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Abstract

Contrastive Language-Image Pre-training (CLIP) has demon-
strated impressive capabilities in open-vocabulary classifica-
tion. The class token in the image encoder is trained to cap-
ture the global features to distinguish different text descrip-
tions supervised by contrastive loss, making it highly effec-
tive for single-label classification. However, it shows poor
performance on multi-label datasets because the global fea-
ture tends to be dominated by the most prominent class and
the contrastive nature of softmax operation aggravates it. In
this study, we observe that the multi-label classification re-
sults heavily rely on discriminative local features but are over-
looked by CLIP. As a result, we dissect the preservation of
patch-wise spatial information in CLIP and proposed a local-
to-global framework to obtain image tags. It comprises three
steps: (1) patch-level classification to obtain coarse scores;
(2) dual-masking attention refinement (DMAR) module to re-
fine the coarse scores; (3) class-wise reidentification (CWR)
module to remedy predictions from a global perspective. This
framework is solely based on frozen CLIP and significantly
enhances its multi-label classification performance on vari-
ous benchmarks without dataset-specific training. Besides, to
comprehensively assess the quality and practicality of gener-
ated tags, we extend their application to the downstream task,
i.e., weakly supervised semantic segmentation (WSSS) with
generated tags as image-level pseudo labels. Experiments
demonstrate that this classify-then-segment paradigm dramat-
ically outperforms other annotation-free segmentation meth-
ods and validates the effectiveness of generated tags. Our
code is available at https://github.com/linyq2117/TagCLIP.

Introduction
Contrastive Language-Image Pre-training (CLIP) (Radford
et al. 2021) has recently emerged as a powerful vision-
language model. It is pre-trained on a large-scale dataset
of image-text pairs and has shown impressive performance
in image-text matching tasks (Zhou et al. 2022; Crowson
et al. 2022; Gu et al. 2021). By transferring this match-
ing ability to the classification task, we can recognize arbi-
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Figure 1: Visualizations of multi-label classification results
and CAMs of some target classes. The middle two columns
demonstrate that original CLIP (Radford et al. 2021) usu-
ally fails to recognize inconspicuous categories while our
TagCLIP can identify them well. The last column presents
some CAMs of specific classes and indicates that classifica-
tion mainly depends on some discriminative local features.
All results are based on ViT-B/16 and we leverage Grad-
CAM (Selvaraju et al. 2017) to obtain CAMs for CLIP.

trary text labels and achieve open-vocabulary classification.
However, most existing open-vocabulary works focus on the
single-label classification task while multi-label classifica-
tion, which aims to recognize all the relevant categories or
concepts in an image, is a more practical and challenging
task. In Figure 1, we find that the performance is unsatisfac-
tory on multi-label classification datasets. Specifically, the
classification logits predicted by the class token tend to be
dominated by the most prominent class, while some incon-
spicuous objects, e.g., with small size, are usually under-
rated. It stems from two main reasons: (1) CLIP is trained
to align image-text pairs with contrastive loss, which aims
to match an image with its corresponding text descriptions
and distinguish it from others. The softmax operation in-
troduced by this loss creates competition among different
classes, which is detrimental to the multi-label setting. (2)
CLIP is trained to represent an entire image through a unique
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global embedding using the class token, without explicitly
capturing the local features of specific regions. However, in
the multi-label setting, discriminative local features are more
helpful. This preference for local features can be observed in
the Class Activation Map (CAM) (Zhou et al. 2016) shown
in Figure1, where the highly responsive regions for the target
class mainly correspond to specific local cues. Therefore, it
is necessary to explore the spatial information preserved in
CLIP-ViT to take advantage of discriminative local cues.

