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Abstract

Our life is populated with articulated objects. Current
category-level articulation estimation works largely focus on
predicting part-level 6D poses on static point cloud obser-
vations. In this paper, we tackle the problem of category-
level online robust and real-time 6D pose tracking of artic-
ulated objects, where we propose KPA-Tracker, a novel 3D
KeyPoint based Articulated object pose Tracker. Given an
RGB-D image or a partial point cloud at the current frame
as well as the estimated per-part 6D poses from the last
frame, our KPA-Tracker can effectively update the poses with
learned 3D keypoints between the adjacent frames. Specifi-
cally, we first canonicalize the input point cloud and formu-
late the pose tracking as an inter-frame pose increment esti-
mation task. To learn consistent and separate 3D keypoints
for every rigid part, we build KPA-Gen that outputs the high-
quality ordered 3D keypoints in an unsupervised manner.
During pose tracking on the whole video, we further propose
a keypoint-based articulation tracking algorithm that mines
keyframes as reference for accurate pose updating. We pro-
vide extensive experiments on validating our KPA-Tracker
on various datasets ranging from synthetic point cloud ob-
servation to real-world scenarios, which demonstrates the
superior performance and robustness of the KPA-Tracker.
We believe that our work has the potential to be applied in
many fields including robotics, embodied intelligence and
augmented reality. All the datasets and codes are available
at https://github.com/hhhhhar/KPA-Tracker.

Introduction
Articulated objects are very common in daily life. Accu-
rately estimating and tracking 6D pose is crucial for a variety
of computer vision and robotics applications, such as robot
manipulation (Xiong et al. 2023; Geng et al. 2023), visual
understanding (Li, Guo, and Wang 2021; Guo, Wang, and
Wang 2021), human object interaction (Yang et al. 2022b,a;
Li et al. 2023), embodied intelligence (Romero, Tzionas,
and Black 2017; Fu et al. 2022) and VR/AR applications
(Clark, Newman, and Dutta 2022). Unlike category-level ar-
ticulated object pose estimation that predicts 6D poses from
static point cloud or RGB-D image observations (Liu et al.
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2022b,a, 2023), articulation pose tracking begins to attract
attention from computer vision researchers in recent years.
Given a sequence of point clouds for articulated object mo-
tion as well as the initialized per-part poses from the first
frame, the pose tracker aims to update those for the rest
frames (Weng et al. 2021).

Under this problem setting, some works attempt to trans-
fer the static articulation pose estimation methods such as
NOCS (Wang et al. 2019a) and A-NCSH (Li et al. 2020)
into pose tracking task (Weng et al. 2021) but suffer from the
following issues: (1) they rely on learning the object features
from the visible points, which results in incomplete shape
and kinematics modeling under the camera views with self-
occlusion. (2) they require per-pixel representation learning
that hinders the performance of tracking speed on the video.
Thus, these limitations prevent the category-level articulated
object trackers from achieving robust and real-time tracking
performance.

In this paper, targeting at building a robust and real-
time articulated object tracking approach, we propose KPA-
Tracker, a novel 3D KeyPoint based Articulated object
pose Tracking framework. Given an initial articulated ob-
ject pose at the first frame, our KPA-Tracker is to continu-
ously track the 6D pose for each individual rigid part of an
articulated object with learned 3D keypoints from the adja-
cent frames. The main motivation of our KPA-tacker is to
track the per-part poses by registering a list of ordered 3D
keypoints, which are learned to model the amodal shape ex-
plicitly from the point cloud observation. Exploiting these
ordered 3D keypoints, KPA-Tracker might alleviate the ef-
fect of invisible parts and achieve more robust tracking per-
formance. In addition, the pose tracker can more effectively
compute the pose increment between two frames due to the
sparsity of the keypoints.

