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Abstract

Talking upper-body synthesis is a promising task due to its
versatile potential for video creation and consists of animat-
ing the body and face from a source image with the mo-
tion from a given driving video. However, prior synthesis
approaches fall short in addressing this task and have been
either limited to animating heads of a target person only, or
have animated the upper body but neglected the synthesis of
precise facial details. To tackle this task, we propose a Photo-
realistic Talking Upper-body Synthesis method via 3D-aware
motion decomposition warping, named PTUS, to both pre-
cisely synthesize the upper body as well as recover the de-
tails of the face such as blinking and lip synchronization. In
particular, the motion decomposition mechanism consists of
a face-body motion decomposition, which decouples the 3D
motion estimation of the face and body, and a local-global
motion decomposition, which decomposes the 3D face mo-
tion into global and local motions resulting in the transfer
of facial expression. The 3D-aware warping module trans-
fers the large-scale and subtle 3D motions to the extracted
3D depth-aware features in a coarse-to-fine manner. More-
over, we present a new dataset, Talking-UB, which includes
upper-body images with high-resolution faces, addressing the
limitations of prior datasets that either consist of only facial
images or upper-body images with blurry faces. Experimental
results demonstrate that our proposed method can synthesize
high-quality videos that preserve facial details, and achieves
superior results compared to state-of-the-art cross-person mo-
tion transfer approaches. Code and collected dataset are re-
leased in https://github.com/cooluoluo/PTUS.

Introduction
Image animation is a challenging problem in video creation
and finds practical applications in settings such as video con-
ferencing, news reports, and role-playing video games. This
has given rise to a multitude of synthesis methods that, based
on a source image and a driving video, aim to transfer the
motion of the person in the driving video to the source image

*Corresponding author
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Figure 1: Talking upper-body synthesis results produced by
our method trained on the Talking-UB dataset. Our method
can transfer both large-scale motions, such as body move-
ment, as well as subtle facial expressions, such as eye blink-
ing and mouth motion, from the driving video to the source
image.

while preserving the appearance information of the person
in the source image (Wang, Mallya, and Liu 2021; Siarohin
et al. 2021; Hong et al. 2022). These synthesis approaches
either focus only on facial animations (Wang, Mallya, and
Liu 2021; Hong et al. 2022), known as talking head synthesis
approaches (Fig. 2a), or on body motions without consider-
ing facial details (Siarohin et al. 2019b), known as full-body
animation approaches (Fig. 2b). This limits their applicabil-
ity in practical applications, such as news reporting, in which
both body motion and facial details matter, giving rise to the
challenging talking upper-body synthesis task (Fig. 2c). This
task extends the talking head synthesis task to include upper-
body motion, as well as facial expressions.

To tackle the talking head problem, warping-based algo-
rithms (Kewei et al. 2022; Hong et al. 2022; Wang, Mallya,
and Liu 2021; Doukas, Zafeiriou, and Sharmanska 2021)
that learn a dense motion field to warp the source image
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Figure 2: We introduce a new challenging task termed talk-
ing upper-body synthesis. (a) Talking head synthesis focuses
on facial animation only (Wang, Mallya, and Liu 2021;
Hong et al. 2022). (b) Full-body animation ignores facial de-
tails (Siarohin et al. 2019b). (c) Talking upper-body synthe-
sis instead can both transfer the motions of the upper-body
and face and preserves facial details.

features, have established themselves as the dominant ap-
proach. These methods have recently been extended to lever-
age 3D geometric information in order to improve the syn-
thesis quality of, among others, face rotation (Hong et al.
2022; Wang, Mallya, and Liu 2021). This is done by learn-
ing a 3D depth feature map and a depth map in a self-
supervised manner. However, these methods generate facial
details without considering the motions of the body.

Human body animation, on the other hand, has recently
gained attention through the impressive performance of mo-
tion transfer approaches (Siarohin et al. 2019a,b, 2021;
Wang et al. 2022). While these approaches transfer motions
among people, these approaches focus on body movement
and are unable to accurately capture the facial details. In
summary, existing works either only focus on facial anima-
tion, ignoring the body motion, or only on body animation
while ignoring the synthesis of facial details.