In general, the final output feature map of a model is
commonly utilized for localization tasks, e.g., object detec-
tion (Ren et al. 2015) or segmentation (Chen et al. 2017).
However, we observe that the localization quality of CLIP-
ViT is not effective for the last feature map (seeing Figure 3).
We delve into the underlying factors and find that the atten-
tion operation in the last layers is irrational for dense tokens,
leading to the lack of spatial information in the final output
feature map. Alternatively, by forwarding the feature map of
the penultimate layer without the self-attention operation at
the last layer (denoted as penultimate layer for short), the
spatial information is effectively preserved. This enables us
to extract local features from CLIP, enhancing its capability
for capturing fine-grained details.

Building on the observation above, we further propose a
novel framework called TagCLIP to enhance the multi-label
classification capability of the original CLIP without train-
ing. This framework follows a local-to-global paradigm and
consists of three steps. First, we ignore the attention oper-
ation at the last layer of CLIP-ViT and perform patch-level
classification based on the penultimate layer to obtain corre-
sponding classification score maps for each class. Second, to
refine the initial scores and mitigate potential noise, we in-
troduce a dual-masking attention refinement strategy based
on the Multi-Head Self-Attention (MHSA) inherent in ViT.
Finally, we propose a class-wise reidentification module to
further improve the primary predictions from the global
view. This double-check approach can filter out some falsely
detected classes and improve the scores of missed cases. The
whole framework remarkably improves the multi-label clas-
sification performance of CLIP. It is based solely on frozen
CLIP and enables open-vocabulary multi-label classification
without the need for dataset-specific training.

To further validate the quality and practicality of gen-
erated tags, we integrate TagCLIP with downstream tasks,
where it serves as a generalizable annotator that provides
high-quality pseudo labels. It can benefit many downstream
tasks, e.g., self-training (Zoph et al. 2020; Wang et al.
2022; Xie et al. 2020), and weakly supervised learning (Lin
et al. 2023; Xie et al. 2022; Xu et al. 2022b). In this pa-
per, we explore the application of TagCLIP by integrating
the generated labels with weakly supervised semantic seg-
mentation (WSSS). The combination of open-vocabulary
multi-label classification and WSSS enables annotation-free
segmentation. Unlike previous works (Zhou, Loy, and Dai
2022; Van Gansbeke et al. 2021) following the bottom-
up paradigm, we surprisingly find this novel classify-then-
segment paradigm leads to significant performance gains,
which indicates the importance of image-level supervision
to the segmentation task.

The main contributions can be summarized as follows:
• We explore the spatial information in CLIP at the patch

level and find that the attention operation in the last
layer breaks spatial information. On this basis, we pro-
pose a local-to-global framework TagCLIP to enhance
the multi-label classification performance of the original
CLIP without any extra training.

• Experiment results demonstrate the effectiveness of our
TagCLIP. It unlocks the potential of original CLIP
and can generate high-quality image tags. Our method
achieves significant performance gains compared to orig-
inal CLIP and other works across different benchmarks.

• We integrate the proposed TagCLIP with the downstream
WSSS task and find this classify-then-segment paradigm
achieves remarkable improvement over other methods.

Related Works
Contrastive Language-Image Pre-training
Contrastive Language-Image Pre-training(CLIP) (Radford
et al. 2021) connects visual concepts with textual descrip-
tions and has empowered many computer vision tasks with
language ability. It consists of an image and text encoder,
and is jointly trained to align the two modalities with over
400 million image-text pairs. The image-text matching abil-
ity can be transferred to the downstream zero-shot tasks.
However, the pre-training task is image-level, and only class
token is trained to capture the global feature. For multi-
label classification task, the region-level feature is preferred.
Some works (Raghu et al. 2021; Ghiasi et al. 2022) explore
the spatial information in the patches of deep ViT layers but
the results are unsatisfactory. This paper makes it possible by
ignoring the last attention operation, and leverages obtained
local features to benefit multi-label classification.