In our KPA-Tracker, to relieve the difficulty of predict-
ing the pose for the observed point cloud in camera space,
we first canonicalize the input space at the current frame by
transforming the point cloud using the inverse poses from
the previous frame. This strategy formulates the articulated
object tracking as an inter-frame pose increment estimation
task. Next, we propose KPA-Gen, an unsupervised manner
to automatically generate and train a sequence of ordered
sparse 3D keypoints as articulation modeling for per-part
representation, which can be used as supervision for KPA-
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Tracker learning without any human keypoint annotations.
The learned 3D keypoints can be applied to jointly model
the geometric shape and part motion, where the former en-
sures the generalization of unseen articulated objects and the
latter contributes to accurate and fast per-part pose tracking.
Finally, to achieve robust tracking performance in the video
and avoid cumulative error, we also propose a keypoint-
based articulation tracking algorithm that mines key frame
as reference for tracking the whole video.

We evaluate our KPA-Tracker on both point clouds and
RGB-D images, where the objects range from the syn-
thetic dataset PartNet-Mobility (Xiang et al. 2020) to the
semi-synthetic dataset ReArt-48 (Liu et al. 2022b). To fur-
ther evaluate the generalization ability of our method to
real-world scenarios, we test KPA-Tracker on a Robo-
tArm dataset that contains much more diverse and complex
scenes. We believe that the extensive experiments show the
superior performance of the KPA-Tracker compared with
state-of-the-arts on the category-level articulated object 6D
pose tracking task.

Our contributions can be summarized as follows:

• KPA-Tracker is a novel framework proposed to solve
the problem of category-level articulated object 6D pose
tracking, where we introduce a list of 3D keypoints as
articulation representation for per-part pose tracking.

• We propose an unsupervised learning method namely
KPA-Gen to automatically generate the high-quality 3D
keypoints on the complete point cloud, which can be used
as supervision information for KPA-Tracker learning.

• The efficiency and robustness of the KPA-Tracker are
demonstrated through the evaluation of the videos with
either point clouds or RGB-D images for the articulated
object pose tracking task, using various datasets ranging
from synthetic to real-world scenarios.

Related Work
Category-level Articulation Pose Estimation
Category-level object pose estimation aims to aim at pre-
dicting the pose of previously unseen objects (Wang et al.
2019a; Manhardt et al. 2020; Di et al. 2022; Wang et al.
2019b; Liu et al. 2020). Beyond the definition of rigid ob-
ject pose estimation, articulated objects hold a limited num-
ber of rigid parts that are connected by different types of
joints. Thus, category-level articulation pose estimation re-
quires per-part 6D pose as predicted results. A-NCSH ex-
tends the notation of normalized coordinates into articula-
tion to estimate part-level poses (Li et al. 2020). Liu et al.
further update the setting into the real-world articulated ob-
ject analysis and propose part pair for investigating unseen
instances (Liu et al. 2022b), as well as an integral pipeline to
leverage articulation pose for robot manipulation (Liu et al.
2022a). Additionally, Xue et al. (Xue et al. 2021) propose
using key-points as an articulation modeling to speed up the
inference time for accurate pose estimation. Although the
above works solve category-level articulation pose estima-
tion well with satisfied performance, they are hard to apply
as ready-to-use recipes into the pose tracking task since the

dense prediction paradigm limits the robustness and infer-
ence speed.

Category-level Articulation Pose Tracking

To handle the problem of category-level online pose track-
ing of articulated objects, Weng et al. propose an end-to-end
pipeline that learns to update the pose compared with those
in the previous frames (Weng et al. 2021; Liu et al. 2022d).
This solution takes point clouds as input and estimates pixel-
level voting vectors for inter-frame pose change prediction.
Otherwise, many researchers focus on keypoint-based object
representation and modeling. Lin et al. track the rigid ob-
jects with predicted 2D keypoints in a RGB sequence (Lin
et al. 2022). Considering depth information input, Heppert et
al. introduce factor graphs into category-independent object
pose tracking (Heppert et al. 2022) while Wen et al. exploit
tracked articulated object pose for 3D reconstruction (Wen
et al. 2023). Despite these achievements for pose tracking
(Jain et al. 2021; Liu et al. 2022c), the keypoints extracted
by these methods can only model the geometric information
of the input object but ignore the kinematic motion when
the part is rotating or translating along the corresponding
joint. In this work, we introduce an unsupervised keypoint
generation strategy (referred to 6-PACK (Wang et al. 2020)
and Fernadez’s work (Fernandez-Labrador et al. 2020)) into
articulated objects, and model both geometry and part mo-
tion with the learned ordered 3D keypoints for per-part pose
tracking.

