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Abstract

Open-Set Recognition (OSR) aims to accurately identify
known classes while effectively rejecting unknown classes
to guarantee reliability. Most existing OSR methods focus
on learning in the spatial domain, where subtle texture and
global structure are potentially intertwined. Empirical studies
have shown that DNNs trained in the original spatial domain
are inclined to over-perceive subtle texture. The biased se-
mantic perception could lead to catastrophic over-confidence
when predicting both known and unknown classes. To this
end, we propose an innovative approach by decomposing the
spatial domain to the frequency domain to separately consider
global (low-frequency) and subtle (high-frequency) informa-
tion, named Frequency Shuffling and Enhancement (FreSH).
To alleviate the overfitting of subtle texture, we introduce the
High-Frequency Shuffling (HFS) strategy that generates di-
verse high-frequency information and promotes the capture
of low-frequency invariance. Moreover, to enhance the per-
ception of global structure, we propose the Low-Frequency
Residual (LFR) learning procedure that constructs a com-
posite feature space, integrating low-frequency and original
spatial features. Experiments on various benchmarks demon-
strate that the proposed FreSH consistently trumps the state-
of-the-arts by a considerable margin.

Introduction
Deep Neural Networks (DNNs) have dominated various
visual recognition tasks and yielded outstanding perfor-
mance (He et al. 2016; Krizhevsky, Sutskever, and Hinton
2017). Traditional DNNs show strong capabilities in Closed-
Set Recognition (CSR), where test samples are limited to
known classes that appeared in training phase (i.e., closed-
set). In the more realistic and challenging open-set setting,
the model may face unknown classes (i.e., open-set) during
inference, and vanilla DNNs tend to predict them incorrectly
as known classes with high confidence (Yang et al. 2020).

Recently, the Open-Set Recognition (OSR) task (Scheirer
et al. 2012) has drawn considerable attention, which not only
requires distinguishing between the training categories but
also indicates whether an image belongs to a category that
has never encountered (Yang et al. 2020). Existing efforts
for OSR are inspired by two aspects: generative-based and
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Figure 1: A comparison of spatial-domain models trained
with the high-frequency band, low-frequency band, origi-
nal spatial images, and the FreSH on four datasets. CNNs
trained with the original images exhibit similar performance
trends to those trained with low-frequency bands.

discriminative-based methods. The generative-based meth-
ods generate unknown classes (Ge et al. 2017; Chen et al.
2021b) or reconstruct known classes (Oza and Patel 2019;
Huang et al. 2022). The discriminative-based methods fo-
cus on designing various distance loss functions to constrain
embedding distributions (Chen et al. 2020; Lu et al. 2022).
However, the above methods train with the original spatial-
domain images (marked as ‘Original’ in Figure 1), where
the global structure and local texture of the object are poten-
tially coupled together. In fact, these semantic elements play
distinct roles during representation learning. Inspired by the
frequency domain theory, the spatial-domain image can be
disassembled through frequency transformation (Wang et al.
2020; Yao et al. 2022), where the global structure is en-
compassed within low-frequency bands (marked as ‘Low’
in Figure 1), and the local texture is contained in high-
frequency bands (marked as ‘High’).

As illustrated in the left of Figure 1, it is more straight-
forward for humans to identify low-frequency images
compared to unintuitive high-frequency images. And this
observation has also inspired other computer vision re-
searchers (Van den Branden Lambrecht and Kunt 1998;
Luo et al. 2022). However, empirical studies on neural net-
works (Yin et al. 2019; Wang et al. 2020) reveal that CNNs
trained in the original spatial domain are more inclined to
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Figure 2: Unexpected prediction reversal when using high-
frequency damaged images. The red line is the confidence
threshold, below which is identified as unknown.

fit high-frequency visual representations, as shown in Fig-
ure 2. When the high-frequency bands are damaged, hu-
mans can easily maintain predictions the same as the origi-
nal spatial domain, but the predictions of the CNNs are un-
expectedly reversed (The closed-set “Ship” mislabeled as
“Unknown” and a mislabeled “Truck” turns to “Unknown”).
These inversions reveal that the spatial-domain CNNs are
excessively sensitive to the changes in high-frequency infor-
mation, thereby posing challenges in obtaining satisfactory
confidence scores for OSR task. That is the over-confidence
phenomenon (on known and unknown classes) could be at-
tributed to the inductive bias learned in the spatial domain.