Open-Vocabulary Multi-Label Classification
Multi-Label Classification aims to predict a set of labels for
an image. Conventionally, a multi-label classification task is
transformed into a set of binary classification tasks, which
are solved by optimizing a binary cross-entropy loss func-
tion. The proposed methods can be categorized into three
main directions: 1) Improving loss functions (Ridnik et al.
2021; Wu et al. 2020). 2) Modeling label correlations (Chen
et al. 2019b,a; Ye et al. 2020). 3) Locating regions of inter-
est (Wang et al. 2017; You et al. 2020). To deal with un-
seen labels, multi-label zero-shot learning (ML-ZSL) is de-
veloped to transfer knowledge from seen classes to unseen
classes. The keys to this task are the alignment of the image
with its relevant label embeddings and the relation between
seen and unseen label embeddings. Existing works realize
it from the perspective of finding principle directions (Ben-
Cohen et al. 2021) or adopting attention module (Narayan
et al. 2021; Huynh and Elhamifar 2020).

Different from ML-ZSL, visual-related language data like
image captions can be used as auxiliary supervision in the
open vocabulary setting. The open-vocabulary multi-label
recognition can classify multi-label images via arbitrary tex-
tual names or descriptions. According to the complexity, ex-
isting methods can be divided into two groups. 1) The first
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Figure 2: An overview of our proposed framework. The framework consists of three steps, i.e., patch-level classification, dual-
masking attention refinement (DMAR), and class-wise reidentification (CWR). C is the total number of classes. “ViT-modified”
means ignoring the last self-attention operation to maintain spatial information. We threshold the predicted probability scores
with 0.5 to obtain predicted classes. The predicted image tags can be treated as pseudo labels for downstream tasks, e.g., WSSS.

group requires additional training processes on seen classes
or specific curated data. These methods require fine-tuning
on target datasets (He et al. 2023; Sun, Hu, and Saenko
2022) or training from scratch using massive data (Guo et al.
2023), both of which have complex training processes. 2)
The second group is merely based on pre-trained models
without further training or extra information (Li et al. 2023).
Our work falls into the second group, which is more chal-
lenging but convenient to use. Similar to CLIP-Surgery (Li
et al. 2023), we improve the classification ability of CLIP
from the perspective of model explainability. The difference
is that we leverage a local-to-global framework, while CLIP-
Surgery only relies on global embedding.

Annoation-Free Semantic Segmentation
In the annotation-free segmentation setting, no annotation is
provided during training, which is corresponding to unsuper-
vised semantic segmentation (USS). Primary USS methods
leverage self-supervised learning to learn pixel-level repre-
sentation (Ji, Henriques, and Vedaldi 2019; Cho et al. 2021;
Ziegler and Asano 2022; Ke et al. 2022; Hwang et al. 2019;
Van Gansbeke et al. 2021) and the learned representations
can then be employed to cluster image segments via K-
means or linear classifiers. These bottom-up approaches are
difficult to distinguish different classes with similar appear-
ances or identify classes with varied appearances.

Another similar setting is open-vocabulary segmentation.
Its target is to segment an image with arbitrary categories
described by texts instead of fixed labeling vocabularies. It
typically addresses the closed-set limitation via training on
weak supervision signals, e.g., image-text pairs (Xu et al.
2022a; Luo et al. 2023). Differently, recent works (Zhou,
Loy, and Dai 2022; Shin, Xie, and Albanie 2022b,a) are

merely based on pre-trained CLIP and require no extra anno-
tations. The performance gain of these methods is still lim-
ited for the lack of high-level semantic guidance. We denote
all the above methods leveraging image-text pairs or the pre-
trained model as CLIP-based methods.

Method
In this section, we introduce our CLIP-based multi-label
classification framework, TagCLIP, which is depicted in Fig-
ure 2. We first review the architecture of CLIP-ViT and in-
vestigate the spatial information preserved in the patches.
Then, we introduce the proposed local-to-global framework
for multi-label classification without annotations and fine-
tuning. Finally, we present the application of generated im-
age tags on the downstream WSSS task.

