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Abstract

Video class-incremental learning aims to recognize new ac-
tions while restricting the catastrophic forgetting of old ones,
whose representative samples can only be saved in lim-
ited memory. Semantically variable subactions are suscep-
tible to class confusion due to data imbalance. While ex-
isting methods address the problem by estimating and dis-
tilling the spatio-temporal knowledge, we further explores
that the refinement of hierarchical correlations is crucial for
the alignment of spatio-temporal features. To enhance the
adaptability on evolved actions, we proposes a hierarchical
aggregation strategy, in which hierarchical matching matri-
ces are combined and jointly optimized to selectively store
and retrieve relevant features from previous tasks. Mean-
while, a correlation refinement mechanism is presented to re-
inforce the bias on informative exemplars according to online
hypercorrelation distribution. Experimental results demon-
strate the effectiveness of the proposed method on three
standard video class-incremental learning benchmarks, out-
performing state-of-the-art methods. Code is available at:
https://github.com/Lsen991031/HCE

Introduction
With the rapid advancement of deep learning research, mod-
els trained on batch data can achieve good recognition per-
formance in known distributions. However, in real-world ap-
plications, there exists a more complex and variable seman-
tic shift. This poses new requirements for the continuous
updates of the representation and discrimination capabili-
ties in existing recognition networks, which is called class-
incremental learning (CIL).

When encountering new tasks, it is often impossible to
save a large amount of old class data due to equipment limi-
tations or privacy and security concerns. In such cases, di-
rectly fine-tuning a well-trained model representation can
also lead to representation and classifier biases towards the
new classes due to the imbalance of new and old data, which
is known as catastrophic forgetting (Dhar et al. 2019; Douil-
lard et al. 2020). Existing class-incremental (Dhar et al.
2019; Douillard et al. 2020; Hou et al. 2019; Li and Hoiem
2017; Rebuffi et al. 2017; Yan, Xie, and He 2021; Zhai et al.
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2023) methods have almost achieved the upper limit of per-
formance in image classification tasks by distilling extracted
features and expanding network structures to retain the rep-
resentation ability on old classes while greatly enhancing the
discriminability of new ones.

Recently, some studies (Park, Kang, and Han 2021; Pei
et al. 2022; Villa et al. 2022; Douillard et al. 2020) focus on
video class-incremental learning problem (VCIL) and find
that directly introducing classical image class-incremental
methods to action recognition is suboptimal in terms of
maintaining performance on old classes due to the complex-
ity of the multi-frame information of videos compared to
images. Our further analysis shows that this is mainly at-
tributed to multi-level feature confusion during the incre-
mental process. As shown in Figure 1, video actions are
often composed of multiple sub-actions involving different
semantic levels, aligning them directly on the final layer fea-
ture will result in uncontrollable knowledge conflicts in the
middle levels. In contrast, explicitly aggregating different
levels of matching information can adaptively promote the
alignment or discrimination of action-specific features. So
the key question is how to ensure that feature combinations
from different levels are reasonably involved in the distil-
lation process, which is conducive to maintaining complex
feature relationships.

Besides, the redundancy fluctuation among different
video segments introduces interference in evaluating the
learning imbalance between old and new class data. Many
works (Douillard et al. 2020; Liu, Schiele, and Sun 2021a,b;
Yan, Xie, and He 2021) in image class-incremental learn-
ing show that compensating for the optimization bias by the
number ratio of old and new samples can effectively allevi-
ate the learning imbalance caused by exemplars, especially
in cases where storage space is limited. However, when ap-
plying the same strategy to VCIL, we found that it had little
effect, indicating that the redundancy in video frames makes
it difficult to measure the exact bias level with a simple num-
ber ratio among classes during the incremental process.

Motivated by the above analysis, we aim to improve
VCIL performance by increasing the combination flexibil-
ity of the aligned features and adaptively adjusting the im-
balance degree between old and new classes. Our proposed
HyperCorrelation Evolution (HCE) scheme is mainly man-
ifested in two aspects. First, we present the Hierarchical
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Figure 1: Motivation of the proposed method. Due to the heterogeneous distribution of different subaction semantics, the single-
layer (e.g., the last layer in most cases) features are valuable for classification but not for distillation in VCIL. (a) Constraining
only the highest-level semantic (e.g., pole vault vs javelin throw) alignment causes uncontrollable optimization direction of
spatio-temporal features (e.g., throwing vs jumping), which aggravates the possibility of confusion and forgetting between old
and new actions. (b) Adaptively combining and aggregating hierarchical spatio-temporal features facilitates the retention of
similar features (e.g., running) and the discrimination of conflicting features (e.g., throwing vs jumping).

