et al. 2023) and Simple-
Track (Li et al. 2022) as real-time trackers because they
can achieve as high FPS as our SR-Track. The remaining
approaches, including TransTrack (Sun et al. 2020), Track-
Former (Meinhardt et al. 2022), MOTR (Zeng et al. 2022),
StrongSORT (Du et al. 2022) and BoT-SORT (Aharon et al.
2022), are called expensive trackers as they exchange pro-
cessing time for higher tracking accuracy.

Implementation Details
Our SR-Track follows the paradigm of tracking-by-
detection. For object detector, we directly adopt the trained
YOLOX provided by previous trackers . As to our proposed
Kalman filter, we set hidden size to 128 for the LSTM net-
work and adopt two-layer Bayesian neural network to im-
plement Q and R. All models are trained using the Adam
optimizer for 100 epochs with a batch size of 32. The initial
learning rate is set to 0.01 and linearly decayed to 0.0001.
All the experiments are conducted using PyTorch and ran on
a desktop with 10th Intel(R) Core(TM) i9-10980XE CPU @
3.00GHz and NVIDIA GeForce RTX 3090Ti GPU.

Comparison with Real-time Trackers
In the first experiment, we compare our SR-Track with
the real-time trackers under different reduction ratios (with
RR set to 3, 5, 7 and 9, respectively). As shown in Ta-
ble 2, these trackers demonstrate similar inference speed.
OC-SORT, ByteTrack and SR-Track use YOLOX as the ob-
ject detector and ignore visual similarity. Although Simple-
Track adopts appearance similarity for person ReID, it trains
the object detector and visual embedding with a single net-
work to avoid re-computation cost. Its FPS is slightly lower
than other real-time trackers. Among these real-time track-
ers, SR-Track achieves the highest metrics across all the
datasets, owing to its KF designed for the observation-sparse
scenario. The performance gap between ByteTrack and our
SR-Track is widened when RR increases. In MOT20, the
HOTA of SR-Track is higher than ByteTrack by 2.3% when
RR = 3, which is enlarged to 10% when RR = 9.

DanceTrack is a challenging dataset with complex mo-
tion patterns and frequent crossover of dancers, which are
difficult for existing trackers to perform correct association.
Thus, their derived IDF1 and HOTA in DanceTrack are gen-
erally lower than those in MOT17 and MOT20. OC-SORT
outperforms ByteTrack in this dataset because it is specially
designed for DanceTrack and occlusion with excessive non-
linear motion. Nevertheless, the HOTA of OC-SORT de-
grades to be close to ByteTrack when RR increases, imply-
ing that its strategy is not robust to the observation-sparse
scenario. These two models are both significantly inferior to
our SR-Track. When RR = 9, we boost the HOTA from
33.4 in OC-SORT to 39.1, with 17.1% improvement.

Comparison with Expensive Trackers
In Table 3, we compare SR-Track with the expensive track-
ers under RR = 5 and RR = 9. For TransTrack, Track-
Former, MOTR, StrongSORT, their performance is clearly
inferior to our SR-Track in terms of both tracking efficiency
and accuracy. BoT-SORT is the only method whose accu-
racy can be slightly better than our SR-Track in MOT17.
However, its tracking speed is very slow and the FPS is
6 times lower than SR-Track. Furthermore, similar to pre-
vious findings in Table 2, the advantage of SR-Track be-
comes more obvious when RR increases. In MOT20 with
RR = 9, our SR-Track can even achieve higher accuracy
than BoT-SORT, with 7 times faster tracking speed. The re-
sults on DanceTrack are not available because we lack suffi-
cient hardware resources to re-train these models.
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RR = 3 RR = 5 RR = 7 RR = 9 FPSHOTA MOTA IDF1 HOTA MOTA IDF1 HOTA MOTA IDF1 HOTA MOTA IDF1
Dataset MOT17

SimpleTrack 59.8 69.3 75.6 58.6 66.3 73.4 57.3 63.9 72.1 56.0 61.4 70.2 22.5
OC-SORT 63.7 68.6 74.5 61.5 63.7 71.0 58.8 59.3 67.6 57.9 57.8 66.4 29.0
ByteTrack 64.8 73.8 76.3 61.8 70.3 72.1 61.0 67.9 71.0 58.9 65.2 68.8 29.6
SR-Track (ours) 67.2 76.0 78.5 66.2 73.7 76.9 65.2 70.7 75.4 63.4 68.4 73.3 29.4