Analysis of CLIP
CLIP (Radford et al. 2021) consists of an image encoder
and a text encoder and is jointly trained to align the two
modalities with large-scale image-text pairs. For the image
encoder with transformer architecture, a [cls] token is pre-
trained to capture the global feature. Given the ViT with L
layers, the forward propagation of the last transformer layer
is expressed as follows:

X̂L = XL−1 + aL, (1)

= XL−1 +AL
(
XL−1WL

V

)
, (2)

AL = σ(
(XL−1WL

Q)(X
L−1WL

V )
T

√
d

+ML), (3)

XL = X̂L +MLP(X̂L), (4)
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where XL−1 represents the output tokens of the L-1 layer,
aL and MLP represent the self-attention and the MLP mod-
ules in the transformer block. AL encodes the attention
weights at layer L. σ represents the softmax normaliza-
tion, d is the dimension of XL−1, ML is attention mask for
AL. WQ,WK ,WV are linear projection weights to generate
query, key, value in MHSA. XL consists of the [cls] token
and remaining tokens (denoted as dense tokens):

XL = [xLcls, x
L]. (5)

As mentioned in Introduction, the contrastive loss and
global embedding in the original CLIP will harm the multi-
label classification. Alternatively, region-level features are
better suited to recognize multiple categories in an im-
age. As only the [cls] token is used during contrastive pre-
training, the localization ability of the original CLIP is
weak (Zhong et al. 2022). There is a major performance
degradation when applying the pre-trained CLIP model for
localization tasks (e.g., only 16.2% mIoU for segmentation
by leveraging the final output feature map in Table 1).

We hypothesize that the spatial information is remained
in feature maps of CLIP in the previous layer but lacks in
the last layer for the following reasons: (1) The query and
key in the last attention layer are merely involved in the op-
timization of [cls] token to perform weighted sum operation
and globalizes information during pre-training. It is a spe-
cial design for [cls] token but is meaningless and redundant
for remaining dense tokens. (2) The [cls] token plays a rel-
atively minor role throughout the vision transformer and is
not used for globalization until the last layer (Ghiasi et al.
2022). Therefore, it scarcely affects local features in previ-
ous layers. To verify it, we use ViT-B/16 with 12 layers and
treat the encoded text features as classifiers to classify each
dense token outputted by the last two layers. To make the
feature embedded into the same feature space, we let the
dense token outputted by the penultimate layer pass the rest
layer without self-attention:

x̂dense = xL−1 + cL, (6)

= xL−1 + xL−1WL
V , (7)

xdense = x̂dense +MLP(x̂dense). (8)

We provide qualitative and quantitative results in Figure 3
and Table 1. The results demonstrate spatial information is
preserved in the penultimate layer but lacks in the last layer.
Therefore, it is feasible to omit the last self-attention opera-
tion and perform classification based on the projected output
of the penultimate layer to discover the discriminative fea-
tures for target classes.

CLIP-Based Multi-Label Classification
This section introduces our proposed local-to-global frame-
work for multi-label classification, including patch-level
classification to obtain coarse scores, dual-masking atten-
tion refinement (DMAR) to refine coarse scores, and the
class-wise reidentification (CWR) module to double-check
the potential predictions.

Image Penultimate Layer Last Layer

Figure 3: Qualitative results of the patch-level classifica-
tion upon xdense and xL outputted by the last two layers
of CLIP-ViT respectively. The last self-attention operation
breaks spatial information in ViT.

Last Self-Attention mAP mIoU

! 82.7 16.2
% 85.4 41.6

Table 1: Quantitative results for the effect of last self-
attention operation in terms of classification (mAP) and seg-
mentation (mIoU) on PASCAL VOC 2012 validation set.

