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Abstract

Multiple instance learning is an effective paradigm for whole
slide image (WSI) classification, where labels are only pro-
vided at the bag level. However, instance-level prediction
is also crucial as it offers insights into fine-grained regions
of interest. Existing multiple instance learning methods ei-
ther solely focus on training a bag classifier or have the
insufficient capability of exploring instance prediction. In
this work, we propose a novel model-agnostic framework
to boost existing multiple instance learning models, to im-
prove the WSI classification performance in both bag and
instance levels. Specifically, we propose a counterfactual
inference-based sub-bag assessment method and a hierar-
chical instance searching strategy to help to search reliable
instances and obtain their accurate pseudo labels. Further-
more, an instance classifier is well-trained to produce ac-
curate predictions. The instance embedding it generates is
treated as a prompt to refine the instance feature for bag pre-
diction. This framework is model-agnostic, capable of adapt-
ing to existing multiple instance learning models, includ-
ing those without specific mechanisms like attention. Exten-
sive experiments on three datasets demonstrate the compet-
itive performance of our method. Code will be available at
https://github.com/centurion-crawler/CIMIL.

Introduction
Pathological slides are regarded as the gold standard for the
diagnosis of complex diseases (Cai et al. 2021), which are
usually scanned as whole slide images (WSI) with very high
resolution (e.g., 80, 000 × 80, 000 pixels at 40× magnifica-
tion). And the patterns of tissues and cells in WSI are very
complicated. Even with experienced pathologists, the fine-
grained manual annotation for a WSI still incurs extensive
costs. In most cases, only slide-level labels are available,
posing a significant challenge for deep learning in WSI anal-
ysis.

Due to the limited annotations and the gigapixels, multi-
ple instance learning (MIL) (Maron and Lozano-Pérez 1997)
has become a well-known paradigm for WSI analysis. In this
approach, each WSI is considered as a bag and the cropped
patches from it are the instances. According to whether the
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methods focus on instance prediction, existing MIL methods
can be categorized into the bag-based and the instance-based
(Qu et al. 2022b). Bag-based models merely train a bag clas-
sifier with the bag-level label. Firstly, features of massive
patches (instances) in a WSI are extracted by a vision en-
coder. These features are then aggregated into a slide (bag)
representation to produce the slide-level prediction. Never-
theless, the slide-level prediction contains very limited infor-
mation and lacks interpretability since there are thousands of
patches in a WSI, representing various structures and patho-
logical conditions. On the other hand, instance-based ap-
proaches usually train an instance classifier, supervised by
the acquired pseudo labels. Instance-level prediction pro-
vides an insight into regions of interest, thereby making WSI
analysis become more fine-grained and reliable.

Existing instance-based MIL methods can be further cate-
gorized into two cases, specific models and boosting frame-
works for existing MIL models. In the first case, specific
methods are tailored to differentiate between positive and
negative instances for each individual model, with DGMIL
(Qu et al. 2022a) being a typical representative. On the other
hand, boosting frameworks are designed to improve the per-
formance of existing MIL models, where WENO (Qu et al.
2022b) is a such framework for attention-based methods.
Even though these models and frameworks have shown ex-
cellent performance in the classification of both bags and in-
stances, there are still limitations. The model-specific meth-
ods designed for instance prediction are restricted to partic-
ular MIL models, making they can’t adapt to other cases.
Although boosting frameworks exist for a group of models,
MIL models still necessitate specific indispensable mecha-
nisms in many cases. In summary, there is not yet an abso-
lutely general framework for boosting MIL models.

The attention mechanism is commonly utilized to aggre-
gate the instance feature in MIL models (Vaswani et al.
2017; Ilse, Tomczak, and Welling 2018; Li, Li, and Eliceiri
2021; Lu et al. 2021; Shao et al. 2021), by which we can ap-
proximate the instance prediction or pseudo label. However,
the attention score demonstrates which features are more rel-
evant to the model output, instead of how the features affect
the output. In other words, it focuses more on correlation
rather than causality. Rethinking the definition of MIL, a
slide will be labeled as positive if there is at least one positive
instance in it and will be labeled as negative only if all in-
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stances are negative. We readily observe that there is a clear
causality between the instance-level labels and the bag-level
labels, i.e., positive patches are the sole cause of positive
slides. Meanwhile, counterfactual inference aims to under-
stand the impact of certain interventions on the outcomes.
Thus, it helps to determine what would happen to positive
slides if positive patches are intervened. The counterfactual
of positive patches are represented by the negative patches.
Then the patches sampled from negative slides being abso-
lutely negative makes it an ideal situation.