In this work, we propose a novel Photo-realistic Talking
Upper-body Synthesis method via 3D-aware motion decom-
position warping, named PTUS, which can animate both
face and body with a 3D-aware motion decomposition warp-
ing mechanism. The 3D-aware warping module manipulates
the 3D features of the source image conditioned on the 3D
motions learned from the driving image. To precisely syn-
thesize the upper-body and facial details, we first decompose
the 3D motion into the face and body motions with a face-
body motion decomposition. We then decompose the face
motion into global and local motions with a local-global mo-
tion decomposition to facilitate fine-grained warping such as
blinking of the eyes via the local face motion. As illustrated
in Fig. 1, PTUS can achieve realistic and detailed results for
body motion transfer such as body movements (the first col-

umn), as well as facial motion transfer such as eyes blinking
(the second column) and face rotation (the third column),
via the proposed 3D-aware motion decomposition warping
mechanism. Finally, we address the other roadblock that cur-
rently exists for Talking Upper-Body Synthesis, which is
the lack of high-resolution faces in existing datasets. To ad-
dress this issue, we collect a new dataset, named Talking-
UB, which contains upper-body images with high-resolution
faces.

The main contributions are three-fold:
• We propose the first method for synthesizing a talking

upper-body, PTUS, which animates the body and face from
a source image with the motion from a given driving video.

• A 3D-aware motion decomposition warping mechanism
is proposed to precisely synthesize facial as well as upper-
body details. The 3D-aware warping transfers 3D motion
from the driving image to the source image in a coarse-to-
fine manner. The face-body motion decomposition mecha-
nism estimates the 3D motions of the face and body sepa-
rately, while the local-global motion decomposition mecha-
nism decomposes the 3D face motion into global and local
motions. Benefiting from the 3D-aware motion decomposi-
tion warping mechanism, our model can both learn large-
scale motions such as body movement and subtle motions
such as blinking eyes.

• We create a more challenging benchmark for body and
face animation, named Talking-UB, containing upper-body
images with high-resolution faces.

Related Work
Image-to-Image Translation. The goal of image-to-image
translation is to map an existing image to a new one with
a specific style or characteristic, while maintaining the con-
tent. With the advent of generative models (Goodfellow et al.
2014; Kingma and Welling 2013), this topic has been exten-
sively studied. To translate image style, early works (Isola
et al. 2017; Wang et al. 2018) propose to learn a determin-
istic one-to-one mapping by leveraging a U-Net trained in
an adversarial way. (Zhu et al. 2017; Huang et al. 2018; Lee
et al. 2018; Ma et al. 2019) further extend the task to the mul-
timodal setting where one image can be translated to differ-
ent styles via one-to-many mappings. Recent works further
explore instance-level translation (Mo, Cho, and Shin 2019),
contrastive learning (Park et al. 2020), transformer architec-
ture (Kim et al. 2022), etc. However, image-to-image meth-
ods focus primarily on appearance transfer instead of motion
transfer, which is crucial in our talking upper-body synthesis
task.
Motion Transfer. Motion transfer aims to transfer the mo-
tion of one person to another. Early methods designed for
this task make explicit use of motion guidance. For example,
(Ma et al. 2017; Zhu et al. 2019; Ren et al. 2020; Zhang et al.
2020; Zhou et al. 2021) use OpenPose (Cao et al. 2017) to
extract human body keypoints as guidance to transfer body
pose. However, such domain specific guidance requires prior
knowledge of animated objects and extra annotations. In-
stead, recent works have attempted to learn the motion rep-
resentation of an image directly by disentangling identity
and pose in an unsupervised manner. (Siarohin et al. 2019a)
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predict keypoints from source and driving images and em-
ploy the keypoints to learn a dense motion field for warp-
ing source features in a self-supervised manner. (Siarohin
et al. 2019b) adopt a first-order Taylor expansion to improve
the flow between the source features and driving features.
(Siarohin et al. 2021) propose a novel motion representa-
tion based on a heatmap to improve the quality of motion
transfer. (Zhao and Zhang 2022) propose a thin-plate spline
motion prediction and estimate a multi-resolution occlusion
mask to overcome large pose differences between the source
and driving images. Unlike (Siarohin et al. 2019b, 2021;
Zhao and Zhang 2022), (Wang et al. 2022) manipulates mo-
tion transfer in latent space rather than explicit represen-
tations such as keypoints or regions. Although these mo-
tion transfer methods can be applied to the proposed talking
upper-body synthesis task, they focus on body motion while
neglecting facial expression motion, leading to sub-optimal
performance.
Video-driven Talking Head Synthesis. The task of video-
driven talking head generation aims to animating the face
from a source image with the motion from a driving video.
Burkov et al. proposes a head animation framework by en-
coding pose expressions into a latent space (Burkov et al.
2020). (Kewei et al. 2022) adopts an embedding network
and a driving network to learn an embedded face and the
warping between the embedded face and the target image.
(Hong et al. 2022) leverages a depth map to improve key-
point estimation and a cross-modal attention mechanism to
boost performance for motion transfer. (Wang, Mallya, and
Liu 2021) warps 3D features from source image space to
driving image space, allowing rotating and translating op-
erations. (Yao et al. 2020) introduces a facial animation us-
ing a 3DMM parametric model (Blanz and Vetter 1999) as
guidance. (Zhang et al. 2019) models Face Reenactment by
disentangling appearance and shape information in latent
spaces. (Zakharov et al. 2019) utilizes a encoder to extract
appearance code and landmarks as pose-guided informa-
tion. (Zhao, Wu, and Guo 2021) guides the prediction of the
dense motion map using landmarks in a global-local man-
ner. While (Deng et al. 2020) models face animation by dis-
entangling face attributes using StyleGAN (Karras, Laine,
and Aila 2019). These talking head methods can synthesize
detailed facial expressions, e.g., eye blinking and mouth mo-
tion, however, they do not consider body motion which is
one key factor in the upper-body scenario. Compared with
existing talking head synthesis methods, the proposed talk-
ing upper-body synthesis method facilitates face and body
animation in a unified framework via a novel 3D-aware mo-
tion decomposition.