Coarse Classification To perform patch-level classifica-
tion, the output feature map based on the penultimate layer
xdense ∈ RN×D is leveraged. The output of the text encoder
is denoted as T ∈ RD×C , which acts as the classifier based
on the text inputs. N,D,C represent token length, token di-
mension and class number, respectively. The classification
score for each patch in xdense is calculated as:

si = Linear(xdense,i) ∗ T, (9)

where i represents the spatial index of each patch. Linear
is the last layer of CLIP to map the encoded image features
and text features into the unified space in CLIP. si reflects
the similarity of image token and C text descriptions, and
the similarity scores will be forwarded to the softmax func-
tion to normalize these scores over all classes (Note that the
softmax operation is optional, but we find it significant for
CLIP and validate it in the experiment section). The prob-
ability classification score of class c for each dense token i
can be obtained as follows:

Pcoarse(i, c) =
exp(sci )∑C
k=1 exp(s

k
i )
. (10)

Dual-Masking Attention Refinement (DMAR) The ini-
tial patch-level classification scores obtained from Equa-
tion 10 often suffer from noise, hindering them from serving
as a reliable criterion for class identification (e.g., leading
to false positives for classification in Figure 5). Prior ap-
proaches typically utilize pairwise affinity to refine dense
classification maps, but require training extra layers (Ahn
and Kwak 2018; Ahn, Cho, and Kwak 2019). In contrast, the
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vision transformer’s inherent self-attention mechanism cap-
tures the pairwise affinity between patches, allowing us to
refine the patch-wise classification scores without incurring
additional computational costs. A common way is directly
using attention weights from the last few layers (Xu et al.
2022b) or all layers (Gao et al. 2021) of ViT and performing
the refinement as follows:

Prefined =
1

|ψ|
∑
l∈ψ

Al ∗ Pcoarse, (11)

where Pcoarse ∈ RN×C denotes the coarse score map,Al ∈
RN×N represents the attention weight in the l-th layer of
ViT, ψ represents the index set of used attention layer and
|ψ| is its number of elements.

However, the affinity captured in the original ViT’s
MHSA is inaccurate (Ru et al. 2022), potentially mislead-
ing the refinement process. To address it, we propose a dual-
masking strategy, the key idea of which is to neglect uncon-
fident elements in both attention weightsA ∈ RN×N×L and
coarse score maps Pcoarse ∈ RN×C . For attention weights,
we generate an attention mask Mattn ∈ RN×N to select
confident elements by leveraging a voting-style approach
across all L attention layers. Each confident position should
have prominent attention value (exceeding layer-wise mean
value) in at least K layers, which can be represented as:

Mattn(i, j) = 1, if

L∑
l=1

I(A(i,j,l)>Āl)(A) > K, (12)

where I is the indicator function, Āl is the mean value of
l-th layer. The refinement procedure is then illustrated as:

P̂refined =
1

|ψ|
∑
l∈ψ

Mattn ⊙Al ∗ Pcoarse, (13)

where ⊙ denotes the Hadamard product. For coarse score
maps, we calculate the average score for each class based on
P̂refined and produce a expanded class-wise mask Mcls ∈
RN×N×C by ignoring unconfident positions (below the av-
erage score). The final refined scores for each class c can be
obtained as follows:

Prefined(c) =
1

|ψ|
∑
l∈ψ

Mattn ⊙Al ⊙Mcls(c) ∗ Pcoarse(c).

(14)

Class-Wise Reidentification (CWR) Although patch-
level classification can discover target classes by discrimi-
native local features, it may result in misclassification for
the lack of a comprehensive view. Therefore, we propose
a class-wise reidentification module to further remedy the
primary predicted scores for each class from a global view.
Specifically, given refined classification scores Prefined ∈
RN×C , we can obtain the confidence of each class Plocal by
corresponding most outstanding patches:

Plocal(c) = max
i

(Pcoarse(i, c)), (15)

For each class, we pick out the highly responsive patches
from Prefined and form the class-related region (class-wise

mask). We crop the image by the bounding box of the region
and resize it to a specific size, e.g., 224×224. The class-wise
mask serves as the attention mask in ViT to exclude patches
that do not belong to the class. We input the class-wise image
into original CLIP and use [cls] token for classification. The
obtained global results Pglobal are merged with local scores
Plocal to take advantage of both local and global views.