Inspired by the core idea of counterfactual inference
and the limitations of existing MIL methods, we propose
a model-agnostic framework to boost MIL models via
counterfactual inference. Specifically, a sub-bag assessment
method and a hierarchical instance searching method are tai-
lored to search reliable instances and generate their pseudo
labels. Then we train an instance classifier with the selected
patches. Inspired by (Jia et al. 2022; Zhang et al. 2023), the
embedding from the instance classifier serves as a prompt
to refine the instance feature, significantly improving the
bag prediction performance. Extensive experiments on three
public WSI datasets demonstrate that our method outper-
forms state-of-the-art methods on both bag prediction and
instance prediction tasks. Our main contributions are sum-
marized as follows:

• Sub-bag assessment: We propose a novel sub-bag as-
sessment method that leverages counterfactual inference,
attempting to mine the causality between instance pre-
dictions and bag predictions. This method is universally
applicable across existing MIL models and facilitates the
generation of precise pseudo labels for instances.

• Hierarchical instance searching: We innovatively de-
velop a hierarchical instance searching method that ef-
fectively eliminates a significant portion of false posi-
tive instances. It enhances the selection of reliable in-
stances for training an efficient instance classifier, which
improves the instance prediction performance and allevi-
ates the domain gap between features obtained from the
offline encoder and specific tasks.

• Model-agnostic framework: We present a model-
agnostic boosting framework for MIL models. This
adaptable framework seamlessly integrates with diverse
MIL models in a plug-and-play manner, without relying
on mechanisms like attention. To the best of our knowl-
edge, it is the first attempt to design a genuinely model-
agnostic framework for boosting MIL models.

Related Work
Multiple Instance Learning
Extensive research has been conducted in the field of WSI
analysis (Yao et al. 2020; Hou et al. 2022; Zhang et al. 2022;
Li et al. 2023; Lin et al. 2023; Yu et al. 2023), among which
we focus on those that provide instance prediction. Attention
was the most commonly utilized, where trainable attention
scores of instances are transformed into predictions. AB-
MIL (Ilse, Tomczak, and Welling 2018) simply selected the
top-k patches as positive according to the attention scores,

which achieved considerable performance. CLAM (Lu et al.
2021) and DSMIL (Li, Li, and Eliceiri 2021) then intro-
duced more effective attention mechanisms, leading to bet-
ter performance. Unlike them, DGMIL (Qu et al. 2022a)
employed a feature distribution modeling method and an
iterative feature space refinement strategy, while INS is a
MIL framework based on contrastive learning and prototype
learning (Qu et al. 2023). Both of them are classic instance-
based methods. Similar to our method, WENO (Qu et al.
2022b) was proposed to enhance existing attention-based
MIL models, where bidirectional weakly supervised distil-
lation was interactively conducted. It was one of state-of-
the-art methods, significantly improving the performance of
instance prediction. However, there are still limitations in
these works, including plain performance and mechanisms
bound to specific models or frameworks. In summary, a truly
model-agnostic framework that helps to improve the per-
formance of both bag and instance prediction has not yet
emerged.

Counterfactual Inference
Recently, counterfactual inference has been widely utilized
in many fields. Rao et al. proposed to learn attention with
counterfactual causality, providing a tool to measure atten-
tion quality and a supervisory signal to guide the learning
process (Rao et al. 2021). Chen et al. proposed a counter-
factual analysis method for human trajectory prediction to
investigate the causality between predicted trajectories and
input clues (Chen et al. 2021). In order to alleviate the spuri-
ous correlation between textual words and sentiment labels,
Sun et al. devised a model-agnostic counterfactual frame-
work for multiple modals sentiment analysis (Sun et al.
2022). For similar motivations, Mu et al. presented a novel
approach to discovering and alleviating the potential spuri-
ous correlations by introducing two counterfactual genera-
tors and a recommender (Mu et al. 2022). Apart from these,
there have also been many counterfactual inference-based
research on model interpretability (Lin, Lan, and Li 2021;
Tan et al. 2022; Abid, Yuksekgonul, and Zou 2022). How-
ever, we have not seen related research on counterfactual
inference-based MIL methods tailored for instance predic-
tion.