To correct the inductive bias and alleviate the over-
confidence for OSR, we propose a novel Frequency-based
Shuffling and Enhancement (FreSH) framework, which
changes the network’s preference for frequency bands.
The FreSH framework consists of High-Frequency Shuf-
fling (HFS) strategy and Low-Frequency Residual (LFR)
learning. Firstly, the HFS strategy is designed to alleviate
the overfitting of high-frequency texture during the train-
ing phase. It constructs disparate high-frequency variants
and mixes them with the original low-frequency bands,
which sparks the CNNs’ potential for learning robust high-
frequency features and focusing on the invariance of low-
frequency information. Secondly, to emphasize the superi-
ority of low-frequency information in recognition, we skip-
connect the low-frequency features from shallow layers
to deeper layers, which is called Low-Frequency Residual
(LFR) learning. In this way, the global structure of objects
is enhanced in the composite feature space that integrates
frequency and spatial features. Overall, our FreSH frame-
work captures more discriminative features by calibrating
the fitting bias of traditional spatial-domain CNNs, thereby
achieving satisfactory accuracy and robustness.

Our main contributions can be summarized as fol-
lows: i) We propose Frequency Shuffling and Enhancement
(FreSH) framework for OSR, which relieves the induction
bias of the original spatial domain and alleviates the over-
confidence for unknown detection and known classification.
ii) We propose the High-Frequency Shuffling (HFS) strat-
egy to encourage the network to learn robust high-frequency
bands and the Low-Frequency Residual (LFR) learning to
enhance the global structure of objects. iii) Extensive ex-

periments on multiple benchmarks demonstrate that the pro-
posed method significantly improves the performance of
OSR and remarkably surpasses existing methods.

Related Work
Open-Set Recognition. The OSR task is outlined
by (Scheirer et al. 2012) from the perspective of open
space risk. The current methods ameliorate the OSR
performance with the powerful representation capabilities
inherent in DNNs, which can be broadly categorized
into generative-based methods and discriminative-based
methods. The first category is dedicated to generating
known or unknown classes. G-openmax (Ge et al. 2017)
and OSRCI (Neal et al. 2018) employ the formidable
power of GANs (Goodfellow et al. 2014) to generate
unknown samples. AEs (Kingma and Welling 2013) are
employed by (Yoshihashi et al. 2019; Sun et al. 2020) to
reconstruct known classes. C2AE (Oza and Patel 2019),
GFROSR (Perera et al. 2020) and CapsNet (Guo et al.
2021) use Conditional Variational Auto-Encoder (CVAE)
to minimize reconstruction errors. While the generative
methods rely on auxiliary networks, which inevitably
incur extra computational costs. The second category
is discriminative-based approaches, which optimize the
classifier or feature extractor. OpenMax (Bendale and Boult
2016) replaces the softmax operator with OpenMax and
CPN (Yang et al. 2020) introduce convolutional prototype
network. PROSER (Zhou, Ye, and Zhan 2021) proposes
classifier placeholders for unknown classes. Hybrid (Zhang
et al. 2020) adds a flow density estimator to reject unknown
samples. Other methods optimize the feature embedding
with prototype learning (Yang et al. 2018; Lu et al. 2022),
supervised contrastive learning (Kodama et al. 2021) and
spatial attention mechanism (Liu et al. 2022). However,
most of them focus on optimization within the spatial
domain. Contrary to them, we innovatively address the OSR
task from the perspective of frequency domain.
Frequency Domain Learning. Frequency domain analysis
is a powerful tool to expose the semantic elements of im-
ages. Recently, frequency domain theory has shown over-
whelming performance on various DNNs tasks, such as
image super-resolution (Li, You, and Robles-Kelly 2018;
Fritsche, Gu, and Timofte 2019), image rescaling (Xiao
et al. 2020), forgery detection (Li et al. 2021; Wang et al.
2023) and adversarial attacks(Sharma, Ding, and Brubaker
2019; Yin et al. 2019). Yin et al.(Yin et al. 2019) find that
trained deep models are susceptive to high-frequency per-
turbations in adversarial settings. Guo et al.(Guo, Frank,
and Weinberger 2018; Sharma, Ding, and Brubaker 2019)
propose adversarial attacks targeting low-frequency images,
which demonstrates the pivotal role of low-frequency bands
in the model prediction. Some works exploit frequency do-
main theory to explain the generalization of CNNs. Wang et
al.(Wang et al. 2020) notice that CNNs could capture high-
frequency features that are usually untraceable to humans.
Chen et al.(Chen et al. 2021a) qualitatively study the impact
of magnitude spectrum and phase spectrum on the general-
ization behavior of CNNs.
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Figure 3: Overview of the proposed Frequency Shuffling and Enhancement (FreSH) framework. The High-Frequency Shuffling
(HFS) strategy is denoted on the left. HFS randomly generates different high-frequency materials for every instance, and we
draw it twice for simplicity. The low-frequency residual connection is performed between two convolutional stages. Without
loss of generality, we show a backbone consisting of four convolutional stages.

