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Abstract

Recently, Table Structure Recognition (TSR) task, aiming at
identifying table structure into machine readable formats, has
received increasing interest in the community. While impres-
sive success, most single table component-based methods can
not perform well on unregularized table cases distracted by
not only complicated inner structure but also exterior capture
distortion. In this paper, we raise it as Complex TSR problem,
where the performance degeneration of existing methods is
attributable to their inefficient component usage and redun-
dant post-processing. To mitigate it, we shift our perspective
from table component extraction towards the efficient multi-
ple components leverage, which awaits further exploration in
the field. Specifically, we propose a seminal method, termed
GrabTab, equipped with newly proposed Component Delib-
erator, to handle various types of tables in a unified frame-
work. Thanks to its progressive deliberation mechanism, our
GrabTab can flexibly accommodate to most complex tables
with reasonable components selected but without compli-
cated post-processing involved. Quantitative experimental re-
sults on public benchmarks demonstrate that our method sig-
nificantly outperforms the state-of-the-arts, especially under
more challenging scenes.

Introduction
With the fast-paced development of digital transformation,
Table Structure Recognition (TSR) task, aiming at parsing
table structure from a table image into machine-interpretable
formats, which are often presented by both table cell phys-
ical coordinates (Schreiber et al. 2017; Paliwal et al. 2019;
Khan et al. 2019; Tensmeyer et al. 2019; Chi et al. 2019;
Qasim, Mahmood, and Shafait 2019; Raja, Mondal, and
Jawahar 2020; Zheng et al. 2021; Qiao et al. 2021; Liu et al.
2021; Long et al. 2021) and their logical relationships (Li
et al. 2020; Zhong, ShafieiBavani, and Yepes 2019). It has
received increasing research interest due to the vital role
in many document understanding applications (Jauhar, Tur-
ney, and Hovy 2016; Li et al. 2016; Feng et al. 2023a,b).
To date, several pioneers works (Li et al. 2020; Zhong,
ShafieiBavani, and Yepes 2019; Schreiber et al. 2017; Khan
et al. 2019; Tensmeyer et al. 2019; Chi et al. 2019; Qasim,
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Figure 1: Illustration of motivation of the proposed
GrabTab. (a) Boundary extraction-based methods. (b) El-
ement relationship-based methods. As merely one single
table component leveraged, the predicted cell boundaries
could suffer from “boundary missing” (green dashed lines)
or “over-prediction” (green solid lines) problem. (c) Our
proposed GrabTab. A set of table components, including
row/column relations, table elements, visual explicit and im-
plicit separators, are “deliberated” by our GrabTab, where
informative clues are flexibly picked up and assembled,
which is more versatile for various complex table layouts.
Best viewed in color.

Mahmood, and Shafait 2019; Raja, Mondal, and Jawahar
2020; Zheng et al. 2021; Qiao et al. 2021; Liu et al. 2021;
Long et al. 2021) have achieved significant progress in
the filed, which can be mainly categorized into boundary
extraction-based methods (Schreiber et al. 2017; Paliwal
et al. 2019; Khan et al. 2019; Tensmeyer et al. 2019; Long
et al. 2021; Ma et al. 2023) and element relationship-based
methods (Liu et al. 2021; Chi et al. 2019; Qasim, Mahmood,
and Shafait 2019; Raja, Mondal, and Jawahar 2020) accord-
ing to the component type leveraged.