Methodology
To address the urgent demand for model-agnostic methods,
we propose a counterfactual inference-based framework for
boosting MIL models (CIMIL). First, we briefly describe the
overview of CIMIL. Then we detail three key components,
i.e. counterfactual inference-based sub-bag assessment, hi-
erarchical instance searching and feature refinement, in the
following subsections.

Problem Formulation

Yi =

{
0, if

∑
yi,j = 0 yi,j ∈ {0, 1}

1, otherwise
(1)

Given a bag Xi with instances {xi,j |1 ≤ j ≤ N},
Yi is its bag label. With the unknown instance-level labels
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Figure 1: Overview of the proposed CIMIL framework. HIS is the abbreviation of hierarchical instance searching module. Step
2, precondition flow, is the training process of the instance classifier (Projector and Cls. Head).

{yi,j |1 ≤ j ≤ N}, a binary MIL classification is defined
as Eq.1. For a MIL model fθ, we aim to minimize the in-
consistency between Ŷi = fθ(Xi) and Yi. Additionally, it is
desirable to provide instance predictions {ŷi,j |1 ≤ j ≤ N},
with fθ weakly supervised by only bag labels.

Overview
CIMIL is a weakly supervised learning framework that uti-
lizes only bag-level labels. It aims to provide accurate bag-
level and instance-level predictions via counterfactual in-
ference. Figure 1 illustrates the overview of the proposed
framework. The first step involves warming up the MIL
model and then freezing it. In the second step, we propose
a sub-bag assessment method based on counterfactual infer-
ence and a hierarchical instance searching module. These
two modules collaboratively work to search for reliable in-
stances from bags and obtain precise pseudo labels, facili-
tated by the warmed-up MIL model. Next, we train an in-
stance classifier based on pseudo labels. The instance em-
bedding from the well-trained instance classifier serves as
prompts to refine the feature for the MIL model. Subse-
quently, the improved features will replace those initially
utilized by the MIL model during the warm-up phase, and
the model will continue its training.

Sub-bag Assessment
Counterfactual inference helps to determine the potential
outcomes for positive bags when positive instances are in-
tervened upon. The intervention we employed is masking
the selected instances with negative instances, as the coun-
terfactual of positive instances are represented by the nega-
tive instances. Other strategies (e.g., masked by all 0 or ran-
dom values), also sever the causal link between instance la-

bels and bag labels. However, there are risks of introducing
spurious correlations like changes in the dataset distribution.
Considering that other instances are masked by negative in-
stances, we can deduce that (a) the selected instances are
likely to be positive if the bag label remains unchanged, and
(b) the selected instances are likely to be negative if the bag
label changes. These two are the core idea of the sub-bag
assessment method based on counterfactual inference.

Masking instances one by one is time-consuming and re-
dundant, as there are massive instances in a bag and the
roles of many instances are similar. Thus, we divide in-
stances in a bag into several sub-bags. Then a bag is for-
mulated as X = {ci|1 ≤ i ≤ K}, where K is the number
of sub-bags from the single sub-bag of the previous layer.
X−k = {ci|1 ≤ i ≤ K, i ̸= k} denotes a subset of X that
doesn’t contain ck. And p(Ŷ |X, fθ) is the probability of X
being a positive bag. The intervention, i.e., the masking op-
eration is denoted by do(·).

Ek = p(Ŷ |X, fθ)− p(Ŷ |X, do(X−k), fθ) (2)

do(X−k) means that sub-bags except ck are masked. We
observe the probability of X being positive before and after
the masking operation and calculate the intervention effect
(E) for sub-bags by Eq. 2. How and to what extent the proba-
bility changes provide insights into the composition of a sub-
bag. A small value of Ek indicates that there are few positive
instance in X−k and most positive instances are in ck. On the
contrary, a large Ek means that most positive instances are
in X−k and they are masked. In these approaches, we can
infer the composition of each sub-bag based on E.
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Hierarchical Instance Searching
Based on the sub-bag assessment method, sub-bags with a
small E are likely to contain positive instances. It’s not ad-
visable to directly pseudo-label the instances from them as
positive, as there may still be negative patches. This is not
conducive to training the instance classifier. To ensure the
precision of pseudo labels, we propose a hierarchical in-
stance searching method. It aims to find more fine-grained
sub-bags that contain as few false positive instances as pos-
sible.