Method
In this section, we first review the formulation of a typi-
cal frequency transform method — Discrete Wavelet Trans-
form (DWT), which establishes a foundation for our study.
Then, based on the aforementioned observations, we set
our goals as weakening the role of high-frequency bands
while enhancing low-frequency bands, which are achieved
by the proposed two main components: HFS and LFR, re-
spectively. As shown in Figure 3, our framework takes sev-
eral augmented views from an image x as input. These views
are generated by performing HFS with different transforma-
tions. Subsequently, we construct a composite feature space
by feeding low-frequency bands directly into the embedding
space of deep layers, called LFR. More details will be de-
scribed in the following subsections.

Discrete Wavelet Transformation

In contrast to other frequency analysis tools such as Fourier
transform, Discrete Wavelet Transform (DWT) (Mallat
1989) can capture frequency features combined with high-
precision spatial information, thus making it a more effec-
tive way for vision tasks. Furthermore, Bae et al. (Bae, Yoo,
and Chul Ye 2017) show that wavelet transformations can
provide topologically simpler data flow patterns, thus facili-
tating more efficient pattern recognition. Therefore, we em-
ploy DWT with the efficient Haar wavelet filter (Haar 1911)
by default to obtain different frequency bands.

Figure 4 illustrates 2D-DWT with Haar kernels. Sup-
pose fL and fH are the low-pass and high-pass filters
of a standard 1D wavelet decomposition. For a 2D-image
x ∈ RH×W , row-wise and column-wise 1D-DWT are con-
ducted, which are defined as 2D transform. The correspond-
ing 2D filters are denoted as {fLL,fLH,fHL,fHH}. Taking
Haar wavelet as an example, the 2D low pass filter fLL is

formulated as:

fLL =
1

2

[
1 1
1 1

]
. (1)

The high-pass filters fLH, fHL, and fHH are defined as:

fLH =
1

2

[
−1 −1
1 1

]
,fHL =

1

2

[
−1 1
−1 1

]
,

fHH =
1

2

[
1 −1
−1 1

]
.

(2)

For DWT decomposition, four filters are used to convolve
with input image x to obtain four subbands x1, x2, x3, and
x4. Specifically, the low-frequency subbands x1 is defined
as (fLL ⊗x) ↓2. The (i, j)-th value of x1 after the 2D Haar
transform can be calculated as:

x1(i, j) =
1

2
x(2i− 1, 2j − 1) +

1

2
x(2i− 1, 2j)

+
1

2
x(2i, 2j − 1) +

1

2
x(2i, 2j).