Unfortunately, the above single-component-based tech-
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niques can only yield promising results on regularized table
cases, but struggle when processing more complicated cases
as illustrated in Fig. 1(a) and (b). However, with the popular-
ization of mobile capture devices, the requirement on recog-
nizing camera-captured tables has become increasingly im-
perative. In this scene, other than complicated table inner
structure, geometrical distortion incurred by the capturing
process becomes another distracting factor. In this paper, we
define this more challenging TSR as Complex TSR task. We
attribute the performance degeneration of previous methods
to their inefficient component usage and heavy dependence
on rule-based post-processing. To be specific, given a com-
plex table, boundary-based methods can better handle the
visible boundary cells by directly predicting them, but suf-
fer from “boundary missing” problem for those without ex-
plicit separations (green dashed lines in Fig. 1(a)). Compara-
tively, the relationship-based alternatives can overcome this
issue by inferring cell boundaries from the element relation-
ships, whereas the “over-prediction” of boundaries (green
solid lines in Fig. 1(b)) is witnessed as the visible cell bound-
ary clues are totally abandoned. To relieve these shortcom-
ings, both methods resort to well-designed post-processing
rules, however, they would become uncontrollable when dis-
tortion happens. This status quo begs for a question: “Is
there a versatile TSR solution to leverage merits of multi-
ple components rather than merely single one, in the light
of different complex table cases?”. A straightforward way
is to directly combine multiple components. Nevertheless, it
is infeasible to implement as either component in the afore-
mentioned methods is strongly coupled with corresponding
post-processing rules, which could be mutually exclusive.
For the Complex TSR, a few recent researches (Long et al.
2021; Liu et al. 2022; Wang et al. 2023) have made attempts,
whereas they only take further steps on more robust compo-
nents (relationships or boundaries) extraction while the de-
ployment of multiple components is still rarely explored.

In human cognitive system (Clancey 2002; Anderson
2005; Olshausen, Anderson, and Van Essen 1993), “delib-
eration” is one of common behaviors when human process-
ing daily works, such as reading or analyzing table image.
Specifically, a set of evident visual clues are perceived at
a rough level and the final results are yielded by comple-
menting them with implicit but necessary information after
deliberation in a progressive way. Inspired by it, we in this
paper introduce the “deliberation” mechanism and propose a
novel method, termed GrabTab, tailored for Complex TSR
problem, which can flexibly Grabs the needed information
from a set of Table components and progressively assembles
them to the final results, as demonstrated in Fig. 1(c).

Concretely, we first go beyond canonical straight line-
based method and propose a new table Separator Per-
ceiver (SP) based on Bézier curve, which can yield
high-quality explicit (solid red lines) and implicit separa-
tor (dashed blue lines) proposals. Treating both types of sep-
arator proposals as hints, the newly designed Components
Correlator (CC) “grabs” useful information from table ele-
ments and their global relationships aggregated on the sepa-
rator proposals shown in Fig. 1(c). Afterward, requiring no
sophisticated post-processing, our GrabTab directly predicts

the logical index and “grabs” refined separators to constitute
the final results through Structure Composer (SC). Serving
as core submodules, SP, CC and SC comprise our Compo-
nents Deliberator (CD) implementing progressive delibera-
tion mechanism. Thanks to this mechanism and removal of
complicated heuristic-based post-processing, our GrabTab
exhibits prominent versatility, which can flexibly accommo-
date to most complex tables with reasonable components
selected. Benefiting from the tailored design, our GrabTab
method can achieve better performance compared to other
TSR methods, especially for the complex table scenarios, as
vividly validated by extensive experimental results. Conclu-
sively, our contributions are summarized as:

• We reinspect the TSR task from the perspective of the ef-
ficient multiple components leverage, rather than single
component extraction widely adopted by previous meth-
ods. To our best knowledge, we are the first to introduce
deliberation mechanism and investigate its working pat-
terns on component interaction for predicting complex
table structure.

• We coin a novel and versatile method, GrabTab, tailored
for Complex TSR problem, which is equipped with Com-
ponents Deliberator consisting of Separator Perceiver,
Component Correlator and Structure Composer, respon-
sible for generation of high-quality separator proposals,
multiple components correlation and composing refined
separator into final results.

• Quantitative experimental results on public benchmarks
demonstrate that our method can fully leverage com-
ponents reciprocity for diversified complex table cases,
without introducing extra complicated processes. Con-
sequently, significant performance improvement is wit-
nessed, especially under more challenging scenes.