Firstly, assuming m represent the current layer while
searching, we establish the hierarchical composition of a
bag. Let X be the whole bag in layer 0, denoted as c(0).
We divide instances in c(0) into K(1) sub-bags by KMeans,
establishing layer 1 from layer 0. And Eq.3 encapsulates the
general form from layer 0 to layer m directly.

c(0) = {c(1)
J(1) |0 ≤ J(1) < K(1)}

= {c(m)
Jm |Jm ∈ Km, 0 ≤ m ≤ M}

Km = (N(0), N(1), · · · , N(m))

N(m) = (n)
K(m)
n=0 , n ∈ N

(3)

Given a sub-bag in layer m of searching, Km is the vec-
tor of number field N with upper bound, and Km contains
all the available indexes, like Jm

i = (j0i , j
1
i , ..., j

m
i ) ∈ Jm.

In layer m, the sub-bags are further divided resulting in a
number K(m).

E
(m)
Jm = p(Ŷ |c(0), fθ)− p(Ŷ |c(0), do(c(m)

−Jm), fθ) (4)
The intervention effect should be updated by Eq.4. For

ease of understanding, we visualized this process through
an example in Figure 2.

The pseudo-label selection by E follow the rules: (a)
c
(m)
Jm
p

= {c(m)
Jm
i
|E(m)

Jm
i

≤ µ(m), c
(m)
Jm
i

divided from c
(m−1)

Jm−1
p

}
are earmarked for further exploration, where µ(m) is the
threshold of layer m. Then c

(m)
Jm
p

are further divided into

smaller sub-bags c
(m+1)

Jm+1
p

in the next layer that Jm+1
p =

(Jm
p ;N(m + 1)), and their corresponding E

(m+1)

Jm+1
p

would

be all calculated to obtain c
(m+1)

Jm+1
p

. This recursive process

continues until any c
(mT )

J
mT
p

can not be further granulated and

E
(mT )

J
mT
p

≤ µ(mT ), mT is the terminal layer of the sub-bag

c
(m)
Jm
p

. These instances of sub-bags c(mT )

J
mT
p

are reliably pseudo-
labeled as positive, terminated at layer M = max{mT }. (b)
The negative pseudo instances are directly sampled from
the negative bag by the number of pseudo-positive labels,
and instances of c

(1)
J1
n

= {c(1)
J1
i
|E(1)

J1
i

= max{E(1)

J1
i
|E(1)

J1
i

>

µ(1), 0 ≤ i < K(1)} is pseudo-labeled as negative. (c) The
sub-bags {c(m)

Jm
i
|E(m)

Jm
i

> µ(m), c
(m)
Jm
i

divided from c
(m−1)

Jm−1
p

}
will be discarded due to the high uncertainty of their com-
positions.

Feature Refinement
In the initial warm-up phase of the MIL model, we utilize
instance features extracted by the offline backbone F , where
the feature of a bag can be formulated as {F(xi)|1 ≤ i ≤
N}. Since that the instance classifier which consists of linear
projector P and classification head has been well-trained, it
has learned effective representation of instances. We believe
that they can serve as semantically rich prompts to refine the
original instance features.

hi = norm(F(xi)⊕ P(F(xi)) (5)

Specifically, we utilize a simple yet effective approach to
fusing the original instance features and prompts from the
projector P . We simply concatenate them and the refined
instance feature hi is formulated as Eq.5, where norm is
layer normalization. Then the refined bag feature is {hi|1 ≤
i ≤ N}. Subsequently, these features replace those utilized
by the MIL model during the initial warm-up phase, and the
training of the MIL model will proceed.