Aggregation Strategy (HAS) to promote the multi-semantic
knowledge retention by reorganizing and jointly optimiz-
ing the level-wise similarity matrix. Specifically, a sparse
4D convolution operator is utilized to enhance both the
inter-level and intra-level interactions of the similarity rela-
tionship. Secondly, we present the Correlation Refinement
Mechanism (CRM) to reinforce the knowledge imbalance
by weighting the classification loss with class-specific hy-
percorrelation variance ratio. To demonstrate the superiority
of our method, we conducted comparative experiments with
both image and video class-incremental methods on three
standard benchmarks UCF101, HMDB51, and Something-
Something V2. We achieved the best results against the
state-of-the-art methods, leading by 2%, 2%, and 3%, re-
spectively. Our main contributions are as follows:

• A hierarchical aggregation strategy is proposed for video
class-incremental learning, in which the frame-efficient
feature preservation is accomplished by a hierarchical
distillation strategy, resulting in a plastic action represen-
tation with multi-semantic knowledge.

• A correlation refinement mechanism is presented, which
calculates the variance of different hypercorrelation com-
bination coefficients to adaptively re-weight the class
bias and reinforce the knowledge imbalance.

• Extensive experiments on UCF101, HMDB51, and
Something-Something V2 datasets demonstrate the su-
periority of our proposed method over the SOTA.

Related Works
Class-Incremental Learning
Class-Incremental Learning (CIL) involves the task of learn-
ing new classes incrementally while preserving the previ-

ously learned knowledge (Zhu et al. 2021, 2022). There
are three main methods to tackle CIL: (1) Rehearsal-based
methods store representative samples or network features of
old classes or use GANs to generate old ones for training
new tasks. iCaRL (Rebuffi et al. 2017) uses a small number
of representative samples that approximate the class centroid
for new task training. The feature-based playback method
has the problem of feature drift. SDC (Yu et al. 2020) uses
feature adaptation to solve the problem of feature drift. The
GAN-based method (Ostapenko et al. 2019; Shin et al. 2017)
uses generative adversarial networks (GANs) (Mirza et al.
2014; Odena, Olah, and Shlens 2017) to generate samples of
old tasks. (2) Knowledge distillation (Hinton, Vinyals, and
Dean 2015; Romero et al. 2014; Zagoruyko and Komodakis
2016) was first used in image classification tasks and quickly
applied in other fields. Knowledge distillation guides stu-
dents to realize knowledge transfer through the teacher net-
work. How to set up a better distillation method is the focus
of this kind of method improvement. LwF (Dhar et al. 2019)
has created a precedent of applying knowledge distillation to
incremental learning to solve catastrophic forgetting. iCarl
combines knowledge distillation and rehearsal, which calcu-
lates distillation loss according to network prediction. POD-
Net (Douillard et al. 2020) applies an efficient spatial distil-
lation loss to the whole model, which significantly alleviates
catastrophic forgetting. (3) The method based on model ar-
chitecture continuously modifies the network structure with
incremental learning. For example, add a new model struc-
ture for incremental tasks so that the old model weight can
maintain the old task characteristics. At the same time, the
new model structure adapts to incremental tasks to achieve
the goal of adapting to both old and new tasks. DER (Chen,
Zhang, and Qin 2019) improves the model performance by
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expanding the model structure so that the old model struc-
ture is conducive to maintaining the performance of the orig-
inal task, and the new model structure can adapt to the per-
formance of the new incremental task.

To address the challenging VCIL task, TCD (Park, Kang,
and Han 2021) involves time-channel importance maps
in the knowledge distillation process. Different from their
static relation calculated from the corresponding gradient in-
formation, we utilize the learnable network to explore the
joint effect of hierarchical correlation.

Action Recognition
With advancements in CNNs, techniques (Carreira and Zis-
serman 2017; Karpathy et al. 2014; Lin, Gan, and Han 2019;
Tran et al. 2015; Wang et al. 2016) utilized for video ac-
tion recognition have evolved and can be broadly catego-
rized into two methods: 2D CNN and 3D CNN.