Methodology
Overall Architecture
Intuitively, table separator is the most evident and straight-
forward visual clue, which is also the basic ingredients of the
final output results. Based on this intuition, our GrabTab thus
treats it as chief component to dynamically “grab” informa-
tive clues from other candidate components (the table ele-
ments (orange boxes) and their row/column relations (con-
nected by blue and purple solid lines)) during deliberation.
The architecture of our proposed GrabTab is designed as
Fig. 2, which consist of four stages. Given a complex ta-
ble image, firstly, the candidate components are extracted
as element tokens (in orange color) and relation tokens (in
green color). Then, the feature of table image along with
relation bias is sent to the newly proposed Separator Per-
ceiver (SP) to obtain separator tokens, which can generate a
set of explicit (red solid lines in Fig. 2) and implicit sepa-
rator (blue dashed lines) proposals through least squares fit-
ting (LSF) (Weisstein 2002). Afterwards, Components Cor-
relator (CC) correlates to the separator tokens (in blue color)
with relation and element tokens to obtain the enhanced sep-
arator tokens (in purple color). In the end, Structure Com-
poser (SC) selects the desired separators by predicting their
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Figure 2: The architecture of our proposed GrabTab. Erel, Eele, Esep and Ẽsep denote relation, element, separator and enhanced
separator tokens, respectively. Best viewed in color and zoomed in.

indexes in a sequential manner and re-assembles them as
closure cells. The framework is end-to-end trainable by the
proposed “separator losses” and “structure loss”, which en-
sures the versatility of our GrabTab.

Candidate Components Extraction
As aforementioned, our GrabTab extracts table elements
and their relations as candidate components, which is ex-
pected to provide useful information for the chief separa-
tor component. To achieve this goal, we inherit the relation
extraction method from a off-the-shell work, NCGM (Liu
et al. 2022). Specifically, for N table elements, the “col-
laborative graph embeddings” output by NCGM is em-
ployed as element tokens in our GrabTab: Eele =
{e1, e2, ..., eN} ∈ RN×de . Correspondingly, the relation to-
kens Erel are also obtained according to the binary-class
relations {Rrow,Rcol.} predicted by NCGM. In details,
Rrow = {r1,1, r1,2, ..., ri,j , ..., rN,N} ∈ RN2×2, where
ri,j = 1 if the pair of i-th and j-th element belong to the
same row, and it equals to 0 otherwise. Rcol. is denoted in
the same manner. To avoid the costly computational con-
sumption brought by element pairs in large amount, accord-
ing to {Rrow,Rcol.}, we link elements with same relation-
ship as one instance class, i.e., Erow = {f1, f2, ..., fM} ∈
RM×de ,Ecol = {g1,g2, ...,gP } ∈ RP×de . Mathemati-
cally, for i-th row relation instance: fi =

∑n
m=1 em + wi,

where wi ∈ Rde is the i-th instance index embedding pro-
duced by method (Mikolov et al. 2013). The dictionary size
is set to 200 in default. And the Ecol is obtained in the sim-
ilar way. Finally, the relation tokens Erel ∈ R((M+P )×de)

are generated as Erel = {Erow,Ecol}.

Separator Proposals Generation
Separator representation. Our aim of this stage is to ob-
tain a set of separator proposals, including both explicit and
implicit ones shown in Fig. 2, which can well cover the
potential cell boundary regions. However, most of previ-
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Figure 3: Separator Perceiver. Best viewed in color.

ous methods represent cell boundaries with straight lines,
which could not fit them properly under distortion scene (see
Fig. 1(a) and (b)). Inspired by work (Liu et al. 2020), we di-
rectly deploy the cubic Bézier curve to represent the curved
separators, which is defined as:

B(t) = P0(1− t)3 + 3P1t(1− t)2

+ 3P2t
2(1− t) + P3t

3, t ∈ [0, 1],

where P0, P1, P2 and P3 denote control points of the Bézier
curve. Intuitively, a straightforward way to produce curved
separator is to directly predict the curvature control points.
However, it may suffer from instable training procedure and
“point drift” problem, i.e., small point prediction error can
lead to the whole curve misalignment. Alternatively, consid-
ering the Bézier curve is parameterized in terms of t ∈ [0, 1],
we sample the curve uniformly from t spaced set to get
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T sample points {Si(xi, yi)}Ti=1, where curve length be-
tween each of adjacent are equal. Hence, our method tries
to regress these sample points. Once the points determined,
the control points of whole curve can be easily acquired by
standard “least squares fitting” algorithm (Weisstein 2002).
Separator Perceiver. Now, we elaborate on how to gen-
erate separator proposals with our newly designed Separa-
tor Perceiver (SP). Specifically, as illustrated in Fig. 3, con-
sidering the scale variety of separators, we build SP upon
Deformable DETR (Zhu et al. 2020), where Deformable en-
coder takes table image feature F as input. Here, we adopt
the canonical ResNet-50 (He et al. 2016) as the image fea-
ture extractor. Then, the multi-scale encoder feature Fenc =
{D1, D2, D3, D4} is output, which respectively have strides
of 8, 16, 32, 64 pixels with respect to the raw table image in
H height and W width. To facilitate the learning of separa-
tor, the relation component is converted to the column and
row relation biases (M∼ ∈ {Mrow,Mcol}) applied on the
encoder feature Fenc. Taking the row relation bias for ex-
ample, the row relation mask Φrow ∈ RW×H is firstly gen-
erated according to Rrow. To be specific, if two elements
belong to the same row relations, the pixels inside the el-
ement bounding boxes will be assigned with the same re-
lation instance integral index r, r ∈ 1, 2, ...,M (denoted by
the same color in Fig. 3, while regions outside element boxes
are assigned 0 value. After down-sampled to the size of each
scale feature, we embed these multi-scale maps by embed-
ding method (Mikolov et al. 2013) to obtain Mrow. Then,
both Mrow and Mcol are added to each scale of encoder
feature as F′

enc, which is sent to the deformable decoder
module subsequently. For the decoder, we adopt Q learnable
separator queries Qsep ∈ RQ×dq to predict a set of sample
points {Si(xi, yi)}Ti=1 representing each separator. Here, the
feature output by corresponding FC (Fully-Connected) lay-
ers of sample points regression and classification are con-
catenated as separator tokens Esep ∈ RQ×(2·T+3), where
2 · T channels correspond to the x/y coordinates of T sam-
ple points while 3 channels correspond to classes of explicit
separators, implicit separators and background.

Multiple Components Correlation
During this phase, the aim is to correlate the candidate com-
ponents Eele and Erel to the main clue Esep. To implement
above purpose, we build our Components Correlator (CC)
upon the canonical transformer (Vaswani et al. 2017) con-
sisting of FeedForward Network (FFN) and Multi-head
Cross Attention (MHCA) interleaved with Layer Normal-
ization and residual connection. Different from the vanilla
one, our CC aggregates the both candidate components in a
decoupled way to avoid the interference between the infor-
mation of large difference they carry. More concretely, the
Esep play as roles of queries (Q1 and Q2) sent to the both
streams, where each of them treats either Eele or Erel as
the key and value for the MHCA. The block is stacked by
N times. Finally, similar to the separator prediction, we also
append the 3-dimension classification and 2T -dimension re-
gression layers, where the respective FC features are con-
catenated as the enhanced separator tokens Ẽsep. Note, all

Figure 4: Structure Composer. Best viewed in color.

the queries and keys and values are added with position en-
coding (PE) (Vaswani et al. 2017). Through this way, the
separator proposals represented by separator tokens could
be refined and aggregated with appropriate exclusive com-
ponents, which is essential to the final structure prediction.

Table Structure Composing
At the final stage of “deliberation” process, the refined
separator proposals are treated as the ingredients to com-
pose the final table cell in logical order. Motivated by
Pix2Seq (Chen et al. 2021), we propose a novel genera-
tive Structure Composer (SC) to define above process as a
sequence-to-sequence generation problem, based on a intu-
ition that if a model knows about where and what the sep-
arators are, we just need to teach it how to compose them
as cells. As shown in Fig. 4, instead of directly predicting
the cell coordinates widely-adopted in most methods, our
SC predicts a sequence of selected separator indexes where
each four corresponding separators construct a cell’s bound-
ary.