Experiments
Experimental Setup
Datasets To comprehensively evaluate the performance of
CIMIL on both slide prediction and patch prediction, we
conduct extensive experiments on three public WSI datasets.
CAMELYON16 is a WSI dataset for metastasis detection
(Bejnordi et al. 2017), including 270 training slides and 130
test slides. In addition to binary labels for metastases, it also
includes annotated contours that can be utilized to generate
ground truth for patches. TCGA-NSCLC consists of two
projects: Lung Squamous Cell Carcinoma (TGCA-LUSC)
and Lung Adenocarcinoma (TCGA-LUAD). This dataset in-
cludes 507 LUAD slides and 486 LUSC slides, where only
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Methods
CAMELYON16 AGGC22 TCGA-NSCLC

Bag (Slide) Instance (Patch) Bag (Slide) Instance (Patch) Bag (Slide)

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC
Fully supervised 0.9453 0.9075 0.9538 0.9445 0.9624 0.9567 0.9153 0.8435 − −
MaxPooling 0.8011 0.7944 0.6643 0.6054 0.8973 0.8723 0.6212 0.5942 0.9411± 0.0159 0.8721± 0.0148
ABMIL 0.8428 0.8372 0.8316 0.7919 0.9050 0.8759 0.7359 0.6794 0.8890± 0.0110 0.8490± 0.0190
DSMIL 0.8417 0.8217 0.8575 0.7915 0.9115 0.9234 0.7730 0.6877 0.9191± 0.0249 0.8546± 0.0192
CLAM-SB 0.8647 0.8527 0.8799 0.7894 0.9096 0.8836 0.7565 0.6765 0.9118± 0.0185 0.8419± 0.0172
CLAM-MB 0.8666 0.8428 0.8775 0.7988 0.9153 0.8990 0.7786 0.6892 0.9266± 0.0115 0.8732± 0.0143
TransMIL 0.9125 0.8647 − − 0.9134 0.9076 − − 0.9436± 0.0210 0.8894± 0.0320
DGMIL 0.8721 0.8344 0.8743 0.8566 0.8815 0.8344 0.6737 0.6249 0.8987± 0.0341 0.8459± 0.0246
ABMIL+WENO 0.8617 0.8479 0.9054 0.8832 0.9126 0.8962 0.8204 0.7083 0.9048± 0.0258 0.8698± 0.0254
DSMIL+WENO 0.8863 0.8679 0.9304 0.9014 0.9205 0.9181 0.8174 0.7372 0.9277± 0.0221 0.8636± 0.0201
MaxPooling+Ours 0.8114 0.8527 0.9180 0.9044 0.9230 0.8913 0.8370 0.7457 0.9578± 0.0117 0.8952± 0.0206
ABMIL+Ours 0.8721 0.8571 0.9145 0.9066 0.9173 0.8923 0.8141 0.7113 0.9142± 0.0201 0.8750± 0.0139
DSMIL+Ours 0.9143 0.8840 0.9428 0.9106 0.9238 0.9127 0.8311 0.7270 0.9350± 0.0261 0.8757± 0.0147
CLAM-SB+Ours 0.9030 0.8914 0.9362 0.9156 0.9231 0.9153 0.8256 0.7330 0.9602 ± 0.0089 0.8961± 0.0105
CLAM-MB+Ours 0.9015 0.8975 0.9429 0.9205 0.9255 0.9197 0.8331 0.7307 0.9517± 0.0130 0.8942± 0.0147
TransMIL+Ours 0.9284 0.8860 0.9234 0.8912 0.9230 0.9178 0.8203 0.7300 0.9584± 0.0157 0.9135 ± 0.0192

Table 1: Performance comparison on three datasets. ACC in AGGC22 represents balanced accuracy, calculated by averaging
the recall scores across all classes. It prevents overestimating the performance due to the class imbalance present in AGGC22.

Figure 3: Visualization of instance prediction. The illustration is test 021 from CAMELYON16 dataset.

slide labels are available. AGGC22 is a H&E-stained WSI
dataset of prostatectomy and biopsy specimens annotated
with Gleason patterns (Huo et al. 2022), comprising 168
training slides and 73 test slides. The experiments aim to
identify the presence of Gleason pattern 4, as studies have
indicated that it is a prognostic stratification of high-risk
prostate cancer patients (Ordner et al. 2023). For datasets
with contour annotations, a patch is marked as positive if it
contains 25% or more of the target region. Importantly, the
patch labels are solely utilized to evaluate patch prediction
performance. During model training, only slide labels are
available.

Comparison Methods We employ state-of-the-art meth-
ods for comparison and categorize them into four distinct
classes based on their characteristic and capabilities. The
first class includes MIL models that are primarily designed
for slide prediction, e.g., MaxPooling. The second class in-
cludes MIL models that are equipped with specific mech-
anisms that provide patch prediction. Notable examples in-

clude attention-based models like ABMIL, CLAM, DSMIL,
and TransMIL. DGMIL belongs to the third class, which
is specifically tailored for patch classification. In the fourth
class, WENO is also a framework for boosting existing MIL
models like the proposed CIMIL. In addition, we compare
these methods with a fully supervised instance classifier us-
ing instance-level labels, which represents the highest possi-
ble performance.