Some methods utilize conventional 2D Convolutional
Neural Networks (CNNs), while Simonyan et al. (Feichten-
hofer, Pinz, and Zisserman 2016) employ a novel two-stream
network that combines the characteristics of RGB and opti-
cal flow to enhance recognition accuracy. Additionally, Lin
et al. (Lin, Gan, and Han 2019) propose the Temporal Shift
Module (TSM), which allows for information exchange be-
tween adjacent frames by shifting part of the channels along
the time dimension. This innovation is integrated into a stan-
dard 2D neural network, providing improved time modeling
with zero added computational cost or extra parameters.

3D CNN has the ability to learn both spatial and temporal
features simultaneously. I3D (Carreira and Zisserman 2017)
inflates the weights of a pre-trained 2D model from Ima-
geNet to the corresponding weights in a 3D model and trains
it further on Kinetics400 dataset, achieving the highest clas-
sification accuracy. However, 3D CNN are computationally
intensive and more prone to overfitting due to their larger
parameters and more complex architecture.

To mitigate the issue mentioned above, many works use
2D CNN and 3D CNN (Wang et al. 2018; Xie et al. 2018;
Zhou et al. 2018; Zolfaghari, Singh, and Brox 2018) in the
network. Due to the particularity of temporal modeling in
action recognition, some works have divided the 3D ker-
nel into 2D spatial convolution and 1D temporal convolu-
tion (Qiu, Yao, and Mei 2017; Tran et al. 2018; Xie et al.
2018). More recent studies have sought to enhance temporal
modeling by incorporating additional modules beyond sim-
ply using 1D temporal convolution. Of course, many other
methods exist, such as applying group (Tran et al. 2019) con-
volution and learning 3D shift operation (Fan et al. 2020).

Method
Problem Formulation
The purpose of Class Incremental Learning is to train a
model parameterized by Θ step-by-step with a given set of
tasks {T1, T2, · · · , Tk, · · · }. We set Dk to be a pre-specified
dataset which not encountered in previous tasks for task Tk,
with labels belonging to a pre-defined label set λk where
(λ1 ∪ · · · ∪ λk−1) ∩ λk = ∅. To alleviate catastrophic for-
getting, a representative subset of exemplars, Ek, is pre-

served for future tasks. Ek is selected at the end of each
task Tk and is used for training as each subsequent task
progresses. In each incremental step Tk, we use the dataset
D′

k = Dk + Ek−1 for model training and evaluate the per-
formance of the model on all seen classes.

Overview
As shown in Figure 2, the overall framework of our pro-
posed HCE follows the standard protocol of video class-
incremental methods (Park, Kang, and Han 2021; Villa et al.
2022), which is mainly based on rehearsal strategy and
knowledge distillation. Specifically, We input the videos into
both the new and old backbone networks to obtain the in-
termediate feature pairs of the new and old models. Then
these intermediate feature pairs are fed into the HAS, shown
in Figure 3 to obtain the hypercorrelation, which contains
multi-semantic information.

In addition, we use the variance of different hypercorre-
lation combination coefficients generated by Ek−1 and Dk

to reinforce the knowledge imbalance. Our method offers
practicality and resilience in updating models, presenting
fresh perspectives for utilization in domains like video class-
incremental learning.

Hierarchical Aggregation Strategy
The hierarchical distillation strategy we proposed promotes
the retention of multi-semantic knowledge by reorganizing
and jointly optimizing the layer-wise matching matrices.

The ResNet is comprised of fundamental components
known as residual blocks, with each individual residual
block referred to as a layer. So the backbone consists of L
layers. Simultaneously, the residual blocks within ResNet
generate feature maps el with varying shapes. We aggregate
the residual blocks that produce feature maps of the same
shape into distinct groups Ps. Ultimately, all the residual
blocks are categorized into S groups.