Dataset MOT20
SimpleTrack 52.2 65.3 68.0 51.4 63.7 67.7 50.0 61.6 65.8 47.8 58.8 62.5 7.0
OC-SORT 56.3 69.6 72.1 54.6 68.0 69.8 53.2 66.4 68.1 50.7 63.3 64.4 18.7
ByteTrack 56.0 71.3 71.1 55.5 70.1 70.8 54.2 68.4 69.7 50.7 65.7 65.2 17.5
SR-Track (ours) 57.3 71.8 73.6 57.6 71.3 74.1 58.1 70.6 74.8 55.8 68.9 71.2 16.4

Dataset DanceTrack
OC-SORT 45.2 81.6 43.7 38.8 73.8 36.0 36.2 66.8 34.8 33.4 61.1 32.5 29.0
ByteTrack 40.7 82.3 46.9 35.5 74.7 39.8 32.8 68.5 37.0 32.0 63.0 35.8 29.6
SR-Track (ours) 54.1 88.2 53.2 46.6 84.3 45.4 42.7 79.6 40.8 39.1 74.8 37.1 29.4

Table 2: Comparison with real-time trackers on three benchmark datasets with varying frame reduction ratio RR.

RR = 5 RR = 9 FPSHOTA MOTAIDF1 HOTA MOTAIDF1
MOT17

TransTrack 56.8 66.1 66.6 54.8 61.2 62.2 10.0
TrackFormer 59.1 66.2 68.2 55.6 60.6 64.2 7.4
MOTR 59.8 65.5 68.8 56.2 61.0 65.4 7.5
StrongSORT 63.6 61.9 70.9 59.3 53.2 62.9 7.1
BoT-SORT 66.4 74.3 77.9 63.1 70.1 73.1 4.5
SR-Track 66.2 73.7 76.9 63.4 68.4 73.3 29.4

MOT20
TransTrack 31.6 47.3 44.6 30.5 44.9 42.4 7.2
TrackFormer 47.4 70.6 56.8 43.3 65.3 51.3 4.1
MOTR 42.8 50.6 56.1 38.0 43.0 49.7 4.2
StrongSORT 56.5 67.4 72.8 50.7 61.2 66.6 1.4
BoT-SORT 57.7 71.1 73.9 54.0 67.2 69.3 2.4
SR-Track 57.6 71.3 74.1 55.8 68.9 71.2 16.4

Table 3: Comparison with expensive trackers on the MOT17
and MOT20 under different settings of RR.

Trade-off Between Efficiency and Accuracy

Figure 3: Trade-off analysis in DanceTrack.
At the beginning of the paper, we have reported the

trade-off between processing time and tracking accuracy for
MOT17. The results on DanceTrack in terms of IDF1 and
HOTA are presented in Figure 3. ByteTrack is fast and ac-
curate because it does not rely on visual similarity and im-
proves the association mechanism by taking into account de-
tected objects with low confidence. OC-SORT outperforms
ByteTrack in the dataset DanceTrack because OC-SORT is

better at capturing complex motion patterns. StrongSORT
and BoT-SORT utilize visual similarity by extracting ap-
pearance features and achieving high accuracy but at the cost
of significantly higher computation overhead. SimpleTrack,
the most recent work proposed in the paradigm of joint train-
ing of object detection and embedding, achieves modest per-
formance. However, since the joint training is difficult to co-
ordinate, it does not demonstrate superiority in terms of ef-
fectiveness. Finally, TransTrack jointly trains object detec-
tion, ReID and motion estimation in the same framework.
Its performance is not satisfactory due to limited training
samples and its online inference is also cost prohibitive.

Time@HOTA 66 65 64 63 62

TrackFormer >716.8 >716.8 >716.8 >716.8 >716.8
MOTR >707.2 >707.2 >707.2 >707.2 309.1
TransTrack >530.4 >530.4 >530.4 >530.4 >530.4
SimpleTrack >235.4 >235.4 >235.4 >235.4 >235.4
StrongSORT 182.6 166.8 123.3 117.3 111.8
BoT-SORT 170.6 157.0 145.8 128.8 116.4
OC-SORT 148.3 94.4 65.9 53.1 43.9
ByteTrack 81.1 62.3 52.1 45.0 36.9

SR-Track 33.8 25.5 22.1 19.5 17.9

Table 4: Time@HOTA in MOT17 (in seconds).