Formally, the output sequence G is repre-
sented as {⟨S⟩, C0, ⟨sep⟩, C1, ..., Cg, ⟨E⟩}, where
C∼ = [αtop, αleft, αbottom, αright] are the anticlock-
wise arranged indexes of separators wrapping a cell. ⟨S⟩,
⟨sep⟩ and ⟨E⟩ are start, separation and end tokens respec-
tively. Given a start token “⟨S⟩” as query, the SC recursively
predicts index sequence G until the “⟨E⟩” is output. The
basic block of SC is also built on the vanilla transformer
block (Vaswani et al. 2017), where enhanced separator
tokens Ẽsep are regarded as keys and values with PE added.

To control the input sequence length to a reasonable ac-
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count, before sent to the transformer blocks, Ẽsep and cor-
responding separator proposals are firstly processed by the
“Separator NMS”. As the original NMS (Ren et al. 2015) is
designed for the object detection task, to adapt it to the TSR
task, we repurpose it into our “Separator NMS” by replacing
the IoU metric with our proposed Separator Distance:

Dsep =
1

T

∑
t∈T

||S(i)
t (xt, yt)− S(j)

t (xt, yt)||2, (1)

where S(i)
t (xt, yt) is the t-th sample points from the i-th

separator (corresponds to the i-th token of Ẽsep). The con-
dition for removing separator is set as Dsep < σ, where
σ is set to 5 in default. Considering the selected separators
are unordered, which could cause training collapse prob-
lem, we sent the selected separators to the “Order Regular-
ization” submodules. They are firstly grouped into horizon-
tal (Hh) and vertical (Hv) types according to the slope of the
first (start) sample point and last (end) one connected line.
The output of “Order Regularization” is defined as:

H = {Sorty(Hh), Sortx(Hv)}, (2)
where “Sortx” and “Sorty” denotes sort operations along x
and y axes respectively.

Training Strategy
Loss function. As illustrated in Fig. 2, our proposed
GrabTab is trained in an end-to-end way by multi-task loss
L = λ1Lsep1

+λ2Lsep2
+λ3Lstruct, where balance weight

of each loss λ∼ is set to 1 equally. Among, the separator loss
Lsep∼ is the modified Hungarian matching loss (Zhu et al.
2020) adapting to the TSR task:

Lsep∼(O,G) = min
γ

(
M∑
i=1

Lcls(cγi , ĉi) + Lreg(sγi , ŝi)

)
︸ ︷︷ ︸

L(O,G|γ)

.

(3)
Similar to (Zhu et al. 2020), during training, the model firstly
assigns each output O = {sj , cj}Mj=1 to exactly one anno-
tated separator in G = {ŝk, ĉk}2k=1 or background ∅, where
ck is the k-th class (explicit or implicit separator). Note that
O and G are both denoted by sample points. γi ∈ {∅, 1, 2}
is the assignment of model output i to ground truth (GT) γi,
while Lreg is implemented by Eqn. (1). For the Lstruct, we
adopt the standard cross-entropy loss which is similar with
other generative models (Chen et al. 2021).
Separator assignment. Nevertheless, the above one-to-
one assignment in vanilla Hungarian matching algorithm
would cause the severe separator missing problem, due
to the slim shape of separator. To attack it, inspired by
method (Ouyang-Zhang et al. 2022), we further modify the
assignment to the one-to-many strategy, i.e., one GT is as-
signed with a group rather one separator. Based on the
one-to-one assigned separator {sγi , cγi}, we further find its
neighboring ones on the condition that Dsep < 5. Here,
Dsep is the Separator Distance (defined in Eqn. (1)) between
{sγi

, cγi
} and its neighboring separators. Afterwards, the

grouped separators are also assigned to the GT annotation
γi.