We feed the videos D′

k into both the old and new back-
bone networks to extract all intermediate feature maps de-
noted by ek−1

l and ekl , which are called layer-wise matching
matrices, where l ranges from 1 to L. The layer-wise match-
ing matrices have dimensions of RT×Cl×Hl×Wl , with T rep-
resenting the temporal dimension of a video, while Cl repre-
sents the number of channels in the l layer of the backbone.
Then we compute the cosine similarity Ĉl between each pair
of layer-wise matching matrices, and the correlation vector
is calculated as:

Ĉl = ReLU

(
ekl × ek−1

l

∥ekl ∥ × ∥ek−1
l ∥

)
. (1)

ReLU is used to suppress noise in the correlation. Ĉl ∈
RT×Hl×Wl×Hl×Wl with the same spatial size are collected
into {Ĉl}l∈Ps

, which are then concatenated, resulting in
Cs ∈ RT×|Ps|×Hs×Ws×Hs×Ws . After the concatenation, we
can obtain the multilevel similarity C = {Cs}Ss=1.

Due to the multilevel similarity in C only calculates the
correlation within a single level, we perform a 4D convolu-
tion operation on C to link the correlation of all levels, which
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Figure 2: The overall framework of our scheme. The hypercorrelation evolution scheme combines multi-level distillation and
correlation refinement mechanism to improve model performance. At each incremental step k, the correlation refinement mech-
anism calculates the class-specific hypercorrelation variance weights using Ek−1 and Dk through the HAS under the current
task, and then applies them to the cross-entropy loss function to help the model learn correlations better. For D′

k, we input
it into the backbone network to generate new and old feature pairs and then input these feature pairs into HAS to obtain a
multi-semantic knowledge hypercorrelation. Then this hypercorrelation is applied to the backbone feature layer for knowledge
distillation to help the model learn more accurate features. Meanwhile, the backbone and HAS are updated simultaneously
through knowledge distillation and cross-entropy loss function optimization.

reduces the last two dimensions of C with a large stride
to a uniform size (He,We), RT×|Ls|×Hs×Ws×Hs×Ws −→
RT×128×Hs×Ws×He×We , where Hs > He and Ws >
We. Then, we perform upsampling operations on the third
and fourth dimensions of C to enlarge them to the largest
(Hs,Ws) in C, as shown in Figure 3. This enables us to ag-
gregate all components of C to derive C′. We use multiple
4D convolutions with a stride of 1 on C′

to enhance its multi-
semantic knowledge while preserving its shape. Finally, we
perform an avgpool operation on the last two dimensions of
C′

to obtain Z ∈ RT×128×HL×WL , which contains the rele-
vant information of all levels.

To harness the multi-level semantic information embed-
ded in Z to aid in model training, we devise a decoder, which
consists of a series of 2D convolutions, ReLU, and batch
normalization as shown in Figure 3. Specifically, in the last
two convolutional layers of the decoder, we employ differ-
ent Cl to extract hypercorrelation H l ∈ RT×Cl of varying
scales. After the decoder, we introduce an expansion scalar
as a hyperparameter to adapt more quickly to the relation-
ships between different levels. Finally, hypercorrelation is
used to optimize the backbone network through knowledge
distillation, with a distillation loss of:

Lhc =
L∑

l=1

T∑
t=1

Cl∑
c=1

H l∥ek,t,cl − ek−1,t,c
l ∥2F , (2)

where ∥ · ∥F denotes the Frobenius norm. The ek,t,cl and
ek−1,t,c
l refer to the feature maps extracted from the inter-

mediate layer of the backbone network. H l denotes the hy-
percorrelation corresponding to feature maps from l layer.

Correlation Refinement Mechanism
The existing research (Pei et al. 2022) indicates that the in-
terference caused by redundancy fluctuation among differ-
ent video segments is a significant challenge when evaluat-
ing the knowledge imbalance between old and new classes.
To tackle this issue, we propose a novel correlation refine-
ment strategy that leverages class-specific hypercorrelation
variance weights to reinforce the knowledge imbalance.