Implementation Details We implement CIMIL using Py-
torch 1.8 and conducted all experiments on a workstation
with 8 GPUs (RTX 3090, 24GB). The cropped patches are
non-overlapping with the fixed size (512×512) at 20× mag-
nification. The offline ResNet50 pretrained on ImageNet is
employed to extract patch features. The learning rate is ad-
justed from {5e-5, 1e-4, 5e-4}. The threshold µ of interven-
tion effect to select clusters are 0.02 for all layers. Except for
the bag classification in AGGC22 dataset, which employs
focal loss, cross-entropy loss is used elsewhere. For a fair
comparison, all methods follow the exact same setup.
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Figure 4: Visualization of identifying hard patches. The illustration originates from test 082 in CAMELYON16 dataset.

Figure 5: The selected positive patches from different layers. The combination of green, yellow, and red represents the positive
patches determined by the 1st layer. Yellow and red correspond to the 2nd layer. And red corresponds to the 3rd layer. The
precision values of the chosen positive patches are indicated beneath their respective thumbnails.

Comparison with State-of-the-art Methods
To evaluate the overall performance of the proposed CIMIL
and the comparison methods, we demonstrate the detailed
results for both slide and patch prediction. The metrics
are accuracy (ACC) and the area under the ROC curve
(AUC). Table 1 demonstrates the experimental results on
three datasets.

The proposed CIMIL successfully improves the perfor-
mance of patch and slide prediction across all datasets. First,
MaxPooling initially performs poorly in patch prediction, as
it is primarily designed for slide prediction. Equipped with
CIMIL, it achieves substantial progress in patch prediction,
manifesting significant improvements across all metrics. Im-
pressively, it achieves the highest patch prediction perfor-
mance on the AGGC22 dataset. For attention-based models
like ABMIL, CLAM, DSMIL and TransMIL, they utilize
trainable attention scores for patch prediction. While these
mechanisms enable patch prediction, the performance is still
limited. However, the introduction of CIMIL contributes
to achieving better performance. Even when compared to
DGMIL, a model tailored for patch prediction, CIMIL still
demonstrates remarkable superiority when adapted to most
MIL models. Considered one of the most advanced meth-
ods, WENO improves the performance of attention-based
MIL models. And CIMIL consistently outperforms WENO
when they adapt to the same MIL models. Moreover, CIMIL

boasts a higher level of generality as it can be adapted to
any MIL model, while WENO is exclusively available for
attention-based MIL methods.

Visualization of Instance Prediction
To provide a more intuitive comparison of patch prediction
performance, we visualize the patch prediction on the WSI
thumbnail. We utilize red and blue masking to represent pos-
itive and negative predictions, respectively. Darker red indi-
cates a larger positive probability, and vice versa. The con-
tour marked by yellow lines is the ground truth. In Figure 3,
the positive patches determined by CIMIL correspond more
closely to the ground truth, evidenced by a larger intersec-
tion over union and higher confidence in positive predic-
tions. Meanwhile, as depicted in Figure 4, our method shows
superiority in identifying hard positive patches.

Analysis of Our Framework
Ablation Study We conduct the ablation study to verify
the effectiveness of each key component in the proposed
CIMIL. The core idea of the proposed sub-bag assessment
method is masking selected patches with sampled negative
patches. For this, we try to mask selected patches with a vec-
tor with all zero values or random values. This approach
shifts the basis of sub-bag assessment away from counter-
factual inference. The hierarchical patch searching method
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Module Method Bag (Slide) Instance (Patch)

AUC ACC AUC ACC

PL random 0.8753 0.8605 0.9265 0.8830
all 0 0.8863 0.8760 0.9234 0.8818

HIS max 1 layer 0.8868 0.8759 0.9137 0.8639
max 2 layers 0.8909 0.8837 0.9372 0.8657

FR w/o F(xi) 0.8809 0.8914 0.9429 0.9205
CIMIL 0.9015 0.8975 0.9429 0.9205

Table 2: Ablation study for CLAM-MB+Ours on CAME-
LYON16 dataset.

recursively searches reliable patches, gradually filtering out
many false positive patches for the patch classifier. Here
we conduct an experiment to observe what would happen
if searching is not recursive. The embedding from the patch
classifier acts as a prompt to refine patch features. The ef-
fectiveness of patch features before and after refinement is
worth further analysis.