Problem Statement

In this paper, we target at the problem of tracking the per-
part 6D poses of articulated objects from known categories.
We follow the category-level articulated object and part def-
inition in A-NCSH (Li et al. 2020) and CAPTRA (Weng
et al. 2021), and adopt the assumption that the number of
rigid parts and kinematic structures is constant for all the
objects in the same category. In this paper, the problem and
notations are defined as follows: Given a live stream of point
clouds {Xt}t≥0 where in each t frame the point cloud con-
tains K rigid parts and S(k) represents the points of k-th
part, within the per-part pose T

(k)
0 = {R(k)

0 , t(k)0 }Kk=1 at 0-
th frame, the outputs of the articulation tracker consist of
category-level per-part 6D poses T (k)

t = {R(k)
t , t(k)t }Kk=1 at

all the frames t > 0.
In our proposed paradigm of 3D keypoint-based articu-

lation modeling for category-level articulated object pose
tracking task, the tracking model aims to learn an ordered list
of 3D keypoints P = {pj ∈ R3}Mj=1 with M keypoints from
the point cloud X(k) = X · S(k) for k-th rigid part. In this
way, we can transfer the per-part pose tracking task as a per-
part 3D keypoints registration task. In other words, given the
estimated articulated object pose T

(k)
t−1 = {R(k)

t−1, t(k)t−1}Kk=1
at t−1 frame, the tracking model would estimate the pose in-
crement ∆T

(k)
t = (T

(k)
t−1)

−1T
(k)
t by registering the ordered

3D keypoints of Pt and Pt−1.
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Figure 1: The overall pipeline of KPA-Tracker. Taking observed partial point cloud t frame as input, our KPA-Tracker first
canonicalizes the point cloud with the estimated pose from the t − 1 frame. Then it is processed by a PointNet++ architecture
and predicts per-part 3D ordered keypoints, part segmentation and pose regression, in which the keypoints are supervised by
those generated from KPA-Gen. The tracking algorithm refines and obtains the final poses by tracking the per-part keypoints.

KPA-Tracker Architecture
In this section, we introduce the KPA-Tracker in detail. The
overall pipeline is illustrated in Fig. 1. Firstly, the input
cloud point Xt at t frame is canonicalized by the estimated
6D pose T (k)

t−1 of t−1 frame (Sec. ). Next, we propose an un-
supervised method that generates the ordered 3D keypoints
from the complete point cloud (Sec. ). Finally, we describe
the learning pipeline of KPA-Tracker (Sec. ) and the tracking
algorithm (Sec. 13).

Articulation Pose Canonicalization
Inspired by (Weng et al. 2021), we canonicalize the per-part
6D pose T

(k)
t = {R(k)

0 , t(k)t }Kk=1 at t frame with the pose
T

(k)
t−1 = {R(k)

t−1, t(k)t−1}Kk=1 at the previous frame. This op-
eration has the following advantages: (1) the 6D pose esti-
mation task in camera space can be transferred into an in-
terframe delta pose estimation task in a ”pseudo-canonical”
space, which is friendly for neural network learning. (2) the
canonicalized point cloud can effectively eliminate the ef-
fect of diverse joint states of each movable rigid part, and
provide a shape and kinematic prior that largely contributes
to 3D keypoints learning.