Experiments
Datasets and Evaluation Protocol
Datasets. We evaluate our method on the following bench-
mark datasets under both complex and regularized table sce-
narios. ICDAR-2013 (Göbel et al. 2013), ICDAR-2019 (Gao
et al. 2019), WTW (Long et al. 2021), UNLV (Shahab
et al. 2010), SciTSR (Chi et al. 2019), SciTSR-COMP (Chi
et al. 2019) and SciTSR-COMP-A (Liu et al. 2022) are
evaluated under protocol of physical structure recognition,
while TableBank (Li et al. 2020) and PubTabNet (Zhong,
ShafieiBavani, and Jimeno Yepes 2020) are adopted to eval-
uate the logical structure recognition performance. Further-
more, WTW (Long et al. 2021), SciTSR-COMP (Chi et al.
2019) and SciTSR-COMP-A (Liu et al. 2022) are employed
as complex TSR datasets with more challenging distractors
involved, while the rest are the regularized ones.
Evaluation protocol. For a fair comparison, we inherit the
widely-adopted protocols from prevalent methods. Among,
precision, recall and F1-score are utilized to evaluate the per-
formance of recognizing table physical structure. And the
performance of table logical structure recognition is eval-
uated by the Tree-Edit-Distance-based Similarity (TEDS)-
Struct (Zhong, ShafieiBavani, and Jimeno Yepes 2020) and
BLEU score (Papineni et al. 2002) protocols.

Implementation Details
We build the framework using Pytorch (Paszke et al. 2019)
and conduct all experiments on a workstation with 8 Nvidia
Tesla V100 GPUs. All the component tokens are projected
into 256-dimensional vertors. All the transformer block
numbers in SP, CC and SC are set to 6, where the dimen-
sions of hiddens and FFN are 256 and 2,048 respectively.
The number of queries in SP is empirically set to 1,000. The
framework is optimized by AdamW (Loshchilov and Hut-
ter 2017) with a batch size of 16. We adopt the learning rate
1e−5 for both Seperator Perceiver and Components Correla-
tor, and 1e−4 for Structure Composer. The number of sam-
ple points T for representing separator is set to 15. During
the training phase, the table images within a same batch are
randomly resized ranging from 480 to 800 while the size is
fixed to 1,100 for test. For all experiments, the network is
pre-trained on SciTSR for 10 epochs, and then fine-tuned on
different benchmarks for 50 epochs.

Comparison with State-of-the-arts
Results of complex table structure recognition. Tab. 1
gives comparison results on several benchmark datasets.
Among, the first three columns indicate the performance on
recognizing complex tables containing more severe distrac-
tors. Compared with existing methods, the F1-score of our
GrabTab can beat the second best method, NCGM (Liu et al.
2022), by 4.5% on SciTSR-COMP-A dataset, while the ap-
parent performance improvement is also witnessed on WTW
and SciTSR-COMP datasets. This phenomenon further con-
firms that simply focusing on single component extraction
is not the optimal solution. By equipped with deliberation
mechanism, our GrabTab finds the silver linings behind the
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WTW SciTSR-COMP SciTSR-COMP-A TableBank PubTabNet
Method Train Set P R F1 Train Set P R F1 Train Set P R F1 Train Set BLEU Train Set TEDS
C-CTRNet WTW 93.3 91.5 92.4 - - - - - - - - - - - -
FLAG-Net WTW 91.6 89.5 90.5 SciTSR 98.4 98.6 98.5 Sci. + Sci.-C-A 82.5 83.0 82.7 SciTSR 93.9 SciTSR 95.1
TSRFormer WTW 94.5 94.0 94.3 SciTSR 99.1 98.6 98.9 - - - - - - PubTabNet 97.5
RobusTabNet WTW - - - SciTSR 99.0 98.4 98.7 - - - - - - PubTabNet 97.0
TableFormer - - - - - - - - - - - - - - PubTabNet 96.8
LGPMA WTW 91.3 88.9 90.1 SciTSR 97.3 98.7 98.0 Sci. + Sci.-C-A 81.8 82.2 82.0 SciTSR 93.5 PubTabNet 96.7
NCGM WTW 93.7 94.6 94.1 SciTSR 98.7 98.9 98.8 Sci. + Sci.-C-A 88.4 90.7 89.5 SciTSR 94.6 SciTSR 95.4
GrabTab WTW 95.3 95.0 95.1 SciTSR 98.9 99.4 99.1 Sci. + Sci.-C-A 94.3 93.8 94.0 SciTSR 95.0 PubTabNet 97.9