Table 2 demonstrates the results of the ablation experi-
ments. Other intervention strategies (e.g., all zeros and ran-
dom values) cannot be considered counterfactual to posi-
tive patches and don’t align with the distribution, resulting
in a performance decline. The hierarchical patch searching
method recursively searches positive patches, with different
precision in different layers. The performance gradually im-
proves as the maximum layer increases. The patch feature
extracted by the offline vision encoder contains vital seman-
tic information and achieves the best bag prediction perfor-
mance when collaborating with the refined feature. In sum-
mary, the performance degrades if any component is omitted
or replaced. The results show that each component plays a
crucial role in the proposed CIMIL.

Effectiveness of Hierarchical Instance Searching Based
on the ablation study, we have found that hierarchical patch
searching contributes significantly to CIMIL. So we drilled
down in a more granular way. We visualize the recursive
patch searching process in Figure 5. The contour outlined
by the blue lines represents the true condition of positive
patches. Initially, we select the clusters that are pseudo-
labeled as positive. We find that many patches in it are not
in the true positive region. This means that these patches
are mislabeled, resulting in performance degradation when
training the patch classifier. To address this, we then divide
the cluster into several sub-clusters to find a smaller sub-
cluster that contains positive patches. In Figure 5, we can
find that the false positive patches are gradually filtered out.
While some true positive patches within a slide might be
discarded, all positive slides still ensure an ample supply of
positive patches.

Effectiveness of Pseudo Labels Pseudo-labeling meth-
ods differ in their approach to identifying positive patches,
as negative patches can be reliably cropped from nega-
tive slides with correct pseudo labels. Thus, the precision
of selected positive patches significantly impacts the patch
prediction performance. A straightforward approach is as-
signing positive slide labels to patches, while the com-

Method baseline +Ours +WENO
from bag label 0.0318 − −
MaxPooling 0.0807 0.6097 −
ABMIL 0.4736 0.5843 0.5832
DSMIL 0.4986 0.6304 0.6024
CLAM-SB 0.4489 0.7113 −
CLAM-MB 0.4450 0.8777 −
TransMIL − 0.5550 −

Table 3: Precision of pseudo labels assigned to positive
patches.

monly adopted technique is attention-based. We compare
them with our method, focusing on the precision of positive
patches for training. As illustrated in Table 3, the vast major-
ity of negative patches are mislabeled as positive if we sim-
ply assign slide labels to patches. Even when attention-based
methods are employed, precision remains unsatisfactory. On
the contrary, our method consistently improves the precision
of positive patches for all models, particularly CLAM-MB,
thereby leading to better patch prediction performance.

Conclusion
In this paper, we introduce the concept of CIMIL, which
serves as a model-agnostic framework to boost existing MIL
models. Extensive experiments on three datasets demon-
strate outstanding performance of our method. Limited by
available datasets, we only demonstrate results on the clas-
sification task. Actually, the versatility of this approach ex-
tends beyond the classification task, as the roles of dif-
ferent patches consistently influence the overall prediction
at the slide level. We are pleased to discover that the re-
gion marked by positive predictions closely aligns with the
ground truth delineated in the form of polygons. Explor-
ing the patch prediction using only slide-level labels ap-
pears to be a novel approach to weakly supervised segmen-
tation for WSI. In the future, we aim to formulate a method
for the meticulous refinement of boundaries, leading to a
more harmonious correspondence between predicted posi-
tive regions and the ground truth. With these advancements,
CIMIL holds promising potential to emerge as a viable so-
lution for weakly supervised segmentation.

To the best of our knowledge, CIMIL is the first truly
model-agnostic framework for boosting existing MIL mod-
els. This framework exhibits remarkable adaptability, allow-
ing it to be seamlessly integrated with any MIL model. It
remains permission to whether the model is equipped with
specific mechanisms, such as attention and distance mea-
surement, as long as it can produce slide predictions. This
flexibility allows the framework to be easily applied to vari-
ous MIL architectures, making it a versatile solution for WSI
analysis.
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