Method
Overview
In this section, we introduce a novel framework (see Fig. 3)
for talking upper-body synthesis that can learn both face and
upper-body motion transfer through our proposed 3D-aware
motion decomposition. Given a source image S and a driv-
ing video D = {D1, D2, ..., Dn} consisting of n frames, the
proposed method aims to transfer the motion of the person

in the driving video to the person in the source image and
generates a target video T = {T1, T2, ..., Tn}. The identity
in the target video T is the same as in the source image but
inherits the motion of the person from the driving video D.

As shown in Fig. 3 (b), the proposed motion decomposi-
tion mechanism consists of a face-body motion decomposi-
tion module and a local-global motion decomposition mod-
ule. The face-body decomposition module first decouples
the 3D motion estimation of the face and upper-body. To
learn subtle motions such as eye blinking, the local-global
motion decomposition module decomposes the predicted 3D
face motion into a local face motion mfa

l and a global face
motion mfa

g . The 3D-aware warping module first transfers
the learned large-scale 3D motions of the face and upper-
body to the extracted source 3D features of the source image
and then transfers the decomposed 3D face motion to the
initial warped features for the fine-grained warping. After
obtaining the refined 3D facial features, we combine them
with the body features and a generation module is utilized to
decode the combined features to the target image.

We will first introduce our proposed face-body motion
decomposition and the local-global motion decomposition.
The 3D-aware warping module is then presented before we
finally provide the loss functions for training the framework.

Face-Body Motion Decomposition
Unlike previous talking head synthesis and motion transfer
approaches, which estimate the motion of the person as a
whole, the proposed face-body motion decomposition mod-
ule estimates the 3D motion of the face and upper-body sep-
arately. The key insight behind the face-body motion decom-
position is that the movements of different parts in the ar-
ticulated object (e.g., the face and upper-body of a person)
are highly independent. Modeling the movement of differ-
ent parts with one motion representation is therefore inap-
propriate. In the following, we describe how our framework
predicts the 3D source and driving keypoints and leverages
them to estimate the 3D motion of the face and upper-body.
3D Keypoints Prediction. Taking a source image S and its
face Sfa as input, the keypoint detector (Wang, Mallya, and
Liu 2021) is adopted to extract the keypoints of the source
image in the canonical space to represent a person’s geomet-
ric signature in a neutral pose and expression. To transform
3D keypoints from the canonical space to the observation
space, we apply pose estimators to encode pose information
and minor motion modules to represent a person’s facial ex-
pression (face) or small movement (body).