(3)

The remaining three high-frequency subbands x2, x3, and
x4 can also be defined in an analogous manner. The wavelet
decomposition can be regarded as a special downsampling
operation with four decoupled channels. Different from ir-
reversible pooling operations, the original image x can be
accurately reconstructed by the Inverse DWT (IDWT):

x = IDWT(x1,x2,x3,x4). (4)
This means that the four frequency bands of DWT could
cover both the global structure and details of the image with
negligible information loss. As shown in Figure 4, the low-
frequency subbands x1 contains global structure informa-
tion, which directly determines the intuitive discrimination
of objects. The recognition process of humans also depended
primarily on these low-frequency features, as demonstrated
in Figure 1. The high-frequency subbands x2, x3, and x4

contain horizontal, vertical and diagonal texture details, re-
spectively, which are essential for fine-grained recognition.
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Figure 4: Illustration of Discrete Wavelet Transform (DWT)
with Haar filter. The image is downsampled into four fre-
quency subbands via wavelet decomposition.

High-Frequency Shuffling
As stated above, the robustness of the human visual system
primarily benefits from global structure information rather
than the unintuitive high-frequency edges (Luo et al. 2022;
Van den Branden Lambrecht and Kunt 1998). In contrast,
CNNs tend to focus excessively on high-frequency informa-
tion (Wang et al. 2020; Yin et al. 2019), which is consid-
ered the reason for their overconfident predictions. Inspired
by the powerful generalization ability of humans, we ar-
gue that reducing excessive dependence on high-frequency
bands and enhancing the ability to capture low-frequency
bands are potential routes for both closed-set classification
and open-set recognition tasks.

Specifically, we introduce the High-Frequency Shuffle
(HFS) strategy. For a training sample (x, y), the main princi-
ple of HFS is to shuffle the high-frequency subbands within
a reasonable range while leaving both the low-frequency
subbands x1 and the label y unchanged. In order to gen-
erate rich high-frequency material from x, we establish a
transformation set T = {t1, t2, . . . tK}, consisting of K im-
age transformation strategies. For each epoch, an element ti
is randomly selected from T to obtain the transformed im-
age x̂ = ti(x), which is used to replace the high-frequency
subbands of x. Further, the two images are decomposed
by DWT, and we get two sets of frequency bands {x1,
x2, x3,x4} and {x̂1, x̂2, x̂3, x̂4}, respectively. With IDWT,
HFS performs reconstruction from the wavelet domain to the
spatial domain, denoted as:

x∗ = IDWT(x1, x̂2, x̂3, x̂4). (5)

Since x∗ is an augmented counterpart of x, the label of x∗

is naturally the same as that of the original x. Then we train

the network using the cross-entropy loss of samples (x∗, y)
so that it learns robust high-frequency information. The HFS
process is shown on the left side of Figure 3 with two trans-
formations for simplicity. In the inference stage, we use the
original test images directly without HFS.

By performing high-frequency perturbations, we encour-
age the network to learn low-frequency invariance, which
extends the discriminative capacity for known and unknown
classes. It is worth noting that HFS generates a bank of di-
verse samples based solely on the original samples without
introducing additional hyperparameters to be tuned or pa-
rameters to be trained. In addition, HFS can be used as a
novel data augmentation strategy in other recognition tasks
to reduce the inductive bias of existing DNNs.

Low-Frequency Residual Learning
To formulate the low-frequency residual learning throughout
the network, we first define a typical deep convolutional neu-
ral network F . Without losing generality, we presume that
F is a visual recognition network consisting of N convo-
lutional stages, a fully connected layer and a softmax layer.
Each of the convolutional stage consists of several convo-
lutional layers, a non-linear activation layer, and a batch
normalization layer (Ioffe and Szegedy 2015). Formally, the
function F is denoted as:

F = S ◦ L ◦BN ◦ · · · ◦B1, (6)

where ‘◦’ denotes the function composition operation. S
represents the softmax function, L is the linear function, and
Bi denotes the function of the i-th convolutional stage, after
which the feature maps are downsampled.