During task k, we have two parts of datasets Ek−1 and Dk,
and subsequently input them separately into the HAS model.
This process yields two hypercorrelation sets {H(x)}x∈Dk

and {H(x)}x∈Ek−1
, and the variances of these hypercorre-

lation sets are computed individually. Then, we use the vari-
ance of {H(x)}x∈Ek−1

to calculate the ratio of all classes in
the old task and the variance of {H(x)}x∈Dk

to calculate the
ratio of all classes in the new task. These ratios can balance
the impact of different classes during model training and can
be calculated using the following formula:

ratioold = log

[ ∑
x∈Ek−1

(H(x)− H̄old)
2

]
, (3)
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Figure 3: The overall architecture of Hierarchical Aggregation Strategy. It consists of three components: obtaining intermediate
feature pairs, utilizing 4D convolution for knowledge blending, and decoding the multi-level semantic information.

rationew = log

[ ∑
y∈Dk

(H(y)− H̄new)
2

]
, (4)

where H̄old and H̄new are the averages of {H(x)}x∈Ek−1

and {H(x)}x∈Dk
. Next, we set the ratios of all classes in the

Ek−1 dataset to ratioold to obtain REk−1
and set the ratios

of all classes in the Dk dataset to rationew to obtain RDk
.

Subsequently, we concatenate two lists REk−1
and RDk

to
obtain the ratios of all classes RD′

k
. To reduce the impact of

the imbalance between old and new classes, we apply this
ratio to the cross-entropy loss function:

L
′

ce = CrossEntropy(p+RD′
k
, t), (5)

where p represents the predicted logits and t represents the
data label (λ1 ∪ · · · ∪ λk) .

Training Objective
The formal definition of the final objective function Lk

final at
incremental step k is given by

Lk
final = Lk

ce

′

+ Lk
kd + Lk

hc, (6)

where Lk
kd refers to the process of performing distillation

on the last layer of the backbone to ensure that the model
retains sufficient classification information. Lk

ce

′

represents
the cross-entropy loss function optimized and adjusted by
the correlation refinement strategy to reinforce the knowl-
edge imbalance between old and new classes. Lk

hc refers to
the backbone distillation loss applied at multiple levels in
the hierarchical distillation strategy. In this way, the joint
constrain with Lk

ce

′

and Lk
hc optimizes H towards a direc-

tion that favors both differentiation and promotes the multi-
semantic knowledge retention. The comprehensive applica-
tion of these techniques enables our model to perform better
in handling new data, with strong generalization ability.

Experiments
Datasets
We conduct a comprehensive evaluation of the pro-
posed HCE on three widely-used action recognition

datasets: UCF101 (Soomro, Zamir, and Shah 2012),
HMDB51 (Kuehne et al. 2011), and Something-Something
V2 (Goyal et al. 2017). The UCF101 dataset comprises
13.3K videos belonging to 101 classes, while the HMDB51
dataset contains 6.8K videos from 51 action classes col-
lected from various online sources. Something-Something
V2 is a large-scale dataset consisting of 220K videos from
174 different action classes, which is designed to challenge
the temporal reasoning capabilities of models.

Evaluation Protocol
To evaluate the performance of our VCIL method, we adopt
different training strategies for each dataset. Specifically, for
UCF101, we first train the model on 51 classes and then
divide the remaining 50 classes into 5, 10, and 25 tasks,
respectively. For HMDB51, we train the base model using
videos from 26 classes and then separate the remaining 25
classes into 5 or 25 groups. For Something-Something V2,
we first train on 84 classes in the initial stage and then gen-
erate groups of 10 and 5 classes.

Comparison with SOTA
To better assess the overall performance, we compare our
method to the SOTA of VCIL, including LwFMC (Li and
Hoiem 2017), LwM (Dhar et al. 2019), iCaRL (Rebuffi et al.
2017), UCIR (Hou et al. 2019), PODNet (Douillard et al.
2020) and TCD (Park, Kang, and Han 2021). Meanwhile,
we use the same storage size for each class and model archi-
tecture to ensure the fairness of the experiments.