We predict two groups of keypoints from the source im-
age and its face crop to represent body and face structures,
one for the upper-body (including the head) and the other for
the face, which allows us to estimate facial and upper-body
motions separately. Specifically, the face keypoints xfa and
upper-body keypoints xbo in the canonical space can be pre-
dicted as follows:

xfa = F fa
kp (S

fa), xbo = F bo
kp(S), (1)

where F fa
kp and F bo

kp are two keypoint detectors with the
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Figure 3: The framework of our PTUS model for talking upper-body synthesis. (a) Inputs: Source and driving images and
corresponding face crops. (b) The motion decomposition module consists of the face-body motion decomposition and the
local-global motion decomposition. The face-body motion decomposition mechanism estimates the 3D motions for face and
body separately, while the local-global motion decomposition mechanism decomposes the 3D face motion into a local face
motion and global face motion. The local face motion is responsible for fine-grained warping such as eyes blinking. (c) The
3D-aware warping module first transfers 3D motions from the driving image to the source image and then generates the target
image with the initial and refined facial features.

same network architectures for the face and upper-body, re-
spectively.

To transform 3D keypoints from the canonical space to
the observation space, we adopt two pose estimators (Wang,
Mallya, and Liu 2021) with the same network architecture
to estimate the camera poses of the face and upper-body in
the source and driving images, respectively. The transformed
source keypoints in observation space of the source image
can be written as:

xfa
S = Rfa

S xfa + tfaS , xbo
S = Rbo

S xbo + tboS , (2)

where RS and tS denote the rotation matrix and the trans-
lation vector predicted with the pose estimators from the
source image, respectively. The superscript indicates if the
face (fa) or upper-body (bo) pose estimator is leveraged.
To transfer the 3D motions from the driving images to the
source image, we also transform the keypoints extracted
from the source image to the observation space of the driv-
ing images. The transformed driving keypoints in observa-
tion space of the driving images can be written as:

xfa
D = Rfa

D xfa + tfaD , xbo
D = Rbo

Dxbo + tboD , (3)

where RD and tD denote the predicted rotation matrix and
the translation vector from the driving images, respectively.

Unfortunately, the pose estimator can only handle the
large-scale 3D motions such as the face and body rotations,

not the subtle expression motions or small movement such
as the blinking of the eye. As a remedy, we adopt two mi-
nor motion modules (Wang, Mallya, and Liu 2021) with
the same network architecture to learn facial expression and
small movements and apply them to the keypoints in obser-
vation space. Formally,

xfa
S = Rfa

S xfa + tfaS + efaS ,
xbo
S = Rbo

S xbo + tboS + eboS ,

xfa
D = Rfa

D xfa + tfaD + efaD ,
xbo
D = Rbo

Dxbo + tboD + eboD ,

(4)

where eS and eD represent the facial expression deformation
(fa) or small body movements (bo) obtained from the source
and driving images, respectively. After obtaining the source
and driving keypoints, we calculate the 3D motions of the
face and upper-body as follows:

mfa = xfa
D − xfa

S , mbo = xbo
D − xbo

S , (5)

where mfa and mbo are the 3D motions of the face and
upper-body, respectively. Inspired by FOMM (Siarohin et al.
2019b), we learn the keypoints to represent 3D motions fol-
lowing a self-supervised strategy.

Local-Global Motion Decomposition
Facial expressions play an important role in the talking
upper-body task. In contrast to 3D motions of the face, such
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as face rotation, facial expression deformations such as eye
blinking are subtle. Consequently, training the talking upper-
body synthesis model directly will lead to the optimiza-
tion of the pose estimator, while ignoring the transfer of fa-
cial expressions. To alleviate this issue, we propose a local-
global motion decomposition mechanism to decompose the
3D face motion into global and local motions. The decom-
posed local motions can be utilized to generate refined flows
for fine-grained 3D-aware warping.

Specifically, we decompose the 3D face motion mfa into
global and local components as follows:

mfa = mfa
g +mfa

l , (6)

where mfa
g and mfa

l denote the 3D global and local motion
of the face. We calculate the local face motion with a key-
point alignment technique as follows:

mfa
l = efaD −Rfa

D (Rfa
S )−1efaS . (7)

As shown in Eq. 7, we project the expression representation
from the source image pose to the driving image pose and
this helps our model learn facial expression independent of
the pose change. Benefiting from the decomposed local and
global motion, our model can transfer the subtle expression
deformation from the driving image to the source image.