The proposed low-frequency residual learning network
consists of the function F mentioned above and wavelet
transform modules corresponding to each convolutional
stage, as illustrated in Figure 3. Taking the i-th wavelet
transform module as an example, it decomposes the input
feature map of Bi and obtains the low-frequency subbands
denoted as DWTlow(Fi), where Fi is the input feature of
Bi. Then we design a skip-connection protocol to feed low-
frequency subbands from shallow layers to deeper ones. For-
mally, the skip connection is denoted as:

Fi+1 = Bi(Fi;Wi) + DWTlow(Fi), (7)

where Haar wavelet transformation is adopted as the de-
fault filter. The dimensions of Bi(Fi;Wi) and DWTlow(Fi)
are equal, so element-wise addition is conducted channel by
channel. In this way, the function Bi(Fi;Wi) is restructured
to learn the low-frequency residual representations instead
of fitting the original complex mapping. Based on Eq. 7,
we perform residual connections for all convolutional stages
(from B2 to BN−1) in the network without introducing addi-
tional parameters. Theoretically, if a convolutional stage can
fit the low-frequency features, it can asymptotically fit the
residuals of the low-frequency subbands. In contrast, train-
ing the latter will be easier because the residual connection
facilitates identity mapping (He et al. 2016), which results
in more sparse representations.
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Methods MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 Tiny-ImageNet

Softmax 97.8 88.6 67.7 81.6 80.5 57.7
OpenHybrid (Zhang et al. 2020) 99.5 94.7 95.0 96.2 95.5 79.3
PROSER (Zhou, Ye, and Zhan 2021) - 94.3 89.1 96.0 95.3 69.3
ARPL (Chen et al. 2021b) 99.6 96.3 90.1 96.5 94.3 76.2
ARPL+CS (Chen et al. 2021b) 99.7 96.7 91.0 97.1 95.1 78.2
DIAS (Moon et al. 2022) 99.2 94.3 85.0 92.0 91.6 73.1
BCR (Cho and Choo 2022) - 95.6 94.8 96.1 95.7 78.5
ODL (Liu et al. 2022) 99.5 94.3 85.7 89.1 88.3 76.4
KPF (Xia et al. 2023) 99.6 96.3 89.9 96.6 94.3 76.0
PMAL (Lu et al. 2022) 99.5 96.3 94.6 96.0 94.3 81.8

FreSH 99.6 98.1 95.2 98.3 96.9 83.8

Table 1: The AUROC results of detecting known and unknown samples.

Experiments
Experimental Setup
Datasets. Due to the variety of real-world open-set scenar-
ios, we utilize openness (Scheirer et al. 2012) to measure the
complexity of open-set tasks, which is defined as:

Openness = 1−

√
2× |CTR|

|CTR|+ |CTE|
, (8)

where |CTR| represents the number of known categories in
the training phase, and |CTE| is the total number of known
and unknown categories during testing. Following standard
OSR protocols (Guo et al. 2021; Neal et al. 2018), we eval-
uate the proposed method on MNIST (LeCun et al. 2010),
SVHN (Netzer et al. 2011), CIFAR10 (Krizhevsky, Hinton
et al. 2009), CIFAR+10, CIFAR+50, Tiny-ImageNet (Le and
Yang 2015). Their openness are from 13.39% to 62.86%.

Implementation Details. The establishment of open-
set recognition scenarios relies on a split protocol for
known and unknown classes. Since different splits often
give rise to unfair comparisons, we follow the commonly
used splits (Neal et al. 2018). For the backbone network,
we follow the benchmark protocol (Neal et al. 2018) using
VGG32. We use the Adam optimizer with a batch size of
128 for 600 epochs. The learning rate starts at 0.1 and de-
cays by a factor of 0.1 every 120 epochs. All experiments
are conducted with NVIDIA RTX 3090 GPU support.

Benchmark Comparisons
Unknown Detection. As shown in Table 1, we use AUROC
to measure the ability to detect unknown classes that are in-
visible during training. Following (Neal et al. 2018), we av-
eraged the results over five randomized trials. We do not list
some previous works because they report lower results than
ARPL (Chen et al. 2021b). We achieve state-of-the-art per-
formance on five datasets except 0.1% lower than ARPL on
MNIST. However, the parameter number of ARPL expands
tenfold more than that of ours due to additional auxiliary net-
works. Moreover, remarkable improvements are achieved on
large-scale Tiny-ImageNet over both generative-based and
discriminative-based methods. These methods do not pay at-
tention to the inductive bias in the original spatial domain.