Table 1: Comparison results with SOTAs (C-CTRNet (Long et al. 2021), FLAG-Net (Liu et al. 2021), TSRFormer (w/ DQ-
DETR) (Wang et al. 2023), TableFormer (Nassar et al. 2022), RobusTabNet (Ma et al. 2023), NCGM (Liu et al. 2022) and
LGPMA (Qiao et al. 2021)) on WTW, SciTSR-COMP, SciTSR-COMP-A, TableBank and PubTabNet datasets. “P”, “R” and
“F1” stand for “Precision”, “Recall” and “F1-score” respectively. “C-CTRNet” and “Sci.” are short for “Cycle-CenterNet” and
SciTSR.

problem of multiple components leverage, with decent re-
sults produced.
Results of regularized table structure recognition. In
the last two columns of Tab. 1, the performance on regu-
larized table cases is also given. As they are evaluated under
logical structure recognition protocol, we convert the output
physical structure format to the HTML, which strictly fol-
lows the operation in NCGM. From the table, one can ob-
serve that, on both datasets, our GrabTab can also achieve
the consistent improvement than the state-of-the-arts.

Ablation Study

In this subsection, we investigate the effects of various fac-
tors in GrabTab by juxtaposing analytic experiments on
SciTSR-COMP-A dataset, which is the most challenging
complex dataset. If we remove all the tailored designs in
our GrabTab, it would degenerate to the “Deform.-DETR”
regarding separators as prediction targets. By simply adding
relation biases (M∼ ∈ {Mrow,Mcol} in “separator pro-
posals generation”, we surprisingly observe the 4.1% F1-
score improvement brought by “GrabT.w/o CC/MA/SC”. More-
over, if the Components Correlator (CC) submodule is
appended, the performance could be further boosted by
“GrabT.w/o MA/SC”, which is a persuasive evidence to demon-
strate the effectiveness of CC.

Method RB CC OA MA RP SC P R F1
Deform.-DETR ✗ ✗ ✓ ✗ ✓ ✗ 84.8 85.1 84.9
GrabT.w/o CC/MA/SC ✓ ✗ ✓ ✗ ✓ ✗ 88.7 89.4 89.0
GrabT.w/o MA/SC ✓ ✓ ✓ ✗ ✓ ✗ 90.2 90.4 90.3
GrabT.w/o SC ✓ ✓ ✗ ✓ ✓ ✗ 91.5 91.8 91.6
GrabTab-S ✓ ✓ ✗ ✓ ✗ ✓ 91.9 92.4 92.1
GrabTab ✓ ✓ ✗ ✓ ✗ ✓ 94.3 93.8 94.0

Table 2: Ablation studies of GrabTab on SciTSR-COMP-A
dataset. Legend: “RB”: Row/Column Relation Bias, “CC”:
Components Correlator, “OA”: One-to-One Assignment,
“MA”: One-to-Many Assignment, “RP”: Rule-basd Post-
processing, “SC”: Structure Composer. “w/o.” is short for
“without” and “-S” represents straight-line separators.

In addition to relation biases (RB) and CC, separator as-
signment way is another factor of importance. By adopt-
ing original one-to-one assignment (OA) trick, the F1 per-
formance witnesses 1.3% drop compared with the ver-
sion (“GrabT.w/o SC”) equipped with our modified one-to-
many assignment (MA). We attribute the performance drop
to the “separator missing” problem, i.e., most separators are
not perceived under original one-to-one assignment.