Pfinal = λPlocal + (1− λ)Pglobal, (16)

where λ is a coefficient to balance the local and global effect
and is simply set to 0.5 in our experiments. Through this
fusion process, we can effectively incorporate the valuable
insights provided by both local and global views, thereby
enhancing the overall classification performance.

Appplication on the Downstream Task
Multi-label classification is a practical task with wide-
ranging applications in downstream tasks that rely on image-
level labels. In this paper, we explore the use of TagCLIP
in conjunction with existing Weakly Supervised Semantic
Segmentation (WSSS) methods to tackle annotation-free se-
mantic segmentation. Given image-level labels, most WSSS
works (Wang et al. 2020; Xie et al. 2022) leverage Class
Activation Mapping (CAM) to find the target class’s related
regions in the image and generate segmentation masks based
on it. The use of category information provides valuable
high-level guidance, enabling WSSS to perform remarkably
well, even approaching the performance of fully-supervised
settings. We select CLIP-ES (Lin et al. 2023) for its out-
standing accuracy and efficiency. It is also a training-free
framework based on frozen CLIP and more details can be
found in (Lin et al. 2023). By leveraging this efficient WSSS
method, the whole classify-then-segment paradigm requires
no dataset-specific training and can realize annotation-free
segmentation. We denote this framework as CLS-SEG.

Experiment
Experimental Setup
Dataset and Evaluation Metrics. To verify the perfor-
mance of multi-label classification, for fair comparisons, we
evaluate our method on PASCAL VOC 2007 (Everingham
et al. 2010) and MS COCO 2014 (Lin et al. 2014). follow-
ing (Guo et al. 2023). The PASCAL VOC 2007 contains 20
categories and we evaluate on the test set with 4952 images.
MS COCO 2014 includes 80 categories, and we take the
40137 images as validation set following the official split.
For downstream semantic segmentation, we conduct experi-
ments on three commonly used datasets, including PASCAL
VOC 2012 (Everingham et al. 2010), MS COCO 2017 (Lin
et al. 2014) and COCO-Stuff (Caesar, Uijlings, and Fer-
rari 2018). For Pascal VOC 2012, there are 20 foreground
classes, and the remaining pixels are background. The val-
idation set with 1449 images is used for validation. COCO
2017 has 5000 validation images with 80 categories and a
background class. COCO-stuff has 4172 validation images
of 171 low-level categories. We employ 27 mid-level cat-
egories setting following (Shin, Xie, and Albanie 2022b).
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Method Extra Training Data VOC COCO

Supervised specialist:
SARB 10% Data 83.5 75.5
DualCoOp 10% Data 90.3 78.7
TAI-DPT 10% Data 93.3 81.5
Open-vocabulary generalist:
TAI-DPT COCO captions 88.3 65.1
CLIP† None 79.5 54.2
CLIP None 85.8 63.3
DPT† None 83.4 59.6
DPT None 86.2 64.3
CLIPSurgery None 85.4 61.2
TagCLIP(Ours) None 92.8 68.8

Table 2: Experimental results of multi-label classification. †

represents not using softmax on classification scores.

Note that our classification framework TagCLIP and seg-
mentation framework CLS-SEG are both training-free and
can directly evaluate on the validation set. We employ mean
average precision (mAP) as the evaluation metric for multi-
label classification and the mean Intersection over Union
(mIoU) for semantic segmentation.

Implementation Details. Our experiments are based on
ViT-B/16 pre-trained by CLIP. For multi-label classification,
images remain at their original resolution. In every operation
where a confidence threshold is required, threshold 0.5 is
substituted if not otherwise specified, such as thresholds for
selecting highly responsive patches in CWR. We adopt the
80 prompts used in CLIP (Radford et al. 2021) and back-
ground set in (Lin et al. 2023). To determine the potential
classes in an image according to classification logits, we first
perform min-max normalization to scale the logits to [0, 1]
and then set 0.5 to determine positive categories.