Table 1 and Table 2 show the overall results of our method
and other baselines on the HMDB51, Something-Something
V2, and UCF101 datasets. Obviously, our method consis-
tently outperforms all related methods across all experimen-
tal settings. Specifically, we achieve significant improve-
ments over the FrameMaker method, with growth rates of
around 2%, 3%, and 2% on the HMDB51, Something-
SomethingV2, and UCF101 datasets. These results demon-
strate the effectiveness of HCE in retaining multi-semantic
knowledge and reinforcing the knowledge imbalance.
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HMDB51 Something-Something V2
Num. of classes 5 × 5 stages 1 × 25 stages 10 × 9 stages 5 × 18 stages
Classifier CNN NME CNN NME CNN NME CNN NME
Fine-tuning 16.82 — 4.83 — — — — —
LwFMC (Li and Hoiem 2017; Rebuffi et al. 2017) 26.82 — 16.49 — — — — —
LwM (Dhar et al. 2019) 26.97 — 16.50 — — — — —
iCaRL (Rebuffi et al. 2017) — 40.09 — 33.77 — 15.48 — 10.22
UCIR (Hou et al. 2019) 44.90 46.53 37.04 37.15 26.84 17.98 20.69 12.57
PODNet (Douillard et al. 2020) 44.32 48.78 38.76 46.62 34.94 27.33 26.95 17.49
TCD (Park, Kang, and Han 2021) 45.34 50.36 40.07 46.66 35.78 28.88 29.60 21.63
FrameMaker (Pei et al. 2022) 47.54 51.12 42.65 47.37 37.25 29.92 30.98 22.84
HCE (Ours) 48.63 52.01 43.99 48.94 38.67 36.88 32.51 32.82
Oracle (Upper Bound) 55.03 55.98 54.89 55.32 60.15 55.37 60.96 54.16

Table 1: Class-incremental action recognition performance on HMDB51 and Something-Something V2. HCE achieves the best
performance in all experimental settings. We are unable to provide NME scores for methods that do not utilize exemplars.
Additionally, iCaRL exclusively employs NME for classification purposes and does not utilize CNN. The bold-faced numbers
indicate the best performance.
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Figure 4: Analysis on Hierarchical Aggregation Strategy. Benefiting from the sensitivity of propsed HAS on local informa-
tion(e.g., gradcam in the upper subfigure), features related to effective sub-actions at different levels can be effectively distin-
guished.(e.g., t-SNE in the lower)

The results of HCE and other baseline methods on the
Something-SomethingV2 dataset show that HCE outper-
forms the other baselines on this large-scale dataset. Fur-
thermore, we observed that the performance of TCD and
FrameMaker on NME is not as good as on CNN due to
the need for better representation quality. By utilizing HAS
and CRM, our method preserves better representations and
achieves better performance on NME.

Ablation Study and Analysis
Ablation Study To demonstrate the effectiveness of the
hierarchical distillation strategy and the correlation refine-
ment strategy on VCIL, we conduct the experiment for vari-
ant types of our objective function, Lk

final. Table 3 presents
the results from several different combinations of loss terms.
The results show that all of the introduced components con-
tribute to the performance, and their combination L′k

ce + Lk
kd

+ Lk
hc leads to the best performance.

Analysis on Hierarchical Aggregation Strategy To
demonstrate the mechanisms of multi-level work, we con-
duct the experiment on the relationship between different
levels and different sub-actions. Specifically, we use Grad-
CAM (Selvaraju et al. 2017) to observe the attention of dif-
ferent sub-actions in the “bowling” and “high jump” classes
for different levels of the backbone. From Figure 4, it can
be seen that level 2 has greater attention to the sub-action
“run” in both classes but cannot focus on the key sub-actions
of “throw” in the “bowling” class and “jump” in the “high
jump” class. In contrast, level 3 can focus well on the key
sub-actions of “throw” in the “bowling” class and “jump”
in the “high jump” class but cannot focus on “run.” Further-
more, we use t-SNE (Van der Maaten and Hinton 2008) to
observe the clustering effect of different levels of features
for different videos. Significantly, we observe that level 3
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Num. of classes 10 × 5 stages 5 × 10 stages 2 × 25 stages
Classifier CNN NME CNN NME CNN NME
Fine-tuning 24.97 — 13.45 — 5.78 —
LwFMC 42.14 — 25.59 — 11.68 —
LwM 43.39 — 26.07 — 12.08 —
iCaRL — 65.34 — 64.51 — 58.73
UCIR 74.31 74.09 70.42 70.50 63.22 64.00
PODNet 73.26 74.37 71.58 73.75 70.28 71.87
TCD 74.89 77.16 73.43 75.35 72.19 74.01
FrameMaker 78.13 78.64 76.38 78.14 75.77 77.49
HCE ( Ours) 79.12 80.01 77.59 78.81 75.84 77.62
Oracle 84.15 83.37 83.96 83.20 83.82 83.16

Table 2: Class-incremental action recognition performance
on UCF101. HCE achieves the best performance in all ex-
perimental settings.