In articulation pose canonicalization, given a point cloud
Xt, the canonicalized point cloud X̂t can be computed
as the product of the inverse transformation of T

(k)
t−1 =

{R(k)
t−1, t(k)t−1}Kk=1 and Xt:

X̂
(k)
t = (T

(k)
t−1)

−1X
(k)
t = (R

(k)
t−1)

−1(X
(k)
t − t(k)t−1) (1)

where X
(k)
t is the point cloud that belongs to the k-th rigid

part and can be computed by multiplying the estimated part
mask S

(k)
t :

X
(k)
t = Xt · 1(St = k) (2)

By canonicalizing the input point cloud, the track-
ing model will only predict the per-part pose increment
∆T

(k)
t = {∆R

(k)
t ,∆t(k)t } between t and t − 1 frame.

Since ∆R
(k)
t is approximately a 3 × 3 identity matrix that

∆R
(k)
t ≈ I and ∆t(k)t ≈ 0 on the adjacent frames, the neural

network would be more sensitive to the slight pose changes,
and largely improve the tracking performance.

Articulation Modeling with 3D Keypoint
Taking the canonicalized point cloud X̂t at t frame as in-
put, a simple way to track the per-part 6D pose is to register
the interframe point cloud like ICP (Zhou, Park, and Koltun
2018) or learn point correspondences for optimization like
BundleTrack (Wen and Bekris 2021). In this paper, to boost
the tracking speed, we propose to register the per-part pose
increment ∆T

(k)
t by learning a list of ordered 3D keypoints

for every rigid part. Ideally, given the learned ordered 3D
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keypoints P
(k)
t and P

(k)
t−1 at t and t − 1 frame, the pose in-

crement ∆T
(k)
t can satisfy:

P
(k)
t = ∆T

(k)
t P

(k)
t−1 (3)

In order to learn the 3D keypoints with high quality, the
3D keypoints need to meet the following requirements: (1)
Separateness. All the keypoints need to be separately dis-
tributed on the surface of the rigid part, which demonstrates
the ability to learn the geometric shape of articulated objects.
(2) Consistency. The learned 3D keypoints are expected to
be consistent among all the instances from the same cate-
gory. In other words, the order of the keypoints remains the
same on different objects. (3) Symmetry. In practice, we
find many categories of articulated objects are symmetric,
so the learned keypoints need to be distributed uniformly
and symmetrically in these instances. Unfortunately, there
are no keypoint annotations for articulated object datasets
at the current stage that meet these requirements and are
used for articulation pose tracking. Thus, we propose an
automatic articulation keypoints generation method, namely
KPA-Gen, to unsupervisely generate per-part 3D keypoints
P (k) as annotations for KPA-Tracker training.

In KPA-Gen, the input is complete point cloud X ′ of the
articulated object in the ”pseudo-canonical” space where the
X ′ is canonicalized by the pose T

(k)
t−1 = {R(k)

t−1, t(k)t−1} at
t− 1 frame. We apply PointNet++ (Qi et al. 2017) encoder-
decoder architecture to obtain the pixel-level features and
design two branches for node and keypoint learning respec-
tively. The node branch predicts a sparse tuple of unordered
nodes N = {nj ∈ R3}Mj=1, which can be regarded as poten-
tial 3D keypoints but not consistent. These unordered nodes
are initialized by Farthest Point Sampling (FPS) on the input
X ′ and represented by grouped clusters where each point in
the cluster is corresponding to an offset to the target node.
Since these nodes are separated and floating on the surface,
they can indicate the shape geometry and be adopted as key-
point constraints for training.