Method SVHN CIF10 CIF+10 CIF+50 TINY

Softmax 96.6 93.4 94.7 94.7 73.1
CPN † 96.7 92.9 94.8 95 81.4
RPL † 95.3 94.3 94.6 94.7 81.3
ARPL † 94.3 87.9 94.7 92.9 65.9
PROSER 96.5 92.6 - - 52.1
DIAS 97.0 94.7 96.4 96.4 70.0
ODL 96.5 92.8 94.7 94.7 73.1
PMAL † 96.5 96.3 96.4 96.9 84.4

FreSH 97.4 97.3 97.9 97.7 87.6

Table 2: A comparison of the closed-set accuracy. The re-
sults of methods marked by † are from PMAL (Lu et al.
2022). Other results are from the original paper.

Instead, we learn discriminative features through joint opti-
mization in both frequency and spatial domains, which im-
proves the reliability of OSR models.

Closed-Set Accuracy. Table 2 shows the closed-set ac-
curacy comparison between our method and existing meth-
ods on five datasets. According to Table 2, the FreSH does
not sacrifice the accuracy of known classes when detect-
ing unknown classes. Moreover, it significantly improves the
closed-set accuracy, providing state-of-the-art results on all
datasets, especially with a gain of 3.1% on TinyImageNet.
We attribute it to the fact that our frequency enhancement
strategy helps the network pay attention to global structure,
leading to more compact and discriminative representations
for known classes. The consistent improvement in AUROC
and Acc demonstrates that unknown detection and closed-
set recognition are highly correlated, which is also in line
with the observation in (Vaze et al. 2021).

Open-Set Recognition. To further measure the trade-off
between unknown detection and known recognition at var-
ious confidence thresholds, we report the Open-Set Classi-
fication Rate (OSCR) (Dhamija, Günther, and Boult 2018)
score for a comprehensive evaluation of OSR. Our experi-
mental settings and major results shown in Table 3 are de-
rived from (Chen et al. 2021b). The proposed FreSH consis-
tently improves OSCR performance by a substantial margin,
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Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 Tiny-ImageNet

Softmax 99.2 ± 0.1 92.8 ± 0.4 83.8 ± 1.5 90.9 ± 1.3 88.5 ± 0.7 60.8 ± 5.1
GCPL (Yang et al. 2018) 99.1 ± 0.2 93.4 ± 0.6 84.3 ± 1.7 91.0 ± 1.7 88.3 ± 1.1 59.3 ± 5.3
RPL (Chen et al. 2020) 99.4 ± 0.1 93.6 ± 0.5 85.2 ± 1.4 91.8 ± 1.2 89.6 ± 0.9 53.2 ± 4.6
ARPL (Chen et al. 2021b) 99.4 ± 0.1 94.0 ± 0.6 86.6 ± 1.4 93.5 ± 0.8 91.6 ± 0.4 62.3 ± 3.3
ARPL+CS (Chen et al. 2021b) 99.5 ± 0.1 94.3 ± 0.3 87.9 ± 1.5 94.7 ± 0.7 92.9 ± 0.3 65.9 ± 3.8
AKPF (Xia et al. 2023) 99.4 ± NR 94.3 ± NR 88.1 ± NR 94.9 ± NR 93.0 ± NR 67.8 ± NR
ODL (Liu et al. 2022) 99.4 ± 0.1 93.4 ± 0.7 84.8 ± 1.4 92.5 ± 1.0 89.8 ± 0.7 64.3 ± 3.2

FreSH 99.4 ± 0.1 96.3 ± 0.3 91.9 ± 1.2 96.1 ± 1.0 94.4 ± 0.6 77.9 ± 4.1

Table 3: The OSCR results of open-set recognition. Results are the average of five randomized trials. Results with ‘NR’ indicate
that the standard deviation was not released by the original paper.