Objective Function CNN NME
Lk

ce + Lk
kd 44.36 48.44

Lk
ce + Lk

hc 45.45 50.66
Lk

ce + Lk
kd + Lk

hc 47.34 51.65
L′k

ce + Lk
kd + Lk

hc 48.63 52.01

Table 3: Ablations study on the objective function. We
demonstrated the effectiveness of the hierarchical distilla-
tion strategy Lk

hc and correlation-related mechanism on the
cross-entropy loss L′k

ce .

exhibits a strong clustering effect within these two classes,
in contrast to level 2, which demonstrates a notably weaker
clustering effect. This discrepancy arises from the fact that
level 2 corresponds solely to the sub-action “run,” whereas
level 3 encompasses distinct sub-actions such as “jump” and
“throw.” Consequently, the inadequate clustering of level
2 can be attributed to its singular focus on “run,” while
the diverse sub-actions captured by level 3 contribute to
its effective clustering performance. Similarly, we observed
the same phenomenon in other classes with the same sub-
actions, such as the “BodyWeightSquats” and “CleanAnd-
Jerk” classes shown in Figure 4. Based on the above analy-
sis, we conclude that using only the last level or a single level
of features is helpful for classification but not conducive to
the preservation of video knowledge. The reason is that dif-
ferent levels correspond to different sub-action features, and
driving only one level can easily lead to conflicts between
preservation and discrimination. Therefore, we need to use
a combination of multiple levels to preserve the same sub-
action information and distinguish different sub-actions.

To demonstrate the advantages of multi-level integration,
we compare single-level which uses distillation in the last
level, multi-level (TCD) which can be regarded as an indi-
rect way of applying information from multiple hierarchi-
cal levels, and HAS. Table 4 shows the semantic alignment
method with multi-level and inter-layer interaction is supe-
rior to the single-level and non-interacting methods, demon-
strating the validity of our method.

Analysis on Correlation Refinement Mechanism To
demonstrate the effectiveness of CRM in compensating for

Classifier CNN NME
Single-level 44.86 48.62
Muti-level 45.34 50.36

HAS 48.63 52.01

Table 4: Analysis about different distillation methods on
HMDB51 with 5 steps. The results show the superiority of
the HAS with multi-level and inter-layer interaction.

Classifier CNN NME
Number ratio 46.88 51.08

CRM 48.63 52.01

Table 5: Analysis about the CRM on HMDB51 with 5 steps.
The results indicate that applying CRM for Lk

ce

′

is superior
to using the number ratio of old and new samples.

Scalar 100 1000 2000 5000 10000
CNN 47.88 48.63 48.43 48.51 48.47
NME 51.90 52.01 51.88 51.65 51.79

Table 6: Analysis on Expanding Scalar. The results show the
robustness of our algorithm to varying scalar.

optimization bias, we use CRM and the number ratio of old
and new samples on the cross-entropy loss, respectively. As
shown in Table 5, applying CRM to cross-entropy loss re-
sulted in around a 2% and 1% improvement in CNN and
NME, respectively, compared to using the number ratio of
old and new samples. It can be seen that CRM can rein-
force the knowledge imbalance by weighting the classifica-
tion loss with the class-specific hypercorrelation variance ra-
tio, thereby improving the final performance.

Analysis on Expanding Scalar To demonstrate the ro-
bustness of our method on hyperparameter, we conduct rel-
evant perturbation experiments on HMDB51 with 5 steps.
We adjust the value of the scalar to 100, 1000, 2000, 5000,
and 10000, respectively. It can be observed in Table 6 that
the impact of scalar on the accuracy of the two classifiers is
between 0.2% and 0.3%. Therefore, it can be concluded that
our method exhibits robustness in terms of scalar.

Conclusion

To alleviate catastrophic forgetting issues that may arise
in the class-incremental context of video action recogni-
tion, we proposed a hypercorrelation evolution scheme, in
which a hierarchical aggregation strategy is presented to pre-
serve semantic-effective features from previous tasks adap-
tively, and a correlation refinement mechanism is presented
to address the knowledge imbalance interrupted by both
sample number and video redundancy. In this way, our
scheme achieves outstanding performance compared to ex-
isting image-specific class-incremental learning methods on
multiple standard benchmarks.
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