3D-Aware Warping
Unlike previous methods (Wang, Mallya, and Liu 2021;
Siarohin et al. 2019b), which warp features focusing on the
principal component of the motions and thus struggle to per-
form fine-grained warping, our 3D-aware warping module
warps the depth-aware 3D features extracted from the source
image using a feature extractor (Wang, Mallya, and Liu
2021) in a coarse-to-fine manner. It first transfers the large-
scale 3D motions of the whole body to the extracted 3D
source features to obtain the initial warped features, and then
transfers the subtle 3D local motions of the face to refine the
initial warped features for fine-grained 3D-aware warping.
Specifically, a dense motion network (Wang, Mallya, and
Liu 2021) is first adopted to learn initial dense optical flows
winit by taking the body motions as input. Then, we apply
winit to the 3D canonical coordinates Cstd

3D of the 3D source
features fs and obtain the 3D initial deformed coordinates
Cinit

3D . The 3D initial warped features f init can be obtained
as follows:

f init = Fg(fs, C
init
3D ). (8)

where Fg denotes the 3D-Aware warping operation, which is
implemented using the Grid Sample algorithm (Jaderberg
et al. 2015). Since the initial warped 3D features are asso-
ciated with the global motion like body movement or head
tilt, ignoring minor facial motion like eyes blinking, we de-
compose the face motion into a global and a local motion
and utilize the local motion to refine the initial feature f init.
We adopt a dense motion network (Wang, Mallya, and Liu
2021) to infer a refined dense optical flow wre by taking the
local face motion as input. We apply wre to the 3D canon-
ical coordinates Cstd

3D and obtain the 3D refined deformed

coordinates Cre
3D. Finally, the 3D refined warped features are

computed as follows:

fre = Fg(f
init, Cre

3D) . (9)

Image Generator. Once the refined 3D warped features are
obtained, the image generator (Wang, Mallya, and Liu 2021)
first projects them back to 2D. The projected 2D image fea-
tures are then multiplied by the occlusion mask indicated
from the 3D source features and keypoints in the dense mo-
tion network. Finally, the masked 2D image features are de-
coded to obtain the target image.
Inference. In practice, we observe that some parts of the
upper-body (e.g., clothing) can blend into the background
leading to sub-par generation results for a few instances. To
address this issue, we initially utilize a mask generated by
MODNet (Ke et al. 2022) to segment the upper-body from
the background. We then employ Magic Studio for back-
ground inpainting and seamlessly integrate the upper-body
with the inpainted background using the predicted mask.

Loss Function
In the training stage, we select source and driving images
with the same identity from the same video to train our
model in a self-supervised manner. We leverage the loss
function from OSFV, which can be summarized as follows:1

L = λrecLrec + λGLG + λPLP + λcamLcam

+λELE + λδLδ + λkpLkp + λBLB .
(10)

Experiments
Experimental Setup
Dataset. Existing datasets for talking-head synthesis almost
exclusively include faces (Chung, Nagrani, and Zisserman
2018; Nagrani, Chung, and Zisserman 2017) and are lack-
ing the upper-body view. Meanwhile, the recently released
dataset for upper-body animation, TED-Talk(Siarohin et al.
2021), only includes blurry faces. To fill this gap, we in-
troduce a new dataset, Talking-UB, that contains both high-
quality faces as well as the upper-body view and can be
leveraged for the talking upper-body synthesis task. More
than 200 videos with durations ranging from 1 to 15 minutes
are collected from YouTube in the following three resolu-
tions: 1080P, 720P and 360P, covering diverse lightning con-
ditions, clothing, and background. We first select the frames
containing persons for each video, ensuring an almost con-
stant background for each motion sequence. To crop the
upper-body and faces from each frame, we adopt the human
body parsing algorithm Graphonomy (Gong et al. 2019). We
resize all cropped frames to 256 × 256 resolution. Unlike
the TED-Talk dataset, the height proportion of the face to
the upper-body in the images is between 1/3 and 2/3, result-
ing in high-quality talking upper-body synthesis data. We
divided the dataset into a train set and a test set consisting of
180 videos and 33 videos, respectively. For training, we ex-
tract three images per second. For testing, we select the first
100 frames or all frames if there are fewer than 100 frames
in the video. This results in 82470 frames for the train set

1The full loss details are provided in the supplementary.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3445



Figure 4: Qualitative comparison results of different meth-
ods for the same-identity motion transfer.