We also study the performance of these trackers in the
metric Time@HOTA. As reported in Tables 4 and 5, Byte-
Track implements the best among comparison trackers for
MOT17. Our method can further reduce its processing time
by half with a given HOTA requirement. For example, it
takes SR-Track 17.9s to generate tracking results in MOT17
with HOTA=62, whereas ByteTrack requires 36.9s. In the
DanceTrack, the advantage of SR-Track is enlarged to 3×.
In Figure 4, we use one 3090Ti GPU to perform real-time
tracking on multiple video streams simultaneously. With
more video streams, we increase RR to guarantee real-time
tracking, but sacrifice HOTA. SR-Track dominates Byte-
Track when handling large-scale video streams and can save
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a significant amount of GPU resources when deployed in
smart city applications with thousands of cameras.

Time@HOTA 53 50 47 44 41

BoT-SORT 3873.1 2671.9 2036.1 1662.6 1405.1
OC-SORT 879.6 504.9 345.5 249.2 196.7
MOTR 610.9 363.6 295.1 248.3 214.3
ByteTrack >861.8 >861.8 >861.8 432.1 295.6

SR-Track 263.1 211.6 177.3 132.5 115.1

Table 5: Time@HOTA in DanceTrack (in seconds).

(a) MOT17 (b) DanceTrack

Figure 4: Parallel processing of large-scale video streams.

HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑
SR-Track 63.6 62.9 64.9 68.6 73.2
Ours w/o SOKF 59.6 58.0 62.5 64.1 70.3
Ours w/o RDA 61.4 60.1 61.2 65.7 70.2
ByteTrack 59.0 57.6 61.6 65.3 68.8

Break-down analysis on SOKF

SOKF w/o LSTM 60.8 61.6 61.0 67.6 70.6
SOKF w/o BNN 62.0 60.0 64.7 66.3 72.6
SOKF w/o OKG 61.0 58.5 64.4 65.0 72.1

Table 6: Ablation study of SR-Track on MOT17 (RR = 9).

Ablation Study

We evaluate the advantage brought by the Sparse-
Observation Kalman filter (SOKF) and robust data asso-
ciation (RDA) in Table 6. ByteTrack can be viewed as a
variant without these two components. It is not surprising
to find that when RDA is removed, the performance on
the matching-related metrics, such as IDF1, drops signif-
icantly. In contrast, SOKF is more important for the re-
maining metrics. We also conduct a break-down analysis
on the components of SOKF and examine the effect of our
proposed LSTM-Based Position Prediction (LSTM), BNN-
Based Noise Estimation (BNN) and Optimal Kalman Gain
(OKG). We can see that they all contribute to the improve-
ment of tracking accuracy.

Experiments Without Down-Sampling
We examine the performance of our SR-Track on the orig-
inal dataset without down-sampling. Table 7 shows the re-
sults returned by the leaderboard of DanceTrack. SR-Track
is the best performer and improves the metrics of HOTA,
IDF1 and AssA by 7.3%, 9.4% and 12.9%, respectively.

HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑
FairMOT 39.7 66.7 23.8 82.2 40.8
QDTrack 45.7 72.1 29.2 83.0 44.8
TransTrack 45.5 75.9 27.5 88.4 45.2
MOTR 48.4 71.8 32.7 79.2 46.1
ByteTrack 47.3 71.6 31.4 89.5 52.5
OC-SORT 55.1 80.3 38.0 89.4 54.2

SR-Track 59.1 81.5 42.9 92.4 59.3

Table 7: Performance on DanceTrack test dataset.

Case Analysis
Finally, we perform a case analysis by comparing SR-Track
and ByteTrack on MOT17 with RR = 9. As shown in Fig-
ure 5, we highlight the incorrect association generated by
ByteTrack. From frame 4 to frame 5, its KF makes the wrong
estimation of the next bounding box, whereas our SOKF de-
livers accurate estimation. From frame 16 to frame 17, Byte-
Track incurs ID switching caused by occlusion, but our SR-
Track, with a more robust association, can resolve the issue.

Figure 5: A case study in MOT17 dataset.

Conclusion
In this paper, we studied a new scenario of multi-object
tracking on down-sampled video frames and devised a
sampling-resilient tracker. In particular, we proposed a novel
sparse-observation Kalman filter (SOKF) for accurate mo-
tion estimation and a comprehensive data association met-
ric for robust inter-frame matching. Experiments on three
datasets show that our proposed SR-Track establishes new
SOTA performance for down-sampled object tracking.
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