Method IMGN-C IMGN-R LSUN-C LSUN-R

Softmax 63.9 65.3 64.2 64.7
Openmax 66.0 68.4 65.7 66.8
CROSR 72.1 73.5 72.0 74.9
C2AE 83.7 82.6 78.3 80.1
CGDL 84.0 83.2 80.6 81.2
GFROSR 75.7 79.2 75.1 80.5
RPL 81.1 81.0 84.6 82.0
PROSER 84.9 82.4 86.7 85.6
CVAE 85.7 83.4 86.8 88.2
BCR 87.6 86.9 88.0 87.7
ODL 85.6 85.2 86.5 82.6

FreSH 92.0 90.1 91.2 92.6

Table 4: Macro F1-Score of open-set classification on
CIFAR-10 with various unknown datasets added in the test
phase. The results of other methods are from ODL (Liu et al.
2022) and C2AE (Oza and Patel 2019).

e.g., we push forward 10.1% than SOTA method AKPF (Xia
et al. 2023) on Tiny-ImageNet. Notably, the improvement on
OSCR is more significant than that on AUROC and Acc, in-
dicating that the proposed framework effectively limits open
space risk while balancing it with empirical risk.

Open-Set Classification. Following (Perera et al. 2020;
Yoshihashi et al. 2019), we conduct the open-set classifica-
tion experiment to evaluate the robustness. Similar to the set-
ting of out-of-distribution detection, K classes in the origi-
nal dataset are used for training, and the unknown classes
from other datasets are regarded as the (K+1)-th open class.
Specifically, 10 categories of CIFAR10 are known classes,
and unknown samples are from ImageNet (Russakovsky
et al. 2015) and LSUN (Yu et al. 2015). The test samples
are resized and cropped to the same size as training samples,
obtaining ImageNet-crop, ImageNet-resize, LSUN-crop and
LSUN-resize datasets. The Macro F1-Score is calculated us-
ing the ResNet34 backbone, as shown in Table 4. The pro-
posed method consistently outperforms existing methods by
a large margin (4% on average), demonstrating its insensi-
tivity to domain shifts. It is because the FreSH enhances the
robustness of recognition that we manage to handle open-set
classes from various domains and generalize well.
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Figure 5: Comparison of the number of parameters.

Number of Parameters. Many existing open-set recog-
nition methods use different types of backbones, such
as VGG32 used by us and ARPL (Chen et al. 2021b),
WRN-40-4 used by RPL (Chen et al. 2020), WRN-28-10
used by GFROSR (Perera et al. 2020) and DHRNet used
by CROSR (Yoshihashi et al. 2019). Furthermore, some
generative-based models (Chen et al. 2021b) introduce ad-
ditional components, such as GANs and AEs. Therefore,
training costs and the number of parameters from different
methods vary significantly. For a fair comparison, we de-
tail the line charts of AUROC and parameter number, as
shown in Figure 5. For methods with an equal number of
parameters, we choose the best one to conduct comparisons.
The comparison highlights the superiority of the proposed
FreSH framework — we achieve the best open-set perfor-
mance with the smallest parameter amount. As our primary
contributions lie in the special design of frequency bands
and the reorganization of network connections, we can sig-
nificantly improve the original lightweight backbone with-
out auxiliary networks.

Ablation Study and Further Analysis
Ablation Study. To investigate the contribution of high-
frequency shuffling and low-frequency residual learning for
our FreSH framework, we conduct an ablation study on both
components. Specifically, we randomly select 15 classes as
known classes from CIFAR100, and unknown classes are
selected from the remaining 85 classes. The number of un-
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Figure 6: Ablation study against various openness.