Based on these unordered nodes, we can design the key-
point branch that trains the part-level ordered 3D keypoints
explicitly. These 3D keypoints are learned by the learnable
shape parameters B(k) that describe the category-specific
shape information and encode the keypoint into the output
of keypoint branch β(k). In this way, the 3D keypoints can
be generated by:

P (k) = F (β(k);B(k)) (4)

where the shape parameters B(k) are shared within the cat-
egory so they ensure the category-level generalization. To
train the KPA-Gen model, the loss functions are designed to
guarantee separateness, consistency and symmetry for 3D
keypoint learning. Firstly, the per-part chamfer loss L(k)

chf

is employed to make the distance between unordered nodes
and order keypoints as small as possible, and defined as:

L(k)
chf =

N (k)∑
ni

min
pj∈P (k)

∥ni − pj∥2 +
P (k)∑
pj

min
ni∈N (k)

∥ni − pj∥2 (5)

…

…

Figure 2: Heatmap and voting scheme for keypoint learning

Secondly, to avoid collapsing of the keypoints, the per-
part separation loss Lsep is designed to prevent multiple
nodes collaps to the same location but not keep these nodes
too far away from each other:

L(k)
sep =

N (k)∑
ni

N (k)∑
nj

max(0, δ2 − ∥ni − nj∥2) (6)

Finally, to ensure the learned keypoints can cover the
whole shape geometry of the rigid part, the per-part cov-
erage loss Lcov is designed by the difference between the
volume of keypoints P (k) and that of the input point cloud
X ′(k), and also penalize those keypoints that are far away
from X ′(k):

L(k)
cov = ∥vol(P (k))− vol(X ′(k))∥2 +

N (k)∑
ni

∥ni −X ′(k)∥2 (7)

The total loss LG for KPA-Gen that generate unsuper-
vised per-part 3D ordered keypoints is the weighted sum of
losses from chamfer loss Lchf , separation loss Lsep and cov-
erage loss Lcov with λchf , λsep and λcov where:

LG = λchfLchf + λsepLsep + λcovLcov (8)

Network Modules
Given the generated 3D keypoints P

(k)
t from KPA-Gen as

supervision for every canonicalized point cloud Xt, we train
the KPA-Tracker for category-level articulated object pose
tracking task. The input of KPA-Tracker is canonicalized
partial point cloud X̂t at t frame, which is processed by a
PointNet++ architecture (Qi et al. 2017) as feature extractor
to obtain per-pixel feature vectors fi ∈ R128. Then we build
three parallel modules at the end of the feature extractor: part
segmentation module, keypoint prediction module and pose
regression module.

Part Segmentation Module. For each canonicalized
point x̂i, we build three multi-layer perceptions (MLPs) with
ReLU activation function that outputs K channels for part
segmentation s

(k)
i . We use cross-entropy loss to train the part

segmentation module.

Keypoint Prediction Module. We use an offset-voting
mechanism with heatmap of X ′

t to predict 3D keypoints
P (k) = {p(k)j }Mj=1 for each part as shown in Fig. 2. Specif-
ically, we also build three MLPs and output 4KM chan-
nels, where KM channels indicate the heatmap of the i-th
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Algorithm 1: Tracking algorithm on the whole
video with the learned 3D keypoints
input : Observed point cloud sequence {Xt}t≥0

Per-part 3D keypoints {P (k)
t }t≥0

Per-part 6D pose T
(k)
0 at the first frame.

output: Per-part 6D pose T
(k)
t at all the t > 0 frames

1 Initialize keyframe pool B
2 Add frame t = 0 into keyframe pool B
3 for t > 0 frames do
4 if t%N == 0 then
5 Add t-th frame into key frame pool B
6 end
7 Obtain the nearest keyframe t′ for t-th frame

from keyframe pool B
8 for K parts do
9 Align P

(k)
t to P

(k)
t′ for k-th part

10 Compute the delta pose ∆T k
t for k-th part

11 Compute the pose T
(k)
t at current t-th frame

12 end
13 end

point voting for which keypoint and 3KM channels indi-
cate the offset between this point and the target keypoint.
The heatmap for j-th keypoint Hj

i is defined as:

Hj
i = 1− ∥xi − p∗j∥2/σ (9)

where σ is the distance threshold and we only consider the
points for voting whose distance to the keypoint pj is smaller
than σ. ∗ indicates the ground truth. The offset V j

i is defined
as:

V j
i = (xi − p∗j )/H

j
i (10)