and 3217 images for the test set. More details about the col-
lected Talking-UB dataset are provided in the supplementary
material.
Metric. We evaluate the talking upper-body synthesis re-
sults using L1 distance, average keypoint distance (AKD),
average euclidean distance (AED), and face landmark dis-
tance (FLD) for the same-identity motion transfer. The L1

distance is leveraged to calculate the pixel-level distance be-
tween generated and ground-truth images. AKD (Cao et al.
2017) is adopted to estimate the distance of the keypoint
positions between the generated and ground-truth images.
AED (Deng et al. 2019) measures the ability to preserve
the identity. FLD (Bulat and Tzimiropoulos 2017) mea-
sures the consistency of facial expressions by extracting
the landmarks from the generated and ground-truth images.
For the cross-identity motion transfer, we adopt the video
FID (Wang et al. 2022) to calculate the distance between the
generated and real videos.

More experimental details are included in the supplemen-
tary material.

Comparison with State-of-the-Art Methods
We compare the proposed PTUS with the two state-of-the-
art methods LIA (Wang et al. 2022) and TPSMM (Zhao
and Zhang 2022), as well as other baseline methods:
FOMM (Siarohin et al. 2019a), MRAA (Siarohin et al.
2021). We evaluate the performance both for the same-
identity motion transfer and the cross-identity motion trans-
fer on the Talking-UB dataset2.
Same-identity Motion Transfer. Quantitative comparison
results of FOMM, MRAA, LIA, TPSMM, and PTUS are re-
ported in Table 1. It can be observed that PTUS achieves the
best results on the Talking-UB dataset in terms of L1 dis-
tance and face landmark distance. This suggests that PTUS
can recover facial details more accurately. Fig. 4 shows
the qualitative comparison to FOMM, MRAA, LIA, and
TPSMM. As displayed in Fig. 4, PTUS can more accurately
capture facial expression motion like eye blinking (Row 1)
and body motion (Row 3). Further, PTUS can effectively
mitigate the issue of the upper body adhering to the back-
ground (Row 2), while FOMM, MRAA and TPSMM can-
not.

2Additional qualitative results can be found in the supplemen-
tary

Methods FOMM MRAA LIA TPSMM PTUS
L1 ↓ 0.040 0.036 0.141 0.036 0.035

AKD ↓ 2.87 2.70 9.79 2.46 2.46
AED ↓ 0.048 0.045 0.085 0.043 0.043
FLD ↓ 1.652 1.542 3.804 1.377 1.322
FID ↓ 44.50 39.69 82.63 34.28 26.61

Table 1: Quantitative results of different methods for motion
transfer.

Figure 5: Qualitative comparison of different methods for
the cross-identity motion transfer.

Cross-identity Motion Transfer. The task of cross-identity
motion transfer is to transfer the motion of one person in
the driving images to another person in the source image.
The identities in the driving and source images are differ-
ent. We compare the performance of FOMM, MRAA, LIA,
TPSMM, and PTUS for the cross-identity motion transfer
on the Talking-UB dataset. To compute the FID score, we
randomly select 16 images containing different persons in
the test set for each video and generate 528 videos for evalu-
ation. Results are recorded in Table 1. As shown in Table 1,
compared with FOMM, MRAA, LIA, and TPSMM, PTUS
achieves the best results. This indicates that PTUS can gen-
erate more realistic videos. As displayed in Fig. 5, PTUS
also achieves better qualitative results compared to other
methods. Our model learns more accurate motion transfer
for the face and generated facial details like the shape of the
mouth and the blinking of the eyes across different identities
(Row 3). Further, also in the cross-identity setting, PTUS
can effectively mitigate the issue of the upper body adhering
to the background (Row 2), compared to FOMM, MRAA
and TPSMM. Finally, we observe that PTUS can preserve
the identity more faithfully than LIA.
Human Study. We also conduct a human study to evalu-
ate the quality of generated videos for cross-identity mo-
tion transfer. Four metrics are considered: identity (the con-
sistency between the person of the source image and gen-
erated videos), authenticity (the authenticity of the gener-
ated videos), facial motion consistency(FMC) (the consis-
tency between the facial motion of the driving and generated
videos), and body motion consistency(BMC) (the consis-
tency between the body motions of the driving and gener-
ated videos). We randomly select 10 source images and driv-
ing videos for cross-identity motion transfer. Results from
FOMM, MRAA, LIA, TPSMM, and our method are shown
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Methods Identity FMC BMC Authenticity
FOMM 4.00% 15.75% 16.50% 6.25%
MRAA 10.25% 12.00% 14.25% 6.75%

LIA 1.75% 10.25% 9.75% 13.25%
TPSMM 20.00% 13.75% 12.25% 23.25%
PTUS 64.00% 48.25% 47.25% 50.50%

Table 2: Human Study for the cross-identity motion transfer.
40 human raters are asked to evaluate the quality of gen-
erated videos. Numbers denote the proportion(%) of users’
preferences.