Experimental Results
Multi-label classification. To demonstrate the effective-
ness of our proposed TagCLIP, we compare it with other
CLIP-based approaches. Some supervised specialist meth-
ods leverage partial data on downstream datasets to train
customized models, including SARB (Pu et al. 2022), Du-
alCoOp (Sun, Hu, and Saenko 2022), TAI-DPT (Guo et al.
2023). The use of downstream data limits their generaliza-
tion. Another training-based manner has no access to down-
stream data but trains on curated caption data, which en-
ables arbitrary category recognition. The others are merely
based on frozen CLIP and thus inherit its outstanding gen-
eralization capability, including CLIP (Radford et al. 2021),
DPT (Guo et al. 2023), CLIPSurgery (Li et al. 2023).

In Table 2, † represents directly treating logits before soft-
max as classification scores (Guo et al. 2023) because these
logits can reflect the similarity between image and text fea-
tures. We find that there is a major performance degradation
without softmax activation, which may stem from the use
of contrastive loss during pre-training of CLIP. Results in
Table 2 demonstrate that our proposed framework performs
surprisingly well. It enhances the multi-label classification
performance of original CLIP by a large margin, i.e., 7.0%

Method VOC COCO COCO-Stuff

Vanilla USS methods
IIC 9.8 - 6.7
MaskContrast 35.0 3.73 -
TransFGU 37.2 12.7 17.5
MaskDistill 45.8 - -
PiCIE - - 13.8
PiCIE+H - - 14.4

CLIP-based methods
MaskCLIP‡ 42.1 20.2 23.9
CLIPSurgery‡ 41.5 25.2 29.7
GroupViT 52.3 24.3 -
SegCLIP 52.6 26.5 -
ReCo 34.2 17.1 26.3
NamedMask 59.2 27.7 -
CLS-SEG (Ours) 64.8 34.0 30.1
CLS-SEG∗(Ours) 68.7 35.3 31.0

Table 3: Results of annotation-free semantic segmentation.
The vanilla USS results are based on K-means clustering. ‡

represents we re-implement it with the same experimental
setting as ours. ∗ means using denseCRF to postprocess.

and 5.5% on VOC and COCO, respectively. Our method sur-
passes all works that require no extra training data on both
VOC and COCO. It also compares favorably with the works
requiring extra data and training. More experiment results
are available in Appendix.

Segmentation performance. We provide our annotation-
free segmentation result with tags generated by TagCLIP
as pseudo labels and compare them with both vanilla USS
methods (including IIC (Ji, Henriques, and Vedaldi 2019),
MaskContrast (Van Gansbeke et al. 2021), TransFGU (Yin
et al. 2022), MaskDistill (Van Gansbeke, Vandenhende, and
Van Gool 2022), PiCIE(+H) (Cho et al. 2021)) and recent
CLIP-based works (including MaskCLIP (Zhou, Loy, and
Dai 2022), CLIPSurgery (Li et al. 2023), GroupViT (Xu
et al. 2022a), SegCLIP (Luo et al. 2023), ReCo (Shin, Xie,
and Albanie 2022b), NamedMask (Shin, Xie, and Albanie
2022a)) in Table 3.

We observe that CLS-SEG outperforms vanilla USS
and other CLIP-based methods dramatically on all three
datasets, demonstrating the high quality of generated tags
and the effectiveness of this classify-then-segment paradigm.
From Figure 4, we find that high-level conceptual guidance
provided by category information in an image is essential to
obtain high-quality segmentation masks because: 1) it pre-
vents false predictions caused by confusing textures among
semantically similar classes, e.g., the skin of the cow and
sheep; 2) it can comprehensively identify some categories
with large intra-class variance, e.g., different parts of a per-
son can be identified as a whole with superior semantic con-
cepts. Results indicate that classification helps segmentation
and may provide inspiration for future research.