As elaborated above, most existing methods depend on
complicated post-processing based on heuristic, which is
not versatile for various complex tables. Comparatively, our
Structure Composer (SC) is able to learn how to pick up de-
sired separators and compose them into the final structure
according to the specific cases. As indicated by “‘GrabTab”,
which is the full version of our method, by equipping it
with SC, the F1-score can be increased to 94.0%, which
surpasses the rule-based version (“GrabT.w/o SC”) by a large
margin. To investigate the effect of separator quality, we fur-
ther modify the prediction targets in “GrabTab-S”, where
target separators are represented in straight-line format in-
stead. Consequently, we find the modification is detrimental
to the performance, which can be attributable to the incon-
sistence between target curved representation and predicted
straight lines, especially highlighted for the distorted tables.

Further Analysis on Deliberation
What components matter during deliberation? To in-
vestigate the behaviors of different components during de-
liberation, for the sample from SciTSR-COMP-A dataset,
we in Fig. 5 visualize the attention heat-maps from last block
of Components Correlator module to reflect the correlations
between separator lines and candidate components, i.e., el-
ements (orange boxes) and their relations of row (blue con-
nections)/column (purple connections). For clarity, we pick
up one explicit (red solid curve) and implicit (blue dashed
curve) separator line as examples, and directly draw the cor-
relations on the raw table images. The darker color indicates
stronger correlation.

In the left part of Fig. 5, explicit lines, e.g., “L4”, demon-
strate a broad attention span, attending to nearly all ele-
ments with a smooth distribution of attention weights. On
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Figure 5: Visualizations of the attention heat-maps from last block of Components Correlator. The L∼ and R∼ correspond to
lines and relations. Table elements or relation connections with darker colors indicate stronger correlations with exemplar lines.
Best viewed in color and zoomed in.

Figure 6: Qualitative results on SciTSR-COMP-A.

the other hand, implicit lines e.g., “L10”, tend to establish
relationships with nearby spanning elements, indicating that
adjacent elements contribute more to recovering invisible
implicit lines. We quantitatively compare the attention pat-
terns of explicit and implicit lines using Kullback-Leibler
divergence (Joyce 2011), which confirms that implicit lines
have a higher average divergence (0.29 vs. 0.17), indicating
stronger correlations with elements. This correlation leads
to consistent performance improvement.

On the other hand, in order to show the cooperation
patterns between lines and relations, the cross attentions
between lines/row-relations and lines/column-relations are
separately visualized in the right part of Fig. 5. Obviously,
the explicit lines prefer those relations carrying the same
span information (“L4” related “R2”∼“R9”), while the im-
plicit lines pay more attention to the adjacent local rela-
tions (“L10” related from “R8” to “R9” ), which vividly il-
lustrates the importance of relational features to the recon-
struction of invisible separators. Simultaneously, the effec-
tiveness of the CC module for “grabbing” informative clues
between lines and relations is also verified.
Qualitative results. We in Fig. 6 visualize several recog-
nition results from the complex TSR datasets, SciTSR-
COMP-A (Liu et al. 2022), which further confirm the su-
perior performance of our GrabTab. Among, the tables in
SciTSR-COMP-A are distracted by not only inherent table
structures, but also two kinds of synthesized distortions, i.e.,

affine transformation and curverd distortion. From the re-
sults shown in Fig. 6, one can observe that our method can
precisely predict the distorted table cells, even with severe
content misalignment.

Conclusion and Limitations

In this work, we introduce GrabTab, a method that utilizes a
deliberation mechanism to handle complex tables with mul-
tiple assembled components, eliminating the need for com-
plicated post-processing. This exclusive mechanism ensures
the robustness and versatility of our method. We conduct ex-
tensive experiments on various table datasets to validate and
analyze its performance. The experimental results demon-
strate that our model outperforms previous approaches, par-
ticularly in complex table scenarios, confirming the effec-
tiveness of our method. As for the limitations of our work,
in the current version, we simply extract the table elements
and and their relationships in off-line manner. Alternatively,
a more potential way is to repurpose the candidate compo-
nents extraction into an on-line one, with the model weight
updated together with the subsequent deliberator. Besides,
the increase on the computational complexity is another is-
sue to be solved we leave in our future work.
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