Figure 6: Qualitative comparison of OSFV(Backbone).

in random order and the human raters are asked to select the
best video from the perspective of identity, authenticity, fa-
cial motion consistency, and body motion consistency. We
collect 40 human evaluation results in total and use the pro-
portion (%) of users’ preferences as the final scores. Table 2
displays the results of the human study for the cross-identity
motion transfer and demonstrates that our method outper-
forms the state-of-the-art methods in terms of identity, au-
thenticity, facial motion consistency, and body motion con-
sistency.

Methods L1 ↓ AKD ↓ AED ↓ FLD ↓ FID ↓
OSFV 0.052 4.22 0.050 1.941 27.27
PTUS 0.035 2.46 0.043 1.322 26.61

Table 3: Compared with OSFV(backbone)

Ablation Study
Compared with OSFV (Backbone). We compare PTUS
with the backbone OSFV and study the effectiveness of

Methods L1 ↓ AKD ↓ AED ↓ FLD ↓ FID ↓
w/o FBLG 0.068 9.85 0.065 3.526 86.44
w/o LGMD 0.067 10.12 0.066 3.631 87.26

PTUS 0.035 2.46 0.043 1.322 26.61

Table 4: Ablation studies of the FBMD (face-body motion
decomposition) and the LGMD (local-global motion decom-
position).

the proposed motion decomposition for motion transfer on
the Talking-UB dataset. Quantitative comparison results are
shown in Tab. 3. As shown in Tab. 3, PTUS achieves the best
results in terms of L1 distance, average keypoint distance,
average euclidean distance, face landmark distance and FID
score. This suggests that PTUS can animate the upper-body
in a more precise pose and recover facial details more accu-
rately, maintaining identity authenticity with greater fidelity
and generating images with a greater level of realism in mo-
tion transfer. The visual results shown in Fig. 6 indicate that
our method can synthesis facial motion like face rotation(the
second row) and eyes blinking(the third row) more precisely
and achieve a higher level of accuracy in capturing body
pose(the first row).
Ablation on Motion Decomposition. To further demon-
strate the benefit of the proposed face-body motion decom-
position (FBMD) and the local-global motion decomposi-
tion (LGMD), we compare PTUS to two ablation models
where FBMD and LFMD are removed. Results are provided
Tab. 4. When removing FBLG (w/o FBLG), the ablation
model uses only one pose estimator for the whole upper-
body, illustrating the benefit of the proposed decomposition
in PTUS that separately models face and body motions. Sim-
ilarly, the drop in performance when removing LGMD (w/o
LGMD), illustrates that the decomposition of facial motions
into global and local components in PTUS is required to en-
hance body and facial motions.

Conclusion
In this paper, we introduce a new challenging problem,
namely, talking upper-body animation. As opposed to pre-
vious research, talking upper-body animation aims to syn-
thesize both the upper body and recover facial details. To
tackle this task, we propose a 3D-aware motion decompo-
sition framework for talking upper-body animation. We first
decompose the 3D motion estimation of the face and body.
To recover the facial expression, we further decompose 3D
face motions into global and local motions with a local-
global motion decomposition mechanism for fine-grained
warping. Finally, as prior datasets either consist of only fa-
cial images or upper-body images with blurry images, we
propose a new dataset, Talking-UB, which includes upper-
body images with high-quality faces. Experimental results
demonstrate that our method can produce more realistic and
detailed results for the talking upper-body task. 3

3Limitations and future work are included in the supplementary
material.
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Ethics Statement
Although realistic upper-body synthesis can be useful in ap-
plications such as video conferencing, news reporting, and
role-playing video games, as with any animation technique,
these models can be misused. For example, to generate deep
fakes. However, forensic analysis and other manipulation
detection methods could mitigate such negative effects.
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