Therefore, within the predicted heatmap Hj
i , offset V j

i as
well as the segmentation s

(k)
i , the predicted j-th keypoint for

k-th part can be obtained by:

p
(k)
j =

1

N

N∑
i=1

s
(k)
i Hj

i (xi + V j
i ) (11)

Pose Regression Module. We build a pose regression
module to provide an initial per-part delta pose ∆T̃

(k)
t =

{∆R̃
(k)
t ,∆t̃

(k)

t } for t frame by direct regression scheme. To
be specific, for rotation ∆R̃

(k)
t , we regress the quaternion

vector as pose replacement. For translation ∆t̃
(k)

t , we di-
rectly regress it with L2 loss function. We use a joint-centric
articulation pose modeling strategy that uses joint state θ as
pose representation. Please refer to supplementary materials
for more details.

Articulation Pose Tracking Algorithm
Taking the per-part keypoints P

(k)
t−1 and pose T

(k)
t−1 at t − 1

frame, and keypoints P
(k)
t and initial delta pose ∆T̃

(k)
t at

t frame as input, KPA-Tracker can output the per-part pose
T

(k)
t . To be specific, we build a tracking energy function E

to calculate T
(k)
t with optimization scheme:

E =
1

K

K∑
k=1

Var(∥∆T̃
(k)
t · p(k)j,t−1 − p

(k)
j,t ∥2) (12)

Thus, we can minimize the energy function E to refine
the ∆T̃

(k)
t .

∆T
(k)
t = argmin

∆T̃
(k)
t

E (13)

The pose T
(k)
t at t frame can be recovered by:

T
(k)
t = ∆T

(k)
t T

(k)
t−1 (14)

In this way, we can track the articulated object pose T
(k)
t

from T
(k)
t−1. In addition, to achieve robust pose tracking in

the whole video, we propose a simple but effective tracking
algorithm that mines the keyframes at N intervals and tracks
each frame into the nearest keyframe. The overall articula-
tion tracking procedure with the learned 3D keypoints for
the video is summarized in Algorithm 1.

Experiments
Experimental Settings
Datasets. To train the KPA-Tracker as well as the KPA-
Gen network, we generate the corresponding datasets for
training and validation. Firstly, we build a synthetic artic-
ulated object tracking dataset with the objects from PartNet-
Mobility (Xiang et al. 2020). We select five categories of
laptop, dishwasher, eyeglasses, scissors and drawer referred
by ArtImage (Xue et al. 2021), where there are 30K frames
and 300 videos for each category. Next, we generate a semi-
synthetic dataset for articulated object tracking task from
ReArt-48 repository using SAMERT technique (Liu et al.
2022b), which generates more than 50K frames for each
category. To validate the performance of the KPA-Tracker,
we adopt degree error for 3D rotation, distance error for 3D
translation and tracking speed for real-time analysis. We also
test the cumulative tracking error on the whole video.

Implementation Details. During the data pre-processing,
input point clouds are sampled into 2,048 points and the ob-
jects in RGB-D images are also cropped and projected into
the point cloud as the network inputs. The initial learning
rate is 0.001 and we adopt cosine learning rate decay dur-
ing training. The total training epoch is 100. The hyper-
parameters are: λchf = 1.0, λsep = 2.0, λcov = 1.0,
σ = 0.1. All the experiments are implemented on four
NVIDIA GeForce RTX 4090 GPUs with 24GB memory.

Articulated Object Pose Tracking
We report the results of KPA-Tracker evaluated on the
synthetic dataset containing the articulated objects from
PartNet-Mobility (Xiang et al. 2020) in Table 1. As it can be
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Category Method Per-part 6D Pose Inference Time (s)Rotation Error (◦) Translation Error (m)

Laptop

A-NCSH (Li et al. 2020) 8.5, 9.2 0.084, 0.103 1.67
OMAD (Xue et al. 2021) 8.7, 8.9 0.092, 0.096 0.34
Oracle ICP (Zhou, Park, and Koltun 2018) 10.8, 16.2 0.131, 0.174 0.72
CAPTRA* (Weng et al. 2021) 5.9, 5.3 0.080, 0.063 0.10
KPA-Tracker (Ours) 5.0, 7.8 0.076, 0.084 0.05