Ablation Study
Effect of DMAR and CWR. In Table 4, we evaluate the
effect of DMAR and CWR in terms of classification and
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Figure 4: Visualizations of segmentation results for
MaskCLIP (Zhou, Loy, and Dai 2022) and ours. MaskCLIP
has more false positives for the lack of category information.

aeroplane  96.58%

bird  0.98%

bus  0.82%

boat  0.35%

cow  0.30%

areoplane  100.00%

person  69.87%

bird  62.06%

tvmonitor  43.46%

dining table  20.01%

areoplane  100.00%

person  61.33%

tvmonitor  43.46%

bird  35.79%

dining table  20.01%

tvmonitor  100.00%

aeroplane  99.85%

dog  85.64%

person  78.96%

bird  79.49%

True Positive

False Positive

True Negative

gt: {aeroplane, person} class token dense token

+ DMAR + CWR

Figure 5: The classification results of different strategies. We
use 0.5 as the threshold by default.

segmentation. The DMAR can refine the coarse scores re-
markably and CWR can further boost the performance. We
provide a qualitative case in Figure 5. After DMAR, most ir-
relevant categories can be suppressed. The CWR can coordi-
nate with DMAR to double-check the refined scores from a
global view. Therefore, the scores of false positives and false
negatives can be suppressed and improved, respectively.

Effect of attention layers used in DMAR module. To
determine the appropriate attention layers in CLIP-ViT for
classification score refinement, we first compare single-layer
attention weight with multi-layer in terms of classification
(precision, recall and f1-score) and segmentation (mIoU)
performance. From Figure 6, we can draw the following
conclusions: 1) Fusing multi-layer attention weights usually
performs better and more robustly than single-layer. 2) The
performance of the first few attention layers is unsatisfac-
tory, which mainly stems from the weak attention and fea-
tures these layers learned. 3) The last attention layer is in-
accurate among the last few layers, which corresponds to
our analysis above. We also present the performance of our
proposed dual-masking strategy, which effectively mitigates
the impact of noise and improves original attention refine-
ment in most cases. This strategy demonstrates significant
precision gains with only a slight recall drop, leading to bet-
ter classification and segmentation performance in general.

Coarse Score DMAR CWR mAP mIoU

! 85.4 30.9
! ! 88.0 55.2
! ! 93.9 63.7
! ! ! 94.1 64.8

Table 4: Results for the effectiveness of DMAR and CWR
module in terms of classification and semantic segmenta-
tion. The results are evaluated on the VOC 2012 val set.

Figure 6: Comparison of single-layer and multi-layer atten-
tion refinement in terms of classification and segmentation
tasks. For the single-layer setting, each tick i on the x-axis
represents merely adopting attention weight in i-th layer. For
the multi-layer setting, the i-th x-tick means fusing i-th to
11-th layers attention weights to refine coarse classification
scores. We rule out the last attention layer during fusing.

Based on these observations, we fuse the last four attention
weights except the last one in our experiments.

Conclusion
This paper proposes TagCLIP, a simple and effective frame-
work designed to enhance the multi-label classification ca-
pability of the original CLIP. It follows a local-to-global
paradigm and consists of three key steps: patch-level clas-
sification, dual-masking attention refinement (DMAR), and
class-wise reidentification (CWR). Benefiting from these
steps, TagCLIP unlocks the potential of CLIP and can serve
as a generalizable annotator that provides high-quality im-
age tags without dataset-specific training. Additionally, we
validate the practicality of treating generated tags as pseudo
labels for the downstream weakly supervised semantic seg-
mentation (WSSS) task and find this classify-then-segment
paradigm surpasses previous bottom-up style annotation-
free segmentation methods remarkably. This demonstrates
the effectiveness and versatility of TagCLIP and highlights
its potential in various downstream applications.
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