Methods DFT-12 DFT-16 DCT-12 DCT-16 DWT

AUROC 83.6 83.5 83.2 83.0 83.8
ACC 87.5 87.4 87.1 86.7 87.6

Table 5: Compare DWT with other frequency transforma-
tions from different high- and low- frequency thresholds.

known classes increases from 15 to 85, resulting in open-
ness ranging from 18.4% to 48.9%. As shown in Figure 6,
we employ Macro F1-Score to evaluate the performance.
‘Plain CNN’ is the baseline model with cross-entropy loss,
which is trained in the same way as PROSER (Zhou, Ye,
and Zhan 2021). ‘HFS’ and ‘LFR’ represent the addition of
high-frequency shuffling or low-frequency residual connec-
tions to the baseline, and ‘ALL’ uses both strategies above.
‘Transform’ adds data augmentations used in (Hendrycks
et al. 2019) to the baseline, considering that HFS introduces
image transformation to generate high-frequency material.
Overall, our framework benefits from both components and
removing either of them will lead to a decline in recognition
performance as both of them calibrate the biased perception.

Compare with Other Frequency Transformations. We
compare DWT with other commonly used frequency trans-
formations including Discrete Fourier Transform (DFT) and
Discrete Cosine Transform (DCT), which is a special form
of DFT. The thresholds for separating high and low frequen-
cies are crucial for DFT and DCT. After carefully searching,
we ultimately chose 12 and 16 as the optimal thresholds, as
shown in Table 5. The success of DWT could be attributed to
its 1) stable subbands decomposition without search of hy-
perparameter, as denoted in Eq (3); 2) preservation of both
frequency and spatial domain features to promote compre-
hensive representations, as the subbands generated by clas-
sical Fourier transform cannot retain the spatial component.

Justification for HFS. The High-frequency shuffling
strategy aims to decrease high-frequency (HF) sensitivity by
creating diverse HF views. An array of alternatives to HFS,
such as employing Gaussian blur, directly deleting HF, re-
placing HF with Gaussian noise, or other images’ HF are
compared in Table 6. These strategies damage the HF infor-
mation to some extent and fail to reserve complete textures.

Methods Blur Low H-noise H-other HFS

CIF+50 91.8 83.7 90.6 92.1 94.4
TINY 73.1 64.7 68.3 73.8 77.9

Table 6: OSCR results of our HFS and its alternatives.

Swin-T ViT-B-16

FGVC-PIM + HFS TransFG + HFS
92.15 92.61 90.73 91.35

Table 7: Apply HFS to fine-grained recognition methods.

Methods CIFAR10 CIFAR+50
AUROC Acc AUROC Acc

VSR 93.8 97.7 94.5 98.0
LFR(Ours) 95.2 97.9 96.9 97.7

Table 8: Comparisons of vanilla residual learning and LFR.

In contrast, HFS does not discard HF information, and it
keeps and enriches HF via image transformation. The ex-
cellent results in Table 6 demonstrate the representation ca-
pabilities of HFS. Moreover, we integrate HFS into exist-
ing fine-grained recognition methods (Chou, Lin, and Kao
2022; He et al. 2021), as shown in Table 7, which indicates
its effectiveness on higher-resolution CUB dataset. Notably,
the experiments utilize ViT-B-16 and Swin-T, demonstrating
the generality of HFS on transformer backbones.

Compare LFR with Vanilla Spatial Residual (VSR)
Learning. The proposed Low-Frequency Residual (LFR)
aims to enhance low-frequency global structure. So it estab-
lishes connections from shallow to deep layers across dif-
ferent convolutional stages. For a fair comparison, we add
vanilla spatial residual connections (He et al. 2016) at the
same location as the LFR. As shown in Table 8, LFR im-
proves unknown detection performance while maintaining
closed-set accuracy. The robust and accurate performance
of LFR can be attributed to the focus on global features con-
veyed by low-frequency subbands.

Conclusion
In this paper, we provide a seminal insight into frequency
inductive bias in the original spatial domain. We propose
the Frequency Shuffling and Enhancement (FreSH) frame-
work, consisting of High-Frequency Shuffling (HFS) to al-
leviate over-perception of subtle texture and Low-Frequency
Residual (LFR) learning to enhance global structure percep-
tion. As a result, decoupled frequency subbands improve the
robustness and accuracy without introducing extra parame-
ters or complex optimization. Both HFS and LFR paradigms
can be flexibly incorporated into existing frameworks. In the
future, we will delve into generalized frequency representa-
tions for more challenging visual tasks.
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