Eyeglasses

A-NCSH (Li et al. 2020) 7.6, 24.8, 26.6 0.079, 0.324, 0.319 2.59
OMAD (Xue et al. 2021) 8.5, 9.3, 9.6 0.105, 0.123, 0.118 0.84
Oracle ICP (Zhou, Park, and Koltun 2018) 14.3, 26.5, 29.6 0.154, 0.198, 0.196 0.96
CAPTRA* (Weng et al. 2021) 4.5, 12.6, 13.1 0.054, 0.097, 0.084 0.14
KPA-Tracker (Ours) 2.7, 4.3, 4.4 0.031, 0.050, 0.053 0.08

Dishwasher

A-NCSH (Li et al. 2020) 5.0, 5.7 0.074, 0.119 1.70
OMAD (Xue et al. 2021) 6.2, 7.0 0.126, 0.207 0.36
Oracle ICP (Zhou, Park, and Koltun 2018) 7.8, 12.4 0.196, 0.234 0.67
CAPTRA* (Weng et al. 2021) 4.6, 5.4 0.055, 0.089 0.11
KPA-Tracker (Ours) 3.7, 4.9 0.061, 0.087 0.06

Scissors

A-NCSH (Li et al. 2020) 5.0, 5.7 0.041, 0.057 1.21
OMAD (Xue et al. 2021) 6.1, 6.6 0.055, 0.069 0.29
Oracle ICP (Zhou, Park, and Koltun 2018) 16.8, 14.5 0.185, 0.167 0.49
CAPTRA* (Weng et al. 2021) 4.1, 4.7 0.032, 0.039 0.12
KPA-Tracker (Ours) 3.9, 5.2 0.028, 0.035 0.06

Drawer

A-NCSH (Li et al. 2020) 8.6, 9.8, 11.5, 8.5 0.088, 0.255, 0.257, 0.175 3.64
OMAD (Xue et al. 2021) 6.5, 6.5, 6.5, 6.5 0.168, 0.242, 0.243, 0.239 0.62
Oracle ICP (Zhou, Park, and Koltun 2018) 12.5, 19.8, 19.6, 20.1 0.234, 0.342, 0.338, 0.337 1.03
CAPTRA* (Weng et al. 2021) 4.8, 6.5, 6.3, 6.0 0.112, 0.185, 0.177, 0.156 0.25
KPA-Tracker (Ours) 6.1, 6.1, 6.1, 6.1 0.145, 0.178, 0.150, 0.167 0.12

Table 1: Comparison with state-of-the-art on the synthetic dataset with the articulated objects from PartNet-Mobility. The
training and validation data are generated by the technique from ArtImage. * indicates the re-implementation on our datasets.

Figure 3: Qualitative results on synthetic dataset of articulated objects from PartNet-Mobility (top) and semi-synthetic dataset
of the objects from ReArt-48 (bottom).

seen, compared with the static articulation pose estimation
methods such as A-NCSH and OMAD, KPA-Tracker shows
a big margin in per-part 6D pose tracking performance with
only 3.9◦ and 5.2◦ on rotation error of category Scissors.
For translation errors, our KPA-Tracker can achieve state-
of-the-art performance on the five categories with average 6
centimeters. This can be explained by that the learned 3D
keypoints can well model the geometry of rigid parts and

contributes to better registration. In terms of inference time,
KPA-Tracker also obtains the fastest speed compared to A-
NCSH and OMAD with only an average 0.07s per frame.
Although our method shows a slight improvement in pose
tracking compared to CAPTRA, it holds a better real-time
performance. Therefore, we can conclude that KPA-Tracker
can well learn 3D keypoints and fully utilize them in pose
tracking task. Qualitative results are shown in Fig. 3.
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#KP per-part Rotation Error (◦) Translation Error (m)
4 5.0, 7.8 0.076, 0.084
8 5.8, 8.8 0.084, 0.082

12 6.2, 9.8 0.092, 0.109
16 5.2, 11.3 0.096, 0.115

Table 2: The effect of keypoint numbers on pose tracking

Method A-NCSH OMAD CAPTRA Ours
FPS 0.8 3.3 10.7 14.2

Table 3: Comparison of tracking FPS

Ablation Study
Number of 3D Keypoints. We investigate the effect of
the keypoint number, where we experiment with PartNet-
Mobility objects from the category Laptop and Table 2 il-
lustrates the results. As it can be seen, We can see that the
performance becomes worser when the keypoint number is
very large. Intuitively, we believe that too many keypoints
make the target locations predicted by keypoint branch less
accurate. Thus, it is crucial for the neural network to dis-
tinguish between different keypoints when the keypoints are
too dense, which determines the upper bound on the perfor-
mance of the KPA-Tracer.

Real-time Analysis. To further discuss the real-time anal-
ysis of KPA-Tracker, we report the FPS performance com-
pared with A-NCSH, OMAD and CAPTRA. In Table 3. we
can see that our method achieves the state-of-the-art track-
ing speed with 14.2 FPS performance, which is dramatically
better than A-NCSH and OMAD. Besides, due to keypoint-
based pose tracking paradigm adopted in KPA-Tracker, we
also obtain a faster tracking performance than CAPTRA,
which relies on per-pixel NOCS coordinates prediction.

Generalization Capacity
Experiments on Semi-Synthetic Scenarios. We evaluate
the articulated object pose tracking on the dataset generated
with ReArt-48 (Liu et al. 2022b) with semi-synthetic scenar-
ios. The tracking results are shown in Table. 4. We can see
that the accurate and robust tracking performance with only
5.6◦, 5.9◦ on rotation error and 0.010m, 0.009m on transla-
tion error for category Box. Qualitative results in Fig. 3 also
show the high-quality 3D keypoints learning.

Category Per-part 6D Pose
Rotation Error (◦) Translation Error (m)

Box 5.6, 5.9 0.010, 0.009
Stapler 7.6, 8.1 0.010, 0.008
Cutter 3.6, 3.6 0.010, 0.010

Scissors 11.3, 8.5 0.006, 0.006
Drawer 8.4, 8.4 0.027, 0.019

Table 4: Pose tracking results on articulated objects from
ReArt-48 dataset.

Per-part Rotation Error (◦)
0.1 0.8 2.5 9.8 13.8 18.6 20.0

Per-part Translation Error (m)
0.002 0.017 0.025 0.071 0.076 0.139 0.161

Table 5: Pose tracking results on RobotArm dataset

Figure 4: Qualitative results on RobotArm dataset

Figure 5: Demonstrations on real-world articulated objects

Experiments on Real-world Scenarios. To investigate
the tracking performance in real-world scenarios, we train
and evaluate KPA-Tracker on the 7-part RobotArm dataset
(Liu et al. 2022b). Table 5 shows the tracking errors and we
can observe the passable 6D pose tracking performance on
rotation and translation. It is undeniable to suffer from the
effect of the multi-depth structure of the robot arm instance.
Qualitative results are shown in Fig. 4. Furthermore, we also
test the KPA-Tracker in real-world videos and we illustrate
the demonstrations in Fig. 5.

Conclusion
In this work, we formulate the category-level articulated ob-
ject 6D pose tracking as a 3D keypoint registration problem
and introduce KPA-Tracker to tackle this issue. Our method
designs KPA-Gen to automatically generate 3D ordered key-
points by in unsupervised manner for training KPA-Tracker.
During inference, we propose a keyframe-based tracking
algorithm that boosts the robustness and real-time perfor-
mance of the whole video. Experiments demonstrate that
KPA-Tracker is able to obtain state-of-the-art tracking per-
formance on various datasets and